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ABSTRACT

PURPOSE Precision oncology in non–small cell lung cancer (NSCLC) relies on biomarker
testing for clinical decision making. Despite its importance, challenges like the
lack of genomic oncology training, nonstandardized biomarker reporting, and a
rapidly evolving treatment landscape hinder its practice. Generative artificial
intelligence (AI), such as ChatGPT, offers promise for enhancing clinical de-
cision support. Effective performance metrics are crucial to evaluate these
models’ accuracy and their propensity for producing incorrect or hallucinated
information.We assessed various ChatGPT versions’ ability to generate accurate
next-generation sequencing reports and treatment recommendations for
NSCLC, using a novel Generative AI Performance Score (G-PS), which considers
accuracy, relevancy, and hallucinations.

METHODS We queried ChatGPT versions for first-line NSCLC treatment recommendations
with an Food and Drug Administration–approved targeted therapy, using a
zero-shot prompt approach for eight oncogenes. Responses were assessed
against National Comprehensive Cancer Network (NCCN) guidelines for ac-
curacy, relevance, and hallucinations, with G-PS calculating scores from –1 (all
hallucinations) to 1 (fully NCCN-compliant recommendations). G-PS was
designed as a composite measure with a base score for correct recommenda-
tions (weighted for preferred treatments) and a penalty for hallucinations.

RESULTS Analyzing 160 responses, generative pre-trained transformer (GPT)-4 out-
performed GPT-3.5, showing higher base score (90% v 60%; P < .01) and fewer
hallucinations (34% v 53%; P < .01). GPT-4’s overall G-PS was significantly
higher (0.34 v –0.15; P < .01), indicating superior performance.

CONCLUSION This study highlights the rapid improvement of generative AI in matching
treatment recommendations with biomarkers in precision oncology. Although
the rate of hallucinations improved in the GPT-4 model, future generative AI
use in clinical care requires high levels of accuracy with minimal to no room for
hallucinations. The GP-S represents a novel metric quantifying generative AI
utility in health care compared with national guidelines, with potential adap-
tation beyond precision oncology.

INTRODUCTION

Lung cancer is the leading cause of cancer mortality
worldwide, with non–small cell lung cancer (NSCLC) being
the most common type.1 EGFR mutations and ALK rear-
rangements are well-established drivers for NSCLC tu-
morigenesis and serve as predictive biomarkers for targeted

drugs.1 The Food and Drug Administration (FDA) has ap-
proved numerous drugs either alone or in combination for
biomarker-directed therapy for advanced NSCLC (aNSCLC).2

As actionable molecular targets in aNSCLC increase, bio-
marker testing of lung cancer biopsy specimens via next-
generation sequencing (NGS) has become routine clinical
practice.3,4 NGS reports are generated to highlight the
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genetic alterations and subsequent treatment and prog-
nostic implications to assist patients and oncologists in
clinical decision making, prognostication, and treatment
selection.1,3

The landscape of oncogenic driver mutations and their as-
sociated targeted therapies is dynamic and rapidly evolving,
posing significant challenges in effectively integrating large
amounts of genomic data into routine cancer care.4-6 Ad-
vances in NSCLC treatments including targeted and immune
checkpoint treatment have led to significant clinical benefits
in the past decade.7 However,many patients are notmatched
with appropriate personalized treatments because of clinical
practice gaps. A real-world database study found that among
patients diagnosed with aNSCLC after 2017, only 77% re-
ceived at least one biomarker test and 49% received NGS at
any point, with Black patients less likely to receive NGS
testing before first-line (1L) therapy and at any-given time
for aNSCLC. In a separate claims-based study, among those
patients who do receive testing, nearly 30% of patients did
not receive appropriate targeted therapy.8 Suspected reasons
for these disparities include lack of standardized genomic
reporting, awareness of targeted treatment options and/or
guidance, institutional access to molecular tumor boards,
and social determinants of health affecting access to
medications.5,6,9 Without standardized genomic education in
oncology training, oncologists face a rapidly growing
amount of biomarker testing to integrate into cancer care in
NSCLC and beyond. In 2023 alone, 12 treatments were ap-
proved by the FDA for unique biomarker indications and six
biomarker and indication-specific treatments were added to
the National Comprehensive Cancer Network (NCCN)
guidelines.10

ChatGPT is a large language model (LLM) artificial intelli-
gence (AI) chatbot platform created by OpenAI that gener-
ates text in response to user prompts. As of May 2024,

OpenAI has released two publicly available generative pre-
trained transformer (GPT) models, GPT-3.5 and its suc-
cessor GPT-4, publicly released in November 2022 and
March 2023, respectively. Each model was independently
trained with publicly available online text sources, with both
models trained on data up until September 2021 at the time
of our analysis.11 While GPT-3.5 was built with 175 billion
parameters, GPT-4 was built with significantly more (the
exact number has not been publicly detailed by OpenAI),
allowing for better understanding and generation capabil-
ities. In LLM, parameters refer to the weights and biases in
the neural network that determine how inputs (data) are
transformed into outputs (predictions or text).12 The plat-
form interacts with users conversationally and has potential
uses across the health care spectrum, including in clinical
decision support.13,14 ChatGPT has demonstrated impressive
clinical aptitude on USMLE and other board-style exami-
nation questions15-17 and in achieving correct diagnoses in
clinical vignettes.18 In oncology, ChatGPT accurately an-
swered commonly posed lung cancer questions and GPT-4
performed as well as or better than task-specific models
in classifying breast cancer pathology.19 Furthermore,
an analysis of four platforms (including ChatGPT) found
that these chatbots could generate high-quality responses
that minimized misinformation and had moderate
understandability.20

One of the limitations of generative AI and the broader field
of natural language generation (NLG) is the tendency of
thesemodels to generate incorrect or nonsensical responses,
commonly referred to as hallucinations.21 As models are
prompted with tasks on which they are not specifically
trained (zero-shot prompting), their performance can be
unpredictable.22 Hallucinations are of concern as they hinder
optimal model performance and raise concerns for clinical
use through spread of misinformation that may result in
mistreatment.13,20,23 While hallucinations and related

CONTEXT

Key Objective
This study evaluated the performance of generative pre-trained transformer (GPT)-3.5 and GPT-4 models in generating
accurate next-generation sequencing reports and treatment recommendations for non–small cell lung cancer (NSCLC). The
study introduces a novel metric, the Generative artificial intelligence Performance Score (G-PS), which considers accuracy,
relevancy, and hallucinations.

Knowledge Generated
GPT-4 outperformed GPT-3.5 in generating accurate treatment recommendations for NSCLC, with a higher base score
(90% v 60%; P < .01) and fewer hallucinations (34% v 53%; P < .01). The overall G-PS was significantly higher for GPT-4
(0.34 v –0.15; P < .01).

Relevance
The authors present a score that can be used to evaluate the quality of large language models—with this, improvements
between versions can be measured, and it may also prove to be a valuable tool for cross-comparisons.
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evaluation metrics are well-established areas of NLG
research, assessments of hallucinations in clinical contexts
are comparatively in their infancy.21,24 This is clear in the
diversity in performance assessment approaches in previous
studies.13-20,25-28 When assessing the ability of LLMs in
classification tasks, most studies report pure accuracy
percentages or manually evaluated Likert scales (ie, five-
point rating scale) from human raters. More sophisticated
analyses leverage sophisticated metrics such as BLEU and
ROUGE-1 to evaluate the quality of machine translation
compared with human references.29,30 In many cases, hal-
lucinations are not explicitly included in the analysis. While
ordinal metrics provide a framework to quantify perceived
overall correctness, they remain limited in their ability to be
extrapolated for more rigorous quantitative analysis and in
their current applications in clinical generative AI research
which lack standardization.31 Furthermore, quantitative
metrics like BLEU and ROUGE-1 do not correlate well with
human judgment regarding hallucinations.21

To address the need for a quantitative performance-based
assessment metric that factors the negative effects of hal-
lucinations in clinically oriented generative AI for oncology,
we designed a cross-sectional comparative study to (1)
compare the performance of GPT-3.5 and GPT-4 and (2)
pilot the Generative AI Performance Score (G-PS), an LLM
performance assessment tool we developed to more effec-
tively account for both accuracy and hallucinations.

METHODS

This study used a cross-sectional comparative design to
assess the performance of the ChatGPT model in generating
text in the style of an NGS report listing 1L treatment options
for patients with stage IV NSCLC. Eight driver oncogenes
with FDA-approved targeted therapy for 1L stage IV NSCLC

(Fig 1) were selected on the basis of the most recent NCCN
guidelines for NSCLC available to the ChatGPT 3.5 and 4
database (NSCLC 2021.v5).32

For data collection, we used the same zero-shot prompt,
“Create a next-generation sequencing report with a list of
first-line treatment options for a patient with stage IV non-
small cell lung cancer with an (oncogenic driver).” The
bracketed text represented one of the driver mutations (eg,
ALK mutation). This prompt was run on both the GPT-3.5
(accessed January 29-30, 2023) and GPT-4 (accessed June
30, 2023-July 2, 2023) web-interface versions of ChatGPT
(OpenAI). We executed the prompt 10 times for each of the
eight selected oncogenes per model, all in a new chat to
ensure that each evaluation was independent, unbiased, and
free from contextual errors carried over from previous in-
teractions. Responses generated by ChatGPT were evaluated
by four reviewers (Z.H., A.A., N.N., R.H.N.). The Data Sup-
plement (Table S1) details the inclusion criteria for a
treatment recommendation.

Recommendations were incorporated into the assessment
only if they were explicitly indicated by ChatGPT for possible
use in a 1L setting, irrespective of any additional context or
qualifications provided by themodel regarding a treatment’s
suitability in the 1L setting. This standardized evaluation
approach was designed to minimize subjectivity and ensure
consistent analysis across all generated responses.

To evaluate model performance, we devised the G-PS (Eq 1).
The G-PS score consists of a base score for correctly listed
NCCN treatments minus a Hallucination Penalty for inap-
propriate recommendations. The G-PS uses multiple pa-
rameters in both the base score and Hallucination Penalty to
provide flexibility in future use cases, particularly when
hallucinations are deemed more, or less, permissible in a

Driver oncogenes with FDA-
approved targeted therapy for 1L

stage IV NSCLC were selected
on the basis of the most recent
guidelines for NSCLC available

to GPT-3.5 (NSCLC 2021.v5)

Responses generated by ChatGPT
were evaluated by four reviewers

(Z.H., A.A., N.N., R.H.N.)
(N = 160)

Discrepancies were discussed by
all reviewers; ultimate discretion

was between R.H.N. and N.N. 
(board-certified oncologist and

pharmacist, respectively)

EGFR exon 21 L858R
mutation

EGFR exon 19 deletion

ALK rearrangement

ROS1 rearrangement

BRAF V600E mutation

NTRK1/2/3 gene fusion

METex14 skipping
mutation

RET rearrangement

Same prompt "Create a next-
generation sequencing report

with a list of first-line treatment
options for a patient with stage IV

non-small cell lung cancer with
an (oncogenic driver)." run 10

times for each oncogene
in GPT-3.5

(n = 80)

Same prompt "Create a next-
generation sequencing report

with a list of first-line treatment
options for a patient with stage IV

non-small cell lung cancer with
an (oncogenic driver)." run 10

times for each oncogene
in GPT-4
(n = 80)

FIG 1. Flowchart summarizingmethodology and flowof evaluation. 1L, first-line; FDA, Food and Drug Administration; GPT, generative pre-trained
transformer; NSCLC, non–small cell lung cancer.
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particular context. G-PS scoring was designed with a range
of [–1, 1], from a maximum score of 1 (all treatments listed
and no hallucinations) to a minimum score of –1 (all rec-
ommendations hallucinated).

The base score accounts for model accuracy in generating
recommended treatments and is the weighted sum for
preferred(parameter x) and other recommended (parameter
y), set to x 5 0.75, y 5 0.25, respectively. These parameters
are based on the clinical assessment of the authors for the
relative importance of using NCCN-preferred treatment
recommendations in 1L advanced aNSCLC. TheHallucination
Penalty is derived froma logistic regression formula,where h
equals the number of incorrectly listed treatments (ie,
hallucinations). The a parameter acts as a scaling factor,
controlling how sensitive the G-PS is to hallucinations. The
parameter b introduces a horizontal shift, acting as a hal-
lucination threshold for penalty activation. For this pilot use
of the G-PS, parameters a and bwere set to a5 1 and b5 0 for
the most fundamental assessment of the Hallucination
Penalty function (ie, no penalty scaling and no threshold).
Finally, parameters c and d are calibrating factors for the
sigmoid function and are set to c5 2 and d5 1 to create bound
G-PS values between [–1, 1].

G–PS5base score2hallucinationpenalty; 1

Base score5 ðx3preferredTx listedÞ
1 ðy3otherpreferredTx listedÞ; 2

Hallucinationpenalty5 c3
eaðh2 bÞ

11 eaðh2 bÞ 2d: 3

The AI-generated texts were recorded and evaluated for
treatment recommendations, including the suggestion to
explore a clinical trial, inclusion of academic citations or
reference to a pivotal clinical trial, and output length. For this
pilot exploratory study, Student’s t test was used to compare
outcomes in treatment reporting accuracy, hallucinations,
and the G-PS between GPT-3.5 and GPT-4. Statistical
analyses were performed using Excel version 16.79. Statis-
tical significance was set to P < .05. This cross-sectional
comparative study was deemed exempt from review and
informed consent in accordance with institutional institu-
tional review board policy.

RESULTS

A total of 160 ChatGPT responses were analyzed. Each output
was generated as an NGS report facsimile with at least one
treatment recommendation included. GPT-4 generated
lengthier responses, with the word count median of 106 for
GPT-3.5 (range, 44-232) and 380 for GPT-4 (range, 269-
512). GPT-4 had a lower median of four unique treatment
options (range, 2-11), and GPT-3.5 had a lower median of
five unique treatment options (range, 3-7) with similar rates
of recommending participation in a clinical trial (GPT-3.5:

54% and GPT-4: 60%). GPT-4 had 15 runs including a total
of 29 citations/references (range, 1-3). Most (52%) were
academic citations. None of the included citations or clinical
trial references were hallucinated. Examples of prompts and
outputs are shown in the Data Supplement (Table S1).

Treatment Reporting Accuracy

At least oneNCCN 1L preferred treatment optionwas listed in
69%of GPT-3.5 responses versus 100% of GPT-4 responses.
GPT-4 demonstrated a significant improvement in preferred
treatment reporting (98% v 62%; P < .01). Reporting of other
recommended treatments was similar between models
(GPT-3.5: 48%, GPT-4: 59%; P 5 .13). When the base score
weighting was applied, GPT-4 resulted in a significantly
higher average base score of 0.90 compared with 0.60 for
GPT-3.5 (P < .01; Fig 2).

Hallucinations

On average, GPT-3.5 reported 2.7 hallucinations per re-
sponse (range, 0-6) versus GPT-4 reporting 1.7 (range, 0-9).
In total, GPT-3.5 generated five (6.25%) reports with no
hallucinations and GPT-4 generated 19 (23.75%)
hallucination-free reports. Overall, GPT-4 exhibited a sig-
nificantly lower hallucination rate at 34% versus 53% ob-
served in GPT-3.5 (P < .01; Fig 3). The hallucination rates
translated to lower average hallucination penalties for GPT-
4 versus 3.5 (0.56 v 0.75; P < .01).

G-PS

The G-PS, which assesses the overall effectiveness of the
models, shifted from a negative score of–0.15 for GPT-3.5 to
a positive score of 0.34 for GPT-4 (P < .01; Fig 4). GPT-4
performed significantly better than GPT-3.5 for six of the
eight mutations, specifically EGFR exon 21 L858R mutation,
EGFR exon 19 deletion, ALK rearrangement, BRAF V600E
mutation, METex14 skipping mutation, and RET rear-
rangement. In each of these cases except for ALK rear-
rangement, GPT-4 resulted in a positive G-PS, whereas
GPT-3.5 resulted in a negative G-PS.

DISCUSSION

We assessed and compared the performance of GPT-3.5 and
GPT-4 in generating NGS-like reports with treatment rec-
ommendations for 1L aNSCLC with driver mutations. In our
assessment, we developed and piloted the G-PS, a novel
metric that factors accuracy, relevancy, and hallucinations
into the LLM performance assessment. These findings
contribute to the literature on LLM chatbots in health care
and provide a benchmark for ChatGPT performance in
treatment recommendation generation for precision on-
cology. Notably, our study achieved these results with zero-
shot prompting and no task-specific training. Furthermore,
it underscores the rapid pace of improvement in LLMmodels
as GPT-4 either outperformed or performed as well as its
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predecessor GPT-3.5 across each driver oncogene in its
accuracy, hallucination rate, and G-PS score.

At the time of analysis, both GPT-4 and 3.5 training data
were cut off in September 2021.33 In addition to increased
parameters affecting predictive capabilities, GPT-4 has

shown significant advances in understanding and generating
contextually appropriate responses, as evidenced by sub-
stantial improvements versus GPT-3.5 in publicly available
simulated examinations.34 GPT-4’s improved con-
textualization was thus crucial to sorting through the vast
amount of rapidly developing precision oncology literature
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FIG 2. Base accuracy score stratified by the GPT model for overall and individual mutations. GPT, generative pre-trained transformer.
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FIG 3. Hallucination rate stratified by the GPT model for overall and individual mutations. GPT, generative pre-trained transformer.
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available to determine appropriate treatment recommen-
dations in this study. Future research will be needed to
validate whether newer models continue to improve their
performance relative to national guidelines.

GPT-4 had an improved G-PS over GPT-3.5 in six mutations
(EGFR exon 21 L858R mutation, EGFR exon 19 deletion, ALK
rearrangement, BRAF V600E mutation, METex14 skipping
mutation, and RET rearrangement). Classical EGFR muta-
tions (exon 21 L858R and exon 19 deletion) and ALK rear-
rangements were the first two biomarkers with FDA
approved therapies in aNSCLC (gefitinib in 2003 and cri-
zotinib in 2011). The breadth of EGFR and ALK-related lit-
erature and treatment options likely contributed to lower
base scores in GPT-3.5, as evidenced by osimertinib being
listed as a treatment option in only 6 of 10 outputs for EGFR
exon 21 L858R prompts. However, GPT-4’s improved con-
textualization resulted in substantial base score improve-
ments and the lowest GPT-4hallucination rates for EGFR and
ALK alterations among allmutations in this study, with 100%
of EGFR exon 21 L858R prompts listing osimertinib as a
treatment option.

By contrast, METex14 and RET rearrangements were among
themost recent FDA approvals in our study, with capmatinib
(May 2020) and tepotinib (February 2021) for METex14 and
pralsetinib (Sept 2020) and selpercatinib (May 2020) forRET.
Both biomarkers had low base scores and high hallucination
rates in the GPT-3.5 model with substantial improvements
in both domains with GPT-4. No significant differences in
base score, hallucinations, or G-PS were seen with NTRK or
ROS1, which received FDA approvals for therapies between

2016 and 2018. These results suggest that GPT-4 performs
better relative to GPT-3.5 across both well-established and
newly approved biomarkers with improved contextualiza-
tion, preferred recommendations, and a marked decrease in
hallucination rates.

Regarding BRAF, higher hallucination rates in both models
may be due to recommending treatment options for BRAF-
mutated melanoma, such as cobimetinib, single-agent
immunotherapy, or dual immunotherapy. We hypothesize
that as a biomarker which first received FDA approvals in
melanoma, BRAF’s breadth of literature across tumor types
likely contributed to the high rates of hallucination with
regard to NSCLC treatment. These findings highlight the
susceptibility of LLMs to hallucinations especially in a field
such as precisionmedicine, which is becomingmore tumor-
agnostic and molecularly driven.

G-PS introduces a combined score which factors in accuracy,
relevancy, and hallucinations. While most literature on as-
sessment of LLM performance in the medical field has fo-
cused on accuracy,15-18,20 our study is one of thefirst to factor
in this relevancy. In this study, the G-PS base score had a
weight of 0.75 for preferred versus 0.25 for other treatment
recommendations which were assigned on the basis of the
authors’ assessment of relative value of preferred treatment
recommendations in aNSCLC. However, these values can be
modified for future studies on the basis of relative impor-
tance of preferred versus other treatment recommendations
in other fields. In our analysis, no changes in significance by
mutation cross-model analysis were noted with a more
aggressive penalty, even weighing of preferred and other
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FIG 4. G-PS stratified by the GPT model for overall and individual mutations. AI, artificial intelligence; G-PS, Generative AI Performance Score;
GPT, generative pre-trained transformer.
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preferred, or both (Data Supplement, Figs S1-S3). In addi-
tion, our study is among thefirst to assess the hallucinations
in LLMs relative to decision making. In diseases such as
aNSCLC, where treatment selection and timing are crucial to
outcomes, there is little if any room for incorrect recom-
mendations.While our study showed a reduced hallucination
rate with GPT-4 compared with GPT-3.5 (34% v 53%), the
persistence of hallucinations remains a limitation to their
clinical implementation.

Additional studies are needed to validate the G-PS metric
across other domains including precision oncology and
nononcology specialties. Scaled from –1 (all hallucinations)
to 1 (all correct treatments), G-PS provides a numerical
assessment of LLM performance relative to national
guidelines. In addition to the significant improvement in
G-PS between GPT-4 and 3.5, the score also changed to
positive from negative, indicating a trend toward more
correct recommendations and fewer hallucinations. Fur-
thermore, GPT-4 included citations or clinical trial refer-
ences in 19% of responses, all of which were found to be
accurate and relevant. As models improve, such source
transparency can help clinicians appraise LLM-provided
information. Studies are needed to assess clinician percep-
tions of LLM performance with respect to accuracy, rele-
vancy, and hallucinations and to determine an acceptable
threshold of a model’s G-PS before clinical use.

This study has several strengths and limitations. Strengths
include a robust zero-shot methodology with multiple
generated runs for eachmutation. Furthermore, we devised a
novel and user-friendly scoring methodology that inte-
grated the evaluation of hallucinations into the overall
performance of theGPTmodel on the defined task. By using a
publicly accessibly technology in the form of ChatGPT, this
work outlines an approachable methodology to assessing
LLM performance. The primary limitation of this small
sample pilot of the G-PS is the narrow focus on ChatGPT 1L
driver oncogene–mutated aNSCLC treatment recommen-
dations, which may limit generalizability to other areas of
oncology and other disease types. Further investigation
using other LLMs or with modifications of parameters, such
as temperature (ie, the degree of output randomness), is
warranted.35 However, the G-PS was designed such that it is
approachable, adaptable, and broadly applicable to a

multitude of generative AI and GPT performance assess-
ments as the parameters for base score (ie, accuracy) and
hallucination penalty are defined by the user on the basis of
relevant context. Secondarily, we defined ‘treatment rec-
ommendations’ as any interventions included in the output
phrased in a way that could reasonably be interpreted as an
option for treatment. This approach tended to be more
punitive to the GPT models and might have overestimated
hallucinations (Data Supplement, Fig S1). However, in the
context of assessing generative AI in health care, low
thresholds for hallucinations are essential to ensure patient
safety. Third, given that G-PS is aweighted sumof treatment
options, the score has the potential to favor tumor typeswith
a larger number of correct treatment options versus types
with more limited options. Future larger studies using G-PS
should thus evaluate the performance of the scoring system
across diseases with a larger range of treatment options to
assess for any biases.

Our study underscores the potential of generative AI, like
GPT-4, to become a part of precision oncology care, espe-
cially for aNSCLC with driver mutations. By introducing the
G-PS, we offer a novel approach for evaluating LLMs, em-
phasizing the importance of detecting hallucinations in
performance metrics. In a field where treatment decisions
have critical implications, there should be little to no room
for hallucinations in clinical decision-making support tools.
The application of generative AI tools has the potential to
enhance health care provider decision making and optimize
patient care; however, further oncology-specific training
and validation of models are needed before their use in
clinical practice. Future areas of research include assessing
the performance of ChatGPT and other LLMs with G-PS in
health care fields outside of aNSCLC including nononcology
disease and the impact of prompt engineering on the sen-
sitivity of the G-PS. Importantly, while our study assessed
the difference between GPT-4 and 3.5, we did not assess
whether either models’ performance was acceptable to
oncologists for use in clinical decision making. We call for
more research on physicians’ perceptions of LLMs, including
thresholds for accuracy, relevancy, and hallucinations. Our
findings contribute to the field of AI in health care, high-
lighting the necessity for validation and performance re-
finement of LLMs, especially in rapidly evolving fields such
as precision oncology.
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