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Abstract

Repetitive elements in the human genome, once considered ‘junk DNA’, are now known to adopt 

more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-

handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures 

(G4 DNA). These dynamic conformations can act as functional genomic elements involved in 

DNA replication and transcription, chromatin organization and genome stability. In addition, 

recent studies have revealed a role for these alternative structures in triggering error-generating 

DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic 

variation, non-B DNA structures thus contribute to both disease aetiology and evolution.

Introduction

Sequencing of the human genome revealed that more than 50% is composed of repetitive 

elements1. Initially thought of as mere by-products in genetic evolutionary trajectories, 

we now know that many repetitive sequences have important biological functions, such 

as the regulation of chromatin structure, gene expression, DNA replication and genomic 

rearrangement2,3. A crucial feature of some repetitive sequences is the potential to fold into 

alternative, non-canonical DNA structures4,5 that differ from the right-handed DNA double 

helix, referred to as the canonical B-form or B-DNA structure, described by Watson, Crick, 

Wilkins and Franklin in 1953. Since then, more than 15 types of DNA structure that differ 

from canonical B-DNA have been reported6,7, with an estimated 13% of the human genome 

containing sequences that support such structures8. In addition to the primary sequence, the 

formation of non-B DNA structures is dictated by many cellular factors such as chromatin 

structure, DNA negative supercoiling stress and DNA binding proteins. Thus, depending 

on the conditions, rapid transitions from B-DNA to non-B DNA can occur, making this 

a highly dynamic process9. As a consequence, non-B DNA structures range from small 

single-stranded loop-outs of a few nucleotides formed by simple tandem repeats10 to more 

complex structures such as hairpin or cruciform DNA, Z-DNA, H-DNA and G quadruplexes 

(G4 DNA), which can contain hundreds of nucleotides (Fig. 1).
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The co-localization of non-B DNA structures with functional genomic loci and genetic 

instability hotspots has suggested a role for non-B DNA in important physiological and 

pathophysiological events, including the regulation of transcription, DNA replication, DNA 

recombination and genome integrity. For example, non-B DNA structures can not only 

regulate the initiation of transcription11–13 and replication14–16 but also act as impediments 

to the transcription and replication complexes, leading to replication stalling, template 

slippage and/or replication fork collapse and DNA breakage17. Indeed, the dysregulation 

of DNA replication at non-B DNA structures is a major driving force of repeat expansion 

events18, which occur at different stages of development in different cell types and have 

been associated with human disease19. Since the initial discoveries connecting expansions 

of trinucleotide CGG repeats with fragile X syndrome20,21 and CAG repeat expansion 

with spinal and bulbar muscular atrophy22 more than 30 years ago, expansions of non-B 

DNA structure-forming mono-, di-, tri-, tetra-, penta- and hexa-nucleotide repeats have 

been implicated in more than 50 neurodevelopmental, neuromuscular and neurodegenerative 

disorders, among many other diseases23–29. Although the detailed mechanisms by which 

different repeats (different in both repeat unit and number) are involved in disease-related 

gene dysregulation and/or genetic instability may differ, expanded long repeats tend to form 

more stable structures and thus increase the risk of further instability events, a feature 

referred to as ‘dynamic mutation’30. An important recent discovery in the field is that non-B 

DNA structures can be recognized by DNA repair proteins, triggering error-generating repair 

processes, resulting in replication-independent genetic instability and variation31,32. This 

structure-specific repair processing mechanism can contribute to the DNA repeat-related 

mutations that occur in many diseases33–36.

In this Review, we discuss the key types of non-B DNA structure with a focus on their roles 

in genetic instability and disease aetiology. We begin by highlighting the dynamic nature 

of non-B DNA structures and the conditions that favour non-B DNA formation, before 

reviewing how non-B DNA structures influence cellular processes such as transcription, 

replication, recombination and DNA damage and repair. We discuss replication-dependent 

and replication-independent mechanisms of non-B DNA-induced mutagenesis, before 

concluding with a brief discussion of non-B DNA sequences in human disease.

Dynamic non-B DNA in the human genome

The nucleotide sequence dictates the potential for the formation and stability of a particular 

non-B DNA structure (Fig. 1). Hence, many sequence-based computer algorithms are 

now available to search for potential non-B DNA-forming sequences in genomes. Some 

examples include palindrome, detectIR37, QGRS Mapper38, G4Hunter39 and DNA Structure 

Search40 (see Related links) and others that search for inverted repeats, G4 DNA-forming, 

H-DNA-forming and Z-DNA-forming sequences41–44. Recently, deep learning or feature 

representative machine learning approaches that use large datasets to identify sequence 

features have been used to search for potential Z-DNA and G4 DNA-forming sequences45–

47. Combining DNA sequence features with other biological factors could provide more 

accurate prediction power. However, many challenges remain in detecting and characterizing 

non-B DNA structures in genomes of living cells and organisms. Taking into consideration 

primary sequence analysis, RNA polymerase II (RNAPII) binding sites, and permanganate 
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and S1 nuclease footprinting data, putative non-B DNA sites have been mapped at high 

resolution in mammalian genomes. The results showed that the promoter regions of 

oncogenes contained significantly more non-B DNA structures than other regions, even after 

excluding the non-B motifs that overlapped with transcription bubbles (RNAPII chromatin 

immunoprecipitation followed by sequencing (ChIP–seq) peaks)48. Although the reason 

for such enrichment is not clear, plausible explanations include the altered activities at 

these genes and/or that non-B DNA-induced genetic instability facilitates the formation of 

oncogenes from proto-oncogenes.

Genomic DNA is nevertheless largely maintained in the B-form, as this is the most 

energetically stable structure even when the sequences meet the pattern requirements for 

non-B DNA formation (Fig. 1). The transition from the canonical B-form DNA to a non-

B DNA structure requires energy49. Therefore, non-B DNA formation is dependent not 

only on primary sequence features, but also on conditions induced by genomic activities. 

For example, when a DNA duplex is separated into single strands during transcription, 

replication or DNA repair processes, the B-DNA to non-B DNA transition can be facilitated 

by the negative supercoiling and open chromosome structure that occur during these 

processes (Fig. 2). Thus, the potential for repetitive elements to adopt non-B DNA 

structures, the type of non-B DNA formed and the location are determined by several 

factors, including negative supercoiling50, the presence of specific binding proteins51,52, 

open nucleosome and chromatin conformations53, and intracellular microenvironments such 

as pH54 and salt concentration55. For Z-DNA formation in the mouse prefrontal cortex, it 

was found that negative supercoiling levels and the presence of the Z-DNA-specific binding 

protein ADAR1 were the most important factors9.

Depending on the nuclear environment, the same sequence has the potential to adopt 

different structures. For example, the purine-rich strand from an H-DNA-forming sequence 

can fold back to form a triplex structure at neutral pH in the presence of bivalent cations 

such as Mg2+ (Fig. 1c). However, under acidic conditions, the cytosines can be protonated, 

and the pyrimidine strand can serve as the third strand in the triplex structure56,57. As 

another example, high concentrations of aluminium maltolate can convert a CCG(12) repeat 

sequence in the FMR1 gene — involved in fragile X syndrome — into Z-DNA, as evidenced 

by circular dichroism spectra analyses58. Molecular dynamics simulations also predicted 

a stable Z-DNA structure at CCG repeats with alternately extruded Gs that favour syn 
conformations followed by symmetrically extruded junctions between adjacent Z-DNA 

formations59 (Fig. 1b). However, a similar CCG repeat was found to adopt a G-quadruplex 

structure in the presence of high concentrations of sodium chloride60 (Fig. 1d). Moreover, a 

recent single-molecule study found that a TG(11) duplex opened an unpaired bubble under 

low stretching tension and unwinding torsion. However, with increased negative supercoiling 

tension, the TG(11) repeat formed a Z-DNA structure61. These examples show that different 

environments can support the formation of different non-B DNA structures at the same or 

similar sequences. Thus, cellular and genomic metabolic conditions should be considered 

when studying DNA structure-induced cellular activities.
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Chromatin conformation

DNA–histone interactions maintain B-DNA formation, such that an important initiating step 

for non-B DNA formation is nucleosome disassembly during DNA metabolic processes. A 

study using Fourier transform infrared spectroscopy found that histone acetylation could 

lead to open chromatin structures and a concomitant increase in Z-DNA formation in 

trichostatin A-treated HeLa cells62. Using the same technology, and confirmed by ChIP, 

the authors found that Z-DNA formation was increased in cells that overexpressed BRG1 

or BRM ATPases, key components of the mammalian SWI/SNF chromatin remodelling 

complex. As expected, Z-DNA formation was reduced when BRG1 and BRM were depleted 

by short interfering RNA63.

Negative supercoiling

Genomic DNA is wrapped on histone cores in a left-handed toroidal manner, and the helical 

tension in the linker regions is released by topoisomerases. Thus, unless the DNA has been 

unwrapped from histones to allow for negative supercoiling, the energy to facilitate non-B 

DNA structure formation may not be available. A recent study mapped DNA supercoiling 

regions and non-B DNA structures in the genome of Caenorhabditis elegans embryos and 

found that 400 bp regions around transcription start sites had significantly increased negative 

supercoiling and non-B formation (Z-DNA and cruciform structures)64. Supercoiling 

induced by transcription through the MYC gene can stimulate Z-DNA formation in 

the promoter region, as shown by Z-DNA-specific antibody binding in permeabilized 

mammalian cell nuclei65–67. Approximately 1.5 kb upstream of the MYC promoter P1, 

a region known as the far upstream element (FUSE), lies a well-characterized supercoiling 

responsive region that can adopt non-B DNA structures when the gene is expressed68. 

Using an immunofluorescence labelling method, cruciform structures that had strong levels 

of negative supercoiling induced by active transcription were detected in growing mouse 

oocytes, but not in fully matured oocytes where transcription was not active69. Furthermore, 

the inhibition of transcription with α-amanitin treatment in growing oocytes significantly 

reduced cruciform DNA foci. When mouse genomic DNA was fragmented, circularized by 

ligase and negatively supercoiled at a near-physiological level, the single-stranded DNA 

(ssDNA) regions exposed by non-B DNA structures on the artificially supercoiled naked 

circular DNA resembled the ssDNA regions detected in vivo, demonstrating the contribution 

of negative supercoiling to non-B DNA conformation in vivo48.

Non-B DNA binding proteins

Various proteins have been identified that bind to non-B DNA and alter their stability. A 

family of Z-DNA binding proteins that share a common Z-DNA binding domain (ZDBD) 

have been described70, such as Z-DNA binding protein 1 (ZBP1), a pathogen-sensing 

protein that regulates cell death and inflammation71,72; PKZ, a PKR-like protein kinase 

that has a role in host responses to viruses73; and poxvirus virulence factor E3L and 

ORF112, which are crucial for viral pathogenesis74,75. The ZDBD of the ADAR1 protein 

binds to Z-DNA with high affinity and can convert even a short TA(3) repeat into a 

Z-DNA structure, which cannot form in the absence of ADAR1 (ref.52). Many chromosomal 

architectural proteins such as histones H1 and H5 and the high mobility group (HMG) 
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proteins bind preferentially to cruciform structures (reviewed in ref.76), and the HMGB1 

protein has high affinity for triplex DNA structures in collaboration with the nucleotide 

excision repair (NER) protein complex XPA–RPA77. Many proteins are known to interact 

with G4 DNA, such as POT1, RPA and BRCA1 (reviewed in ref.78). A recent study 

that used a cell-permeable G4 DNA ligand and crosslinking of the G4 DNA-interacting 

proteins identified hundreds of putative G4 DNA-associated proteins with known functions 

in transcription regulation, mRNA processing, cell cycle regulation and DNA damage and 

repair processes53. The presence and the local concentrations of these proteins in vivo could 

modulate the formation and activities of non-B DNA structures.

DNA helicases

DNA helicases are responsible for unwinding duplex DNA during replication, transcription 

and repair and have a key role in genome maintenance79. Helicases have gained increasing 

attention recently regarding their roles in non-B DNA and disease (Table 1). In general, 

helicases have the capacity to unwind non-B DNA structures, such that their deficiency 

can increase the risk of non-B DNA-related diseases, but this conclusion should not be 

oversimplified. For example, deficiency of yeast Sgs1 helicase, a homologue of the bacterial 

RecQ helicase, resulted in an accumulation of cruciform-shaped replication intermediates80. 

However, Sgs1 deficiency reduced the expansion of GAA repeats in yeast81. It was 

hypothesized that Sgs1 unwinds nascent strands from their templates when replication forks 

are stalled by non-B DNA structures, with the shorter Okazaki fragments annealing to the 

longer nascent leading strand, resulting in extra repeat units (that is, repeat expansion)81. 

Thus, the effects of helicases on non-B DNA processing seem to be more complicated than 

simply resolving structures to maintain genome stability.

Non-B DNA induced by DNA damage or repair

DNA damage and repair can affect non-B DNA structure formation by altering local 

topological conditions. Some types of DNA lesion or repair intermediate can alter the 

energetics of structural transitions of DNA, affect protein–DNA interactions and modulate 

nucleosome and chromosome conformations, eventually leading to non-B DNA structure 

formation. For example, DNA double-strand break (DSB) processing near short inverted 

repeats can stimulate the formation of hairpin structures, likely by creating ssDNA that 

enables self-annealing82.

Abasic (AP) sites generated during the repair of 8-oxo-7,8-dihydroguanine (8-oxo-G) by 

OGG1 can destabilize duplex DNA and provide thermodynamic energy for the transition 

from G-rich duplex DNA to a more stable G4 DNA structure83, or a cruciform structure 

when the processing occurs within an inverted-repeat region84. The distribution of AP 

sites, OGG1 and AP endonuclease 1 (APE1) binding sites in lung cancer genomic DNA 

determined by ChIP–seq exhibited genome-wide correlation with G4-forming motifs, 

particularly in promoter and gene regulatory regions85. Furthermore, binding of APE1 to 

AP sites within G4-forming motifs in the MYC promoter stimulated the formation of G4 

DNA in vitro85. Another study reported that an AP site located in the centre spacer region 

between two symmetrical arms of an inverted repeat could destabilize B-DNA formation and 

increase the formation of hairpin structures86.
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A tetrahydrofuran abasic site analogue within a GAA repeat was processed by base excision 

repair, during which the repeats on the template strand could form a loop of approximately 

eight TTC repeat units in vitro, which recruited DNA polymerase-β (Polβ) for bypass, 

resulting in large deletions87.

In summary, non-B DNA conformations are highly dynamic in living cells. Although 

the primary sequence is crucial for structural transitions, other cellular activities such as 

transcription, replication and DNA repair can have an impact on non-B DNA formation 

via the modulation of nucleosome or chromatin structures, alterations in DNA supercoiling 

levels and/or DNA binding proteins.

Biological functions of non-B DNA

Repetitive sequences capable of adopting non-B DNA structures are enriched at highly 

conserved regions with biological functions, such as promoters and replication origins. 

Although co-localization does not necessarily relate to function of non-B DNA in these 

processes, numerous studies have suggested that non-B DNA structures can contribute to 

several important biological functions88,89. Non-B DNA structure formation can change 

the local topology of genomic regions, thereby influencing interactions of DNA metabolic 

processes, protein binding and chromatin structures. The important biological roles of non-B 

DNA-forming sequences, perhaps leading to positive selection pressure during evolution, 

may explain the abundance and conservation of these unstable elements across genomes 

(Box 1).

Non-B DNA in chromatin organization

Eukaryotic DNA is packaged into nucleosomes and then higher tertiary DNA structures in 

vivo. When B-DNA is wrapped around histone cores, the minor groove of the helix aligns 

and interacts with the positively charged arginines on the histones90. These electrostatic 

interactions are important for maintaining nucleosome structure and B-form DNA. Non-B 

DNA conformations change the orientation of DNA strands and the shape of the grooves and 

interrupt the DNA–histone arrangement and therefore alter nucleosome structures.

Non-B DNA affects local chromatin organization.—Some repetitive satellites serve 

as signalling sequences for nucleosome assembly, whereas other repeats, such as Z-DNA-

forming CG or CGG repeats59 or H-DNA-forming GA repeats, are resistant to placement 

within the nucleosome structure91 (reviewed in ref.92). GAA repeats were more refractory to 

nucleosome assembly in supercoiled plasmid DNA when H-DNA formation was supported, 

yet the same repeats can be packaged into nucleosomes when in B-form DNA93. In 

Saccharomyces cerevisiae, most short inverted-repeat sequences were found in regions with 

low nucleosome occupancy94. G4 DNA sequences are enriched in nucleosome-depleted 

regions in both human cells and C. elegans95. Furthermore, a G4 DNA-stabilizing ligand 

created open nucleosome structures for RNAPII binding even in compacted chromatin 

regions96.

There are reports that suggest that non-B DNA-forming repeats facilitate the formation of 

nucleosome structures. CTG repeats (as short as six repeat units) are enough to facilitate 
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nucleosome assembly, although expansion to 62 repeats — considered to be more prone to 

forming a hairpin structure — did not further affect the assembly of histone octamers97. 

Note that most studies were performed in vitro and details on the DNA conformation 

adopted at repetitive non-B-forming sequences are lacking owing to the difficulties in 

determining nucleosome and non-B DNA structures simultaneously.

Non-B DNA may affect distal chromatin organization.—Disrupting the formation 

of a key nucleosome in the β-globin gene by altering the underlying positioning sequence 

was shown to affect adjacent nucleosomes98. Although this has not been verified as a 

universal mechanism throughout the entire genome in all species, this discovery suggests the 

interesting possibility that changing the position of one nucleosome by non-B DNA structure 

formation could affect distant regions.

G4 DNA motifs are significantly enriched at distal interchromosomal interaction sites99 and 

can recruit the chromosomal architectural protein RIF1, which brings multiple G4 DNA-

forming sequences together at different regions to create local chromosomal compartments 

via chromatin looping at the nuclear lamina100. The ssDNAs from the tips of hairpins 

can interact with each other to form ‘kissing’ complexes, similar to the NMR solution 

structure of a kissing complex formed between deoxyoligoribonucleotides corresponding 

to the dimerization initiation site SL1 of HIV-1Lai RNA101. This loop–loop interaction is 

important for tertiary and topology structure maintenance and provides a basis for molecular 

recognition102. Some long potential G4 DNA-forming sequences that contain multiple G4 

elements were identified in antibody switch regions, where the single-stranded loops of 

neighbouring G4 structures were frequently complementary and base paired with each other, 

perhaps contributing to chromosomal rearrangements in cancer103. In addition, ssDNA 

regions from two H-DNA structures formed at long GAA repeats on plasmids were shown 

to interact to form a dumbbell-shaped complex referred to as ‘sticky’ DNA in bacterial 

cells104,105. Thus, non-B DNA-mediated interactions may bring distal elements together, 

contributing to 3D genome organization and stimulating crosstalk between chromosomal 

territories and DNA elements that regulate gene or chromosomal functions.

Taken together, the formation of both non-B DNA structures and nucleosome structures 

is dynamic, and often competitive. DNA in nucleosomes is typically maintained in the 

B-form structure by DNA–histone interactions, and non-B DNA structures, once formed, 

are often more refractory to nucleosome assembly than B-DNA. The impact of non-B DNA 

on chromosomal structure, particularly on long-range chromosomal architecture, may have 

important biological and pathological functions that remain to be discovered.

The impact of non-B DNA on transcription

Non-B DNA affects transcription initiation.—A recent bioinformatics study 

investigated the distribution of non-B DNA-forming sequences in 15 species and found that 

promoter regions contain a unique pattern of non-B DNA positioning: G4 DNA and Z-DNA 

are the most enriched of the non-B types and are frequently found in core promoter regions 

in nearly all species106. Direct repeats are enriched in the immediate (50–100 bp) upstream 

region of core promoters, and mirror repeats are often located (100–300 bp) upstream of 
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the core. It will be interesting to determine whether these repeat patterns underlie as yet 

unknown mechanisms of transcription regulation.

In the yeast genome, G4 DNA-forming sequences are enriched at promoters approximately 

sixfold over random distribution107. Inverted repeats, which can form cruciform structures 

(Fig. 1), are substantially enriched in regions adjacent to stop codons, at the end of 

genes, near start codons, 5′-untranslated regions (UTRs) and promoter regions108. Their 

conservation and enrichment within or surrounding these key elements suggests a role for 

non-B DNA in transcription regulation. In promoters, non-B DNA formation could provide 

an open chromatin structure for transcription initiation complex formation or block or recruit 

transcription factors and thus affect transcription initiation109 (Fig. 3).

Although Z-DNA-forming sequences are essential for transcription initiation in viruses, a Z-

DNA-forming sequence in the promoter region of the rat Ncl gene, which encodes nucleolin, 

has been shown to inhibit promoter activity, such that its deletion increased transcription 

by ~50%25. Interestingly, in this study the effect of Z-DNA on promoter activity was 

neither location nor orientation dependent; relocating the repeat 458 bp from the promoter 

or cloning it in the opposite direction did not change its inhibitory effects25. A plausible 

explanation is that local negative supercoiling stress is essential for transcription initiation 

because it not only initiates melting of the DNA duplex, which is an energy-consuming 

step110,111, but also facilitates the interaction of transcription factors with promoters112. 

However, formation of non-B DNA also requires negative supercoiling and relaxes the local 

supercoiling level once formed. One left-handed helical turn of Z-DNA can relieve 1.8 

helical turns of negative superhelical twisting on the B-DNA helix113. Therefore, non-B 

DNA formation could affect gene expression by altering the local DNA topological tension, 

independently of its (short-range) location and orientation.

G4 DNA has been shown to either enhance or suppress gene expression (reviewed in 

ref.114). Many of the published reports on this topic were based on the overlap of 

computational predictions of G4 DNA-forming sequences and gene functional analyses. 

A recent study that used an antibody-based G4 ChIP–seq approach identified ~10,000 

G4 DNA structures in human chromatin, predominantly in the promoters and 5′-UTRs 

of highly transcribed genes115. However, these data reveal only a correlation between non-

B DNA and transcription regulation rather than providing direct evidence for cause and 

effect. In another study, G4 DNA-stabilizing ligands were used to observe transcriptional 

alterations associated with increased G4 DNA structures in human cells. A database of 

transcriptome alterations induced by seven distinct G4 DNA ligands, including 25,228 

genes, was recently published116. Again, although such correlations are informative, 

the alterations in transcription may be due to other cellular responses induced by the 

ligands and not necessarily a direct consequence of G4 DNA formation. Thus, studies 

that demonstrate direct evidence of DNA structure-associated transcription regulation are 

warranted. However, given the dynamic nature of non-B DNA structures, it is challenging 

to determine DNA structure in living cells in real time; studies that combine bioinformatic 

approaches, small-molecule compounds that regulate non-B DNA conformation, and genetic 

and molecular studies with engineered non-B DNA conformations in the same model 

systems can provide convincing evidence for the effects of non-B DNA in vivo.
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Non-B DNA affects transcription elongation.—Transcription complexes use DNA 

helicases and transcription elongation factors to unwind or bypass barriers during 

elongation, including those imposed by non-B DNA. However, if a non-B DNA 

conformation is stable enough to resist helicase activity, or is stabilized by structure-specific 

proteins, it can act as a barrier to transcription and reduce the processivity and fidelity 

of RNA polymerases117–119. In yeast, Spt4/5, individually or cooperatively with Elf1, 

interacted with RNAPII to facilitate transcription elongation and increased the run-off 

transcripts through CTG(40) repeats in the B-form in an in vitro assay; however, when 

the CTG repeat formed a stem–loop structure, the presence of Spt4/5 in fact enhanced 

transcription pausing in front of the stem–loop120.

Interestingly, RNA polymerases not only pause in front of non-B DNA conformations 

during extension but can also stall after passing through the non-B DNA-forming sequences. 

For example, transcription by T7 RNA polymerase or RNAPII was paused at H-DNA-, 

Z-DNA- and G4 DNA-forming sequences within and downstream of the non-B DNA 

sequences in a length- and supercoiling-dependent manner in in vitro multiple-round 

transcription assays117,118,121. It is plausible that the negative supercoiling generated behind 

the progressing polymerase, the non-template ssDNA and/or the nascent RNA stimulated 

a structural complex in this area that impeded the progression of the RNA polymerase 

complexes121.

In contrast to H-DNA, Z-DNA or cruciform structures, in which both strands are involved in 

the conformation, G4 DNA forms on the G-rich strand of a duplex. Therefore, the location 

of G4 DNA on the template versus the non-template strand during transcription results in 

different effects. For example, G4 DNA in the template strand upstream of the start codon in 

the Renilla luciferase gene substantially inhibited transcription, but showed no effect when 

located in the non-template strand122.

Non-B DNA affects RNA splicing.—A genome-wide screen and statistical analyses 

suggested strong associations between non-B DNA structures, including G4 DNA, cruciform 

DNA, triplex DNA, slipped DNA and Z-DNA, and exon skipping in both human and 

mouse genomes123. Although the mechanisms are still unclear, it is possible that non-B 

DNA-induced stalling of RNA polymerase complexes and the delay in elongation could 

facilitate the recruitment of splicing factors and the recognition of splice sites. It has also 

been proposed that non-B DNA on the template strand enables transcription initiation from 

non-contiguous regions, producing alternative RNA isomers124,125. However, to date, the 

experimental evidence is scarce; therefore, further studies on the roles of non-B DNA 

structures in regulating alternative splicing are warranted and would provide timely and 

important advances for the field.

Although many details still remain to be elucidated, it is clear that the effects of non-B 

DNA on transcription are associated with functional genomic regions and higher-order 

chromosome conformations, such that they cannot be considered simply as ‘activators’ 

or ‘repressors’126. With such a wide variety of effects, the specific manipulation of 

DNA structure formation could serve as a unique type of ‘epigenetic’ regulation of gene 

expression and subsequent cellular activities127.
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The impact of non-B DNA on replication

Non-B DNA affects replication initiation.—Non-B DNA-forming sequences have 

emerged as key controllers of genome replication at the level of both replication origin 

firing and replication fork progression. Genome-wide studies have revealed significant 

enrichment of non-B DNA-forming sequences, including G4 DNA, H-DNA, Z-DNA and 

cruciform- or hairpin-forming inverted repeats, at replication origins14–16. These sequences 

are important for prokaryotic DNA replication128, viral replication in eukaryotic cells129,130 

and the replication of eukaryotic genomes131,132. For example, it was recently found that 

direct, inverted and mirror repeats as well as Z-DNA- and G4 DNA-forming sequences 

are associated with origins of replication that are consistent with the position and firing 

of the origins. However, the regulation of replication origins is complex and involves 

many different factors. Interestingly, many of these factors, such as base composition, 

DNA accessibility and chromatin structure, are often overlain by or cluster with non-B 

DNA-forming sequences in human genomes133. Formation of non-B DNA structures at or 

near replication origins can alter local topological conditions that affect melting of the DNA 

duplex and loading of replication factors, and can recruit structure-specific binding proteins 

for replication machinery assembly134,135 (Fig. 3). A G4 DNA-forming sequence from the 

βA origin in the chicken DT40 cell line was able to initiate replication when it was cloned 

into a region that lacked strong initiation sites, and a G>A point mutation that destabilized 

the G4 DNA structure reduced origin efficiency136. Cruciform-binding proteins that belong 

to the 14-3-3 protein family form dimers and bind to cruciform structures at the four-way 

junctions. Deleting the DNA binding domain reduced the cruciform-binding activity and 

suppressed the replication of plasmids that contained a yeast replication origin in yeast 

cells137.

The human origin recognition complex (ORC) binds preferentially to replication origins 

at G-rich ssDNA that can form G quadruplex structures to facilitate the initiation of 

DNA replication in eukaryotic cells138. A recent study directly explored the functions 

of a G4 DNA-forming sequence from an origin G-rich repeated element (OGRE) on 

different types of replication origin139. Deletion of the OGRE-G4 sequence substantially 

decreased the corresponding origin activity, whereas adding the OGRE-G4 element created 

a new replication origin. G4 DNA stabilizer binding to G4 DNA in intergenic regions 

tended to activate new origins or enhance existing origin activities. By contrast, G4 DNA 

ligand binding reduced firing efficiency of origins that were clustered and located in 

active promoters, likely owing to the G4 DNA-induced reduction in transcription, thereby 

attenuating the stimulating effects of transcription on replication origin firing139. Thus, 

non-B DNA can affect replication initiation even when located hundreds of base pairs from 

the initiation sites.

Non-B DNA affects replication elongation.—After initiation and priming, replication 

forks progress, and DNA polymerases act on both the leading and lagging strands. Non-B 

DNA on the template strand can impose a barrier for many DNA polymerases35,128,140,141, 

which can reduce their fidelity, stall replication and cause replication fork collapse, 

resulting in DNA strand breaks142,143. Topoisomerases and helicases are actively involved in 

replication and can unwind some non-B DNA structures in front of replication forks144–146. 
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The template DNA enters and is pulled through a tunnel formed at the zinc finger region of 

the N-tier ring and C-tier motor domain of human replicative helicase complexes. DNA in a 

non-B conformation is generally much bulkier than the tunnel and cannot pass through147. 

Although the detailed thermal energy characteristics of helicase activities in the context of 

non-B DNA structures are not fully determined, at least some types of non-B DNA can resist 

helicase unwinding148,149.

Direct evidence of replication fork stalling at non-B DNA structures in vivo is challenging 

because both the non-B DNA structure and replication stalling are transient, and a single 

paused replication fork at a specific non-B DNA region is difficult to distinguish from a 

normal progressing fork. 2D gel electrophoresis has been used to successfully determine 

replication stalling at specific non-B regions40,150. However, it requires a substantial 

number of forks to stall at the same location simultaneously, making this technology more 

appropriate for bacterial and/or yeast genomes. DNA fibre analysis has also been used to 

monitor replication rates; however, this technique detects large regions and therefore must 

be combined with a targeted technique, such as fluorescence in situ hybridization (FISH), to 

identify non-B DNA regions in the genome151.

The impact of non-B DNA on recombination

Non-B DNA-forming sequences are enriched at recombination hotspots, implying a link 

between non-B DNA and homologous recombination. For example, a 1,000 bp motif in 

the I–B and I–J subregions within the mouse Eβ gene in the major histocompatibility 

complex (MHC) contains several types of repeat such as AGGC and GC/GT-rich repeats that 

can adopt non-B DNA structures, including Z-DNA. This short region has been estimated 

to account for ~2% of the recombination events in the entire genome152. Unequal sister 

chromatid exchange between the Cγ2a and Cγ2b heavy chain genes in MPC-11 mouse 

myeloma cells occurs at a GA repeat that can adopt an H-DNA structure, followed by a GT 

repeat that can form Z-DNA153. G4 DNA is abundant in immunoglobulin switch (S) regions 

and may contribute to class-switch recombination (CSR) by stalling transcription, leading 

to the nicking of DNA strands154. In human bladder carcinoma EJ cells, a Z-DNA-forming 

GT(30) repeat was found to increase recombination between non-replicating plasmids up 

to 20-fold. Both gene conversion and reciprocal exchange events were found 237–1,269 bp 

from the Z-DNA-forming sequence155.

Certainly, there are different mechanisms involved in non-B DNA-induced recombination. 

Some non-B DNA structures are composed of self-folding formations on one strand and 

create long ssDNA on the complementary strand, such as H-DNA and G4 DNA structures. 

The exposed ssDNA could potentially invade a homologous duplex and form a structure 

similar to a D-loop, which is known to induce homologous recombination156 (Fig. 3). 

Guanosines in Z-DNA are in the syn position and are exposed, and the N7 and C8 of 

guanosines in Z-DNA are ‘stickier’ and can interact with other DNA molecules157. The 

left-handed helix of Z-DNA has been shown to facilitate the formation of paranemic 

joints during synapsis between two topo domains containing homologous sequences158. In 

addition, non-B DNA structures can stall DNA replication forks and generate DNA nicks 

and breaks that could stimulate recombination.
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A distinct mechanism of non-B DNA-stimulated recombination in immune cells includes the 

AID protein, which belongs to the APOBEC cytidine deaminase family, and involves G4 

DNA structures on the non-template DNA strand of the Sμ and Sγ regions. AID is expressed 

in B cells and can deaminate deoxycytidine, converting it into deoxyuridine within single-

stranded regions159. As AID targets ssDNA, many different types of non-B DNA structure 

that expose ssDNA regions could potentially serve as targets. In mice, MSH2–MSH6 can 

bind to both G4 DNA formed within transcribed S regions and G–U mismatches to facilitate 

DNA synapsis and recombination160.

Interestingly, when G4 DNA-forming sequences in human or mouse S regions were replaced 

with chicken or Xenopus laevis Sμ sequences, which are rich in palindromic and stem–loop 

structures, CSR was still functional in murine B lymphoma cells although it was less 

efficient. The Xenopus Sμ sequence is in fact AT-rich, rather than G-rich, and it supported 

CSR in an orientation-independent manner. By contrast, a non-palindromic G-rich sequence 

was not able to activate CSR161. These results suggest that common features of non-B DNA 

structures, such as exposure of ssDNA or transcription modulation, rather than the primary 

sequences, are important for modulating recombination and immune reactions, providing 

a potential therapeutic target to manipulate CSR and immunoglobulin secretion levels in 

autoimmune or immunoallergic disorders.

Non-B DNA-induced mutations

Many non-B DNA-forming sequences have been shown to stimulate genetic instability 

in various organisms162,163. DNA replication has long been considered a major process 

implicated in non-B DNA-induced mutagenesis10,28. Hairpin-forming triplet repeats are 

often more mutagenic in highly proliferative tissues and rapidly dividing cells than in 

differentiated non-replicating cells18,164,165. Consistent with this finding, the signature 

mutations stimulated by triplet repeats are expansions or contractions of repeat units, which 

are likely the result of slippage errors during DNA replication18,166 (Fig. 4). Using a 

forward mutagenesis assay, different forms of non-B DNA structure, including H-DNA, 

Z-DNA and cruciform DNA, were found to induce point mutations, DNA single-strand 

breaks and DSBs, and large-scale deletions in replication-deficient HeLa cell extracts167–169. 

Therefore, there are evidently multiple mechanisms involved in the mutagenic processing of 

non-B DNA structures that depend on several factors, including the type of DNA structure, 

topological conditions and genomic processes such as transcription, replication and DNA 

repair. In this section, we summarize the replication-dependent and replication-independent 

mechanisms of non-B DNA structure-induced mutagenesis.

Replication-dependent mutations

Both the stability and topological features of non-B DNA on the template strand can affect 

the processivity and fidelity of DNA polymerases170,171. New advances in nucleic acid 

sequencing, such as single-molecule real-time (SMRT) sequencing technology have made 

it possible to determine the processivity and fidelity of DNA polymerases at the nucleotide 

level8. Studies using such techniques have revealed that many types of non-B DNA motif, 

such as G4 DNA-forming sequences, Z-DNA-forming GC repeats and hairpin/cruciform-
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forming AT and CAG repeats, increased sequencing errors that were positively associated 

with the reduced kinetics of the DNA polymerases8. In a high-throughput primer extension 

assay at 20,000 different sequences, T7 DNA polymerase was found to be significantly 

stalled at G4 DNA, hairpins and loop structures, even after controlling for GC context. Its 

fidelity was also reduced, supporting a plausible mechanism for non-B DNA-induced DNA 

polymerization difficulties and errors that lead to genetic instability172.

Hairpin or G4 DNA structures formed at CGG repeats in the FMR1 gene impeded all 

three eukaryotic replicative B-family DNA polymerases; Polα, Polδ and Polε173. An AT(24) 

repeat and a run of 19–28 As from the common fragile site FRA16D were capable of 

stalling both Polα and Polδ174. In addition, H-DNA-forming GA or GGAA repeats resulted 

in Polα pausing, which was more pronounced when the polypurine sequence served as 

the template140. Polδ can be stalled on the G-rich template of telomeric TTAGGG repeats 

even in the presence of proliferating cell nuclear antigen (PCNA) and replication factor C 

(RFC). In addition, a G4 DNA stabilizer, BRACO-19, further inhibited Polδ stalling within 

G-rich regions175. The proofreading activity of the B-family polymerases helps to reduce 

misalignment-based replicative errors176,177, and deficiency of Pols α, δ and ε enhanced 

expansion of the GAA triplet repeat in yeast178. Still, the B-family polymerases created 

~1,000-fold more misalignment-based insertion or deletion events on GT(10) or CA(10) 

repeat templates than in adjacent non-repetitive sequences179, demonstrating the impact of 

non-B DNA structure-forming repeats in this process.

If the replicative Polδ and Polε are stalled for an extended period of time, DNA polymerases 

from other families with lower fidelity can be recruited to take over the synthesis through 

non-B DNA regions to complete genome replication. Such DNA polymerases include the 

DNA repair X-family members Polβ180 and Polλ181, the Y-family translesion synthesis 

polymerases Polκ, Polη182–188 and REV1 (refs.189–191), and the A-family translesion 

polymerase PolQ (Polθ)192,193. Depletion of Polκ and Polη sensitized human cells to the G4 

DNA stabilizer telomestatin and led to more DSBs in transgenic HeLa cells that harboured 

multiple copies of G-rich sequences from the human MYC promoter, which contains 

multiple G4 DNA, Z-DNA and H-DNA motifs. Furthermore, there were more DSBs in 

transgenic HeLa cells that contained either the BCL2 gene major break region (Mbr), which 

contains an H-DNA-forming sequence, or the H-DNA-forming sequences from Kaposi’s 

sarcoma-associated herpesvirus (KSHV)183. Polκ and Polη facilitated replication through 

a CTG(100) repeat or a polypurine–polypyrimidine sequence from the PKD1 gene that 

can adopt H-DNA or G4 DNA structures and attenuated the formation of DSBs185. These 

results suggest that the less stringent repair and translesion bypass DNA polymerases 

can facilitate DNA synthesis through non-B DNA-forming regions. However, these lower-

fidelity polymerases can lead to base misincorporations and misalignments, resulting in 

various mutations194. Replication stalling at G4 DNA caused DSBs, and their repair required 

PolQ, which led to small deletions, in a mechanism that differs from non-homologous 

end-joining or homologous recombination192. Thus, recruitment of error-prone polymerases 

to bypass non-B DNA-induced impediments to replication seems to be a double-edged 

sword for the maintenance of genomic integrity and stability.
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Replication fork collapse and DSB formation can occur if the non-B DNA-induced 

impediment is not unwound or bypassed35,128 (Fig. 4). Using a unique exogenous G-rich 

sequence with two distinct G4 DNA structure folding possibilities that stall replication forks 

at different positions, a study in C. elegans revealed that G4 DNA was stable enough to be 

maintained at the same location during proliferation and stimulated deletions in daughter 

cells similar to those in parental cells195. Whether or not this persistency occurs in other 

organisms and/or is unique to G4 DNA remains to be determined.

Expansion of simple repeats in genomic DNA occurs at various stages of development 

in different cell types and is associated with more than 30 hereditary human diseases. 

The dysregulation of DNA replication at non-B DNA formed within these repeats is a 

major driving force of expansion events10,28. Large expansions of CTG/CAG triplet repeats 

occurred more frequently when the CAG repeats were used as the template during lagging 

strand replication196, with the nascent CTG strands more likely to form stable hairpin 

structures than the CAG repeats10,28. A CAG repeat at the 3′ end of an Okazaki initiation 

zone resulted in expansion, yet it caused contraction events when located at the 5′ end197. 

In the yeast URA3 reporter gene, long GAA repeats tended to gain a relatively narrow range 

of 44–63 extra triplets within the length of an Okazaki fragment178. Together, these data 

demonstrate replication-dependent mechanisms of non-B DNA-induced mutagenesis.

However, a CTG(55) repeat in a transgenic mouse genome surrounded by its native 45 

kb genomic segment of the human DMPK gene, which encodes dystrophia myotonica 

protein kinase, showed expansion with age in the heart, gastrocnemius, liver, pancreas and 

kidney, with no obvious relationship to cellular proliferation rates198. CTG repeats are 

also highly unstable in tissues with low levels of proliferation, such as the basal ganglia, 

cerebral cortex and frontal cortex199,200. Cells derived from various tissues of transgenic 

mice carrying long CTG(162) repeats exhibited different levels of expansion events, with the 

highest levels found in the kidney and lower levels in the lung; thus, there was no simple 

correlation between repeat instability and cell proliferation19. In addition, several cell types 

in the cerebellum and hippocampus, such as Purkinje cells, showed high levels of CTG 

repeat expansion, and granule cells were relatively more stable in spinocerebellar ataxias200, 

suggesting a genomic DNA replication-independent mechanism of DNA structure-induced 

mutagenesis (see below).

Non-B induced replication–transcription collision

Replication and transcription can occur on the same DNA strand simultaneously in both 

prokaryotic and eukaryotic genomes. In prokaryotic genomes, the transcriptional templates 

of highly expressed genes are predominantly on the leading strand during replication201, 

such that replication and transcription move in the same direction. Eukaryotic genomes 

are more complicated, as there are tens of thousands of replication origins202, with no 

substantial preference of positioning genes on replication leading versus lagging strands. 

As a result, both transcription and replication can initiate at multiple sites and move 

in different directions on the same chromosome, which increases the risk of ‘head-on’ 

collisions. Formation of non-B DNA on the templates that are shared by both transcription 

and replication complexes can enhance the potential of such collisions17 (Fig. 4).
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Non-B DNA-forming sequences such as CGG repeats, which can adopt Z-DNA, hairpin 

or cruciform structures, or cruciform-forming AT-rich palindromes are enriched in fragile 

sites203. These sites are generally replicated more slowly and at later stages compared with 

other regions, and are associated with chromosome breakage and disease development204–

206. Many common fragile sites nestle in or overlap with large genes that are actively 

transcribed207,208. Both the large size of the genes and non-B DNA-forming sequences can 

drastically slow the RNA polymerase complexes, and transcription can take longer than 

a cell cycle209. Therefore, active transcription and replication must occur together within 

these fragile sites, increasing the risk of collision. Replication–transcription collision in 

the genome of actively dividing Bacillus subtilis bacterial cells resulted in duplications, 

deletions and base substitutions not only at the sites of collision but also in adjacent areas210. 

Because transcription requires NTPs for RNA synthesis and the progressing transcription 

complex recruits UTP, thus increasing the local UTP concentration near the stalled DNA 

polymerases, misincorporation-incorporation of UTP at the template of A could occur when 

the collision is resolved and replication is restarted211.

Notably, it is common that cancer cells have replication stresses that lead to slower 

replication fork progression and dysregulated firing of replication origins212. As a result, 

the inappropriately timed and prolonged replication and overactivated transcription could 

result in an increased risk of collisions in cancer cells, particularly at non-B DNA-containing 

regions, which may contribute to oncogene-induced DNA damage and genomic instability in 

cancer.

In addition to increasing the risk of replication–transcription collision, non-B DNA such 

as G4 DNA or hairpin structures could also form within the transcription bubble on the 

non-template ssDNA region. It is reasonable to speculate that, together with an RNA–DNA 

hybrid formed on the template strand, known as an R-loop (Fig. 1f), non-B DNA formation 

on the non-template strand could render the stalled R-loop more difficult to resolve before 

restarting of the replication fork.

Structure-specific repair cleavage models

Some DNA repair proteins screen genomes by sensing distortions of the DNA double helix 

induced by lesions, which is the initial signal to recognize DNA damage213, followed by 

recruitment of repair enzymes (for example, nucleases) to the sites of damage to remove 

the lesions and restore genome integrity. Non-B DNA structures induce distortions in the 

DNA, affecting protein binding and chromosome organization, similar to some types of 

DNA damage. As a result, non-B DNA can stimulate DNA damage responses and may be 

recognized and cleaved by structure-specific DNA repair proteins (Fig. 5). For example, 

long tracts of CAG(175) repeats on plasmids stimulated expression of the sfiA (sulA) gene, 

an inhibitor of septum formation induced early in the SOS response214. In comparison 

with an SOS-defective strain, cells with activated SOS responses increased the supercoiling 

density of the plasmid, which in turn stimulated non-B DNA formation and deletion 

frequencies at the CAG repeats214. Long CAG repeats in a yeast artificial chromosome 

(YAC) also stimulated a DNA damage checkpoint response34,215. A plasmid containing 

a 2.5 kb H-DNA-forming polypurine–polypyrimidine tract from intron 21 of the unstable 
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human PKD1 gene was recognized by the NER proteins UvrB and UvrC, induced an SOS 

response in bacteria and delayed growth of the transformed cells216. These findings suggest 

that non-B DNA structures may be recognized as ‘damage’ to stimulate cellular DNA 

damage responses. If the DNA structure-specific repair cleavage is subsequently processed 

in an error-free fashion, the primary sequence will be retained, which could result again 

in non-B DNA formation, triggering further recognition and cleavage until mutations occur 

to remove or prevent non-B DNA formation. Thus, structure-specific DNA repair cleavage 

models provide a plausible explanation for replication-independent non-B DNA-induced 

mutagenesis in cells, particularly in those with low proliferation rates.

Mismatch repair proteins.—Mismatch repair (MMR) proteins, particularly the MSH2–

MSH3 complex (MutSβ), sense heteroduplex DNA that contains small loops generated 

by slippage events at microsatellite repeats (reviewed in ref.33). Single-strand loop-outs 

are common in many types of non-B DNA structure, such as the simple repeat-induced 

slippage loops, the unpaired tips of hairpin structures and the unpaired junctions of B-DNA 

to non-B DNA transitions. Thus, it is reasonable to speculate that MMR proteins recognize 

and process non-B DNA structures that contain small loops. Indeed, MSH2–MSH3 was 

found to process short loops within CTG trinucleotide repeats, resulting in repeat unit 

number alterations, but was not required for processing larger CTG trinucleotide repeat 

loops (more than five CTG repeats)217–219. Consistent with this result, long CTG(20) loop-

outs were processed in cell extracts from multiple different human cells, including neuronal 

cells, independently of MSH2, MSH3, MSH6, MLH1, PMS2 or PMS1 (ref.220), despite 

the potential A–A or T–T mismatches formed in the loop-outs. Interestingly, the MSH2–

MSH3 complex has a higher binding affinity for small loop-outs than for mismatched base 

pairs221, and A–A mismatches in fact reduced the binding affinity of MSH2–MSH3 for 

the hairpins formed at CTG or CAG repeats. The ATPase activity of MSH2–MSH3 was 

also reduced on the small CA(4) loop compared with perfect base-paired hairpins of the 

same length222; therefore, the mismatches do not seem to be the main recruiter of MSH2–

MSH3 in this case. Similarly, hairpins with 3–17 bp stems and 6–8 nt tips219 or longer 

perfect inverted repeats217,218 were typically processed independently of MMR proteins. A 

reasonable hypothesis is that the MSH2–MSH3 complex binds to the junctions of hairpins 

and can also interact with the tips; yet the tips of longer hairpins are too distant from the 

junctions and the binding repair complex. However, direct evidence is still lacking. Note 

that a long CAG repeat could form either a large hairpin or multiple small loops, and the 

effects of MSH2–MSH3 could be very different depending on the size of each loop. This 

may explain the different effects of MSH2–MSH3 on CAG repeats in different species and 

under different experimental conditions. As an example, deficiency of MSH2 (ref.223) or 

MSH3 (ref.224) reduced CAG expansions and resulted in more contractions in the genomes 

of mice225 but reduced contractions at long repeats in genomic DNA from human cells226. 

Therefore, although there is strong evidence to support a role for MMR in the mutagenic 

processing of hairpin structures, factors such as nucleosome and chromosome structures, 

transcription and replication activities, and the presence of DNA binding proteins could 

affect the stability and/or MMR-associated processing of non-B DNA structures.
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The MSH2–MSH3 complex has been shown to bind to intermolecular triplex DNA 

structures with high affinity together with a NER damage or distortion recognition complex, 

XPA–RPA or XPC–RAD23B227. GAA repeats from the FXN gene, involved in Friedreich’s 

ataxia, can form loop-outs owing to slippage events or H-DNA structures228, and GAA(120–

340) repeats were shown to impede DNA replication forks, resulting in chromosomal 

breakage and gross chromosomal rearrangements in yeast229. Deficiency of the MMR 

proteins MSH2, MSH3, MLH1 or PMS1, but not MSH6, suppressed DSBs and reduced 

large deletions in yeast, suggesting a role for MMR in creating DSBs at GAA repeats, 

although the MMR deficiency increased the small deletions within these repeats, consistent 

with the canonical MMR activity229. In addition, the MMR proteins MSH2, MSH3, MLH1 

and PMS1 have been shown to be involved in stimulating the formation of DSBs at H-DNA 

formed at GAA(100) repeats in non-dividing yeast cells, where the DSBs were processed by 

Exo1 and re-joined by non-homologous end-joining activity, leading to large deletions230.

The human MSH2–MSH6 complex was found to bind to G4 DNA as visualized by electron 

microscopy and could bind a G4 DNA-forming oligonucleotide as assessed by slower 

migration in gel mobility-shift assays160. Surprisingly, bacterial MutS binds to G4 DNA 

with a higher affinity than to G–T mismatches, a canonical MMR substrate. However, 

adding ATP to the reaction failed to release MutS from G4 DNA as it does on duplex 

DNA, suggesting a G4 DNA-specific interaction231. In addition, when MutS and MutL 

were bound to G4 DNA, the hydrolysis activity of MutH was increased by about threefold 

over that of MutH alone. Interestingly, the binding of MutS to G4 DNA did not seem to 

require its mismatch discrimination function, as the specific binding was maintained after a 

highly conserved crucial residue for heteroduplex recognition and mismatch correction was 

mutated232. Thus, it is possible that MutS has a unique G4-DNA binding motif, leading 

to repair activity that differs from canonical mismatch-direct MMR. The MSH2–MSH3 

complex in conjunction with Polβ facilitated synthesis through GAA and CAG repeats 

containing abasic sites in vitro. The interaction of MSH2–MSH3 with Polβ increased 

the potential for flap formation and repeat expansion, rather than contraction events 

that occurred when Polβ acted on the repeats alone233. Consistent with MMR proteins 

functioning outside of their canonical roles on non-B DNA, we recently discovered that 

the MSH2–MSH3 complex, in conjunction with the NER complex Rad10–Rad1 (ERCC1–

XPF), was required for Z-DNA-induced genetic instability in yeast and human cells. MSH2–

MSH3 associated with Z-DNA, as evidenced by ChIP assays. However, instead of recruiting 

downstream MMR proteins, the NER complex ERCC1–XPF was recruited to the MSH2–

MSH3-bound Z-DNA-containing region. Cleavage of Z-DNA by ERCC1–XPF led to DSBs 

and genetic instability in yeast and mammalian cells31,234.

Nucleotide excision repair proteins.—Interestingly, another non-B DNA structure, 

H-DNA, is also cleaved by ERCC1–XPF32, similarly to Z-DNA. However, in contrast 

to Z-DNA, the functional NER pathway was involved in a distinct mechanism of H-

DNA-induced genetic instability, independently of MMR proteins. Deficiency of the NER 

nucleases ERCC1–XPF and XPG, or the central NER scaffold molecule XPA, reduced 

H-DNA-induced mutations in yeast and human cells, independently of the DNA replication 

status. Both ERCC1–XPF and XPG were able to cleave H-DNA in vitro, and ERCC1–
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XPF binding to H-DNA was reduced in XPA-deficient cells32. These results suggest 

that NER is responsible for a replication-independent, structure-specific cleavage model 

of H-DNA-induced mutagenesis. NER proteins monitor helical distortions in the DNA 

helix induced by bulky DNA adducts235; therefore, H-DNA might be recognized as 

‘damage’ owing to its associated helical distortions. In fact, the NER mechanism was also 

required for intermolecular triplex structure-induced mutagenesis in mammalian cells236, 

and purified human recombinant XPA–RPA237 and XPC–RAD23B238 were shown to bind 

to intermolecular triplex DNA structures in vitro with high affinity and specificity.

Purified UvrA binds to supercoiled CAG repeats with higher affinity (by two orders of 

magnitude) than to linear CAG repeats, suggesting a role for DNA structure in protein–DNA 

binding interactions. Moreover, deficiency of UvrA reduced the deletion events at CAG 

repeats in Escherichia coli239, as did its damage recognition partner UvrB240,241. UvrD 

helicase deficiency increased deletion events at long CAG repeats as expected, perhaps 

owing to increased or stabilized non-B DNA formation in the helicase-deficient bacterial 

cells and/or its role in MMR242. Surprisingly, deficiency in the endonuclease UvrC also 

enhanced CAG-repeat-induced deletions, perhaps because other enzymes can cleave the 

UvrAB-bound CAG repeats240. The NER proteins XPA, XPC, ERCC1 and XPG, and 

the MMR proteins MSH2 and MSH3 have also been implicated in contraction of CAG 

repeats in human cells in a transcription-dependent fashion226,243. Why so many proteins are 

required for CAG instability and how they coordinate with each other in recognizing and 

processing these structures remains to be fully elucidated.

Other DNA repair proteins.—In addition to MMR and NER proteins, many other 

enzymes have been found to have activities on non-B DNA. For example, in yeast, 

Mre11 can bind to long (>160 bp) palindromic DNA sequences244,245. Purified Mre11 

exhibited DNA structure-specific endonuclease activity at hairpin and cruciform structures, 

and cleaved the DNA at the 5′-junction at the loop of a hairpin, and the junction of a 3′-end 

flap structure244. The MRN (Mre11–Rad50–Nbs1) complex also interacts with BRCA1, 

which contains a four-way branched DNA structure binding domain246 and can facilitate the 

recruitment of the MRN complex to cruciforms247. Sae2 functions together with the MRX 

complex in yeast to initiate DNA end resection for DSB repair and to process hairpin or 

cruciform structures248. The Mre11 protein can bind to G4 DNA with higher affinity than to 

B-DNA and cleave it in a Mn2+-dependent manner249. MRX generates DSBs at cruciform 

structures at an early stage during pre-meiotic replication, and the meiotic recombination 

protein Rec12 creates DSBs at a later stage250. Meiosis-specific endonuclease Spo11 also 

cleaved hairpin structures and was involved in CAG repeat expansions and deletions in 

yeast251.

Cruciform DNA shares some structural similarities with Holliday junctions and, as 

expected, the Yen1/GEN1 (refs.252,253) resolvases, SLX1/SLX4 (refs.254,255) and Mus81–

Eme1 (Mms4 in budding yeast) resolvases256 were all reported to cleave cruciform 

structures257,258. These enzymes were also recruited to and cleaved many common fragile 

site sequences that contained repetitive sequences, leading to DSBs and subsequent genetic 

instability in mammalian cells259. Recently, a YAC reporter system was used to investigate 

the genes involved in processing long inverted repeats ranging from 320 bp to 2.7 kb, and 
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identified many endonucleases including the MRX–Sae2 complex, Mus81–Mms4 resolvase, 

and replication and DSB repairrelated proteins such as Rfa2 (a subunit of heterotrimeric 

RPA) to be involved. Surprisingly, MUS81, YEN1, SLX4, RAD1 and MLH1 did not 

significantly affect the DSBs and gross chromosomal rearrangements at these long inverted 

repeats260. Whether these discrepancies are due to the different reporter systems and/or the 

different hairpin or cruciform substrates used remains to be determined.

Repair proteins that suppress non-B DNA-induced mutation.—Notably, not 

all nucleases increase non-B DNA-induced genetic instability. For example, the FANCI-

associated nuclease 1 (FAN1), involved in DNA inter-strand crosslink repair, has been 

shown to bind to MLH1 and inhibit its interaction with MSH3, thereby reducing MMR-

promoted CAG repeat expansion in human cells261. FAN1 can dimerize and bind to 

trinucleotide repeats and cleave slipped CAG or CTG repeats near the junctions262. In 

addition to its endonuclease activity, FAN1 shows 5′ to 3′ exonuclease activity on hairpin 

loops containing A–A and T–T mismatches, but is paused by perfectly paired hairpins. Thus, 

it is plausible that the nuclease activities of FAN1 on CAG repeats represent a counterforce 

against repeat expansion. In support of this idea, reduced exonuclease activity of FAN1 in 

individuals with autism was found to be associated with CGG expansions262.

Interestingly, we found that flap structure-specific endonuclease 1 (FEN1) can cleave 

H-DNA structures in vitro and attenuates H-DNA-induced mutagenesis in eukaryotic 

cells31,32. FEN1 deficiency increased H-DNA-induced mutagenesis approximately fivefold 

only in replicationcompetent human and yeast cells. A possible explanation for this finding 

is that FEN1, as a replication assistant, cleaves H-DNA and diminishes the structural 

impediment ahead of replication forks, allowing for continuous replication to maintain 

genetic stability31,32 (Fig. 5).

This section summarizes mechanisms of non-B DNA-induced mutagenesis, and the roles 

of non-B DNA on replication, transcription–replication collisions, stimulation of structure-

specific cleavage and the impact of alternative structures on DNA damage and repair. Of 

note, although many types of non-B DNA share some structural and functional features, and 

many enzymes show similar activities towards different types of non-B DNA conformation, 

each structure has distinct features in terms of how it is recognized and processed. For 

example, the hairpin structure formed at CAG repeats affects the function of MSH2–MSH3 

on DNA mismatches222, whereas G4 DNA does not affect MMR activity on a G–T 

mismatch in close proximity232. Instead, G4 DNA has been shown to prevent the recognition 

and excision of 8-oxoG by NEIL1, NEIL3 and OGG1 (ref.263). We also present evidence 

for the distinct processing of Z-DNA and H-DNA, with both being cleaved by ERCC1–XPF, 

albeit via different mechanisms31,32. Therefore, individual types of non-B DNA structure 

should be investigated separately for their distinct mechanisms of mutagenic processing and 

associated biological outcomes.

Non-B DNA and human disease

DNA is no longer considered passive with regard to incurring damage or mutagenesis. 

Instead, the DNA itself, in the presence or absence of exogenous damage, can act as a 
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causative factor for genetic instability, leading to DSBs, deletions, recombination and/or 

large genomic rearrangements that are associated with disease aetiology. Expansions of 

non-B DNA structure-forming repeats have been implicated in many diseases via various 

mechanisms, depending on the sequence, length and/or the location of repeats in the affected 

genes (reviewed in refs.26,28). For example, expansion of CAG repeats within coding regions 

of genes leads to stretches of polyglutamine (polyQ) in the resulting proteins, contributing to 

more than 20 neurodegenerative and neuromuscular diseases, including Huntington disease, 

spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and several types 

of spinocerebellar ataxia (reviewed in ref.26). CGG expansions in the non-coding 5′-UTR 

of FMR1 inhibit transcription and contribute to fragile X syndrome264. The repeats can 

also stall replication265 and recruit structure-specific ‘repair’ cleavage enzymes, leading to 

chromosomal abnormalities266. The CGG repeats in the FMR1 RNA can also affect the 

translation of other RNAs within the same RNA granules267. Expansion of CTG repeats 

in the 3′-UTR of the DMPK gene leads to long CUG runs in the RNA that can interfere 

with the developmentally regulated alternative splicing of pre-mRNAs, resulting in toxicity 

associated with myotonic dystrophy type 1 (ref.268).

In addition to disorders caused by repetitive DNA itself, many types of non-B DNA structure 

are involved in human diseases associated with genetic instability, such as cancer (reviewed 

in ref.32). Using a bioinformatic approach, it was found that ~33% of missense mutations 

and ~37% of microdeletions in the Human Gene Mutation Database (HGMD)269 occurred 

within non-B DNA-forming repeats, which is significantly higher than by chance alone270. 

Potential non-B DNA-forming sequences were also found to have higher substitution 

frequencies in the UCSC Genome Browser and the Simons Genome Diversity datasets162. 

From an analysis of 1,809 whole-genome sequences from ten cancer types, more mutations 

were found near or within non-B DNA regions in general, particularly at the single-stranded 

spacer regions between symmetrical arms of direct and inverted repeats or H-DNA mirror 

repeats163. Non-B DNA-forming sequences are also enriched at chromosomal breakpoints 

identified in many diseases, including translocation-related cancers, such as lymphomas 

and leukaemias271,272. For example, the human MYC promoter region contains multiple 

overlapping non-B DNA-forming sequences with the capacity to adopt H-DNA, G4 DNA 

and Z-DNA within a small region (~400 bp) surrounding the P1 promoter, which is one 

of the major breakpoint cluster regions in MYC-related translocations in lymphomas40. 

H-DNA has been implicated in translocation events within the BCL2 major breakpoint 

region in follicular lymphomas273. G4 DNA is associated with mutations in ataxias and 

fragile X syndrome274. In a dataset from the International Cancer Genome Consortium Data 

Portal, comprising 2,234 samples from ten cancer types, stem–loop structures fit the blood, 

brain, liver and prostate cancer breakpoint hotspot profiles, and G4 DNA-forming sequences 

co-localized with mutation hotspots in bone, breast, ovarian, pancreatic and skin cancers at 

levels much higher than by chance alone275. In 200–400 bp windows flanking breakpoints, 

characterized in 19,947 translocations in human cancer genomes, non-B DNA-forming 

sequences were significantly enriched, including simple AT repeats, GAA or GAAA repeats 

and other repetitive sequences that have the propensity to adopt H-DNA, Z-DNA, G4 

DNA and cruciform or hairpin structures32,272. A very recent study analysed ~630,000 

cancer breakpoints using machine learning tools to search for genetic features associated 
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with genome breakage. It was found that the cancer-associated breakpoint hotspots were 

predictable, and that transcription and the presence of non-B DNA motifs were predominant 

factors responsible for the development of the hotspots276.

Although non-B DNA-forming sequences have been implicated in the development of 

many diseases, it is likely that many of the non-B DNA-induced mutations are silent and 

do not exhibit an obvious phenotype. For example, long palindromic AT-rich repeats on 

chromosomes 11q23 and 22q11 have been shown to stimulate a high frequency (~10–5) of 

de novo t(11;22) translocations in sperm cells from healthy men277. However, most cells 

that carry these mutations do not show a phenotype and/or are lost in screening systems, 

whereas other cells with non-B DNA-induced mutations in crucial genomic regions could 

trigger apoptosis and would no longer be detectable in the population. Therefore, non-B 

DNA-induced mutations in human genomes are likely much more frequent than estimated.

Conclusions and perspectives

Although our knowledge of non-B DNA structures, their functions in the genome and 

contributions to evolution and disease has advanced substantially over the past few decades, 

there is still much to be discovered. Thus, many challenges remain to be addressed in future 

studies, some of which are listed below.

To date, it remains a challenge to directly detect non-B DNA structures in genomes of living 

cells, in part because their formation in vivo is dynamic and transient. The methods to detect 

non-B DNA in cells thus far depend on indirect measurements and/or the inclusion of steps 

that can alter non-B DNA formation, such as cell fixation, protein removal, changes in pH 

and salt concentration or the addition of probes or antibodies that can induce structure 

formation, and/or stabilize or destabilize existing non-B DNA structures. Some recent 

progress has been made in this respect. For example, a small-molecule fluorophore was 

conjugated with a G4 DNA ligand, pyridostatin, to form a fluorescent G4 DNA probe278. 

The small molecular weight and polarity of the probe molecule enabled penetration of the 

cell membrane, and the low cell toxicity fluorescent probe was used for real-time detection 

of single G4 DNA structures in living cells. This small-molecule probebased procedure 

is less toxic to host cells than other methods and is compatible with studies in living 

cells, and as such better reflects the physiological situation in vivo. Note that owing to the 

dynamic nature of non-B DNA conformations, using a DNA structure-specific probe will 

inevitably affect the balance of the B-DNA to non-B DNA structure formation transition 

and equilibrium. Thus, more sensitive and less invasive methods that can directly detect 

non-B DNA without interfering with DNA structural transitions in cells would substantially 

advance the field.

Our understanding of free energy alterations, the kinetics of B-DNA to non-B DNA 

transitions, the interactions and bonds between the atoms involved in non-B DNA formation 

and stabilization are still limited, particularly measurements under physiological conditions. 

As a result, although many computer programs for predicting non-B DNA conformations in 

genomes are available, they are empirically derived. Thus, a better understanding of these 
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most fundamental and basic factors in non-B DNA structure formation is crucial for future 

progress in the field.

On the basis of decades of research, we now know that non-B DNA-forming sequences 

have important roles in various biological processes and can stimulate genetic instability, 

implicating them in evolution and disease aetiology. Therefore, strategies to modulate 

these structures using small molecules or probes are warranted owing to their ability to 

provide spatial and temporal tools to interrogate DNA structures and their potential as 

therapeutic agents279,280. Much progress has been made towards this goal by employing 

in silico simulation and high-throughput methods to identify small-molecule ligands to 

modulate non-B DNA formation and/or stability. However, small ligands can interact 

with genomic and mitochondrial DNA and affect DNA structure throughout the genome 

and may have off-target effects, potentially limiting their therapeutic efficacy. Thus, the 

development of approaches to increase specificity by combining ligands with sequence-

specific targeting is warranted. Such approaches may include the use of non-B DNA-

specific probes, antisense oligonucleotides, intermolecular triplex-forming oligonucleotides 

or peptide nucleic acids281.

In a recent study, the structure-specific DNA ligand naphthyridine-azaquinolone (NA) 

was used to treat cells from patients with Huntington disease or a Huntington disease 

mouse model that harbours a transgene of HTT (huntingtin) exon 1 containing CAG 

repeats282. NA, which binds specifically to slipped CAG DNA intermediates and thus 

affects expanded CAG repeats, induced repeat contractions in both cultured human cells and 

medium spiny neurons of the mouse striatum. NA injection reduced mutant HTT protein 

aggregates in mice, a biomarker of Huntington disease pathogenesis, suggesting a promising 

approach to reduce the pathogenic repeat length with non-B DNA structure-specific DNA 

ligands282. This type of compound that can specifically interact with pathology-related non-

B DNA conformations is needed to advance the effort towards developing DNA-targeted 

therapeutics.

Using the G4 DNA-specific binding domain of RNA helicase associated with AU-rich 

element (RHAU, also known as DHX36) fused with a cleavage domain of the Fok1 

nuclease, a G-quadruplex-specific DNA endonuclease was constructed to cleave double-

stranded DNA adjacent to G4 DNA-forming sequences283. Such enzymes represent 

powerful tools for DNA structure research. If they can be delivered in vivo and their 

expression controlled, they may provide another approach for targeted genome modification. 

Although not necessarily a DNA structure-specific approach, CRISPR–Cas9 techniques 

have also been applied to delete core G4 DNA sequences within a microRNA cluster in 

rat, which led to increased microRNA levels in the heart, contributing to cardiac contractile 

dysfunction284. In future studies, similar strategies could be employed to modulate the 

structure and function of other non-B DNA-forming sequences in vivo.

Taking advantage of sequence-specific DNA triplex formation, short triplex-forming 

oligonucleotides have been developed that can form intermolecular triplexes that 

share structural similarities with intramolecular H-DNA. Binding of triplex-forming 

oligonucleotides to target duplexes to form stable triplex structures can inhibit DNA 
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replication and gene expression, and stimulate site-specific mutations in genomes281. 

Chemotherapeutic DNA-damaging agents can also be used in conjunction with or covalently 

linked to triplex-forming oligonucleotides to direct site-specific damage in genomes to 

enhance the efficacy of cancer chemotherapy285,286.

In summary, because non-B DNA structures have important roles in various biological and 

pathological processes and provide unique structural features for recognition and binding, 

they represent potential druggable targets for use as both research tools and therapeutics. 

Although limitations still exist in this type of approach, such as specificity for the targeted 

non-B DNA versus B-DNA regions, potential off-target effects and efficacy based on 

targeting multiple similar structures, progress in this area is promising. For example, a 

small-molecule G4 DNA-specific ligand, CX-5461, is currently being evaluated in an open-

label, multi-centre phase Ib study as a potential targeted cancer therapeutic for BRCA1/

BRCA2 homologous recombination-deficient tumours287,288. Nonetheless, until direct and 

conclusive methods are available to detect and specifically target non-B DNA in vivo, 

caution is warranted when studying such complex and dynamic non-B DNA structures in the 

genome.
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Related links

detectIR: https://sourceforge.net/projects/detectir/

DNA Structure Search: http://utw10685.utweb.utexas.edu/nonbdna/

G4Hunter: http://bioinformatics.ibp.cz

palindrome: http://emboss.bioinformatics.nl/cgi-bin/emboss/palindrome

QGRS Mapper: https://bioinformatics.ramapo.edu/QGRS/index.php

Glossary

Circular dichroism
Absorption spectroscopy method to detect the differential absorption of leftand right-handed 

light spectra for rapid evaluation of the secondary structures of macromolecules such as 

protein and DNA

DNA helicases
A class of motor proteins that move along DNA and transiently separate duplexes into two 

single strands using energy from ATP hydrolysis

Fourier transform infrared spectroscopy
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A spectroscopy method that simultaneously collects the absorption, emission and 

photoconductivity of a wide spectral range at high resolution to measure the intensity and 

wavelength of light required to vibrate molecules in a sample

Holliday junctions
Branched DNA structures containing four arms covalently linked together that serve as key 

intermediates in many meiotic and mitotic homologous recombination events

Negative supercoiling
A segment of underwound DNA in which the two strands wind around the helical axis less 

than 360° every 10.5 bp and retain twist strain (free energy)

Okazaki fragments
Short fragments of DNA produced by discontinuous replication on the lagging strand during 

DNA replication. Because the template for lagging strand synthesis is exposed in the 5′–3′ 
direction at the progressing replication fork, the nascent strand is composed of sequential 

Okazaki fragments created by DNA polymerase working backwards from the replication 

fork

Satellites
A subfraction of genomic DNA consisting of short repetitive nucleotide sequences that are 

repeated a large number of times. These non-coding repeats are important for centromere 

and heterochromatin construction and separate from the rest of the genomic DNA on a 

density gradient because of their higher content of AT base pairs

SOS response
A complex global response to DNA damage identified in bacteria that includes activation of 

multiple factors, leading to the stalling of cell division and alteration of DNA replication, 

recombination and repair to promote genome integrity and cell survival, at the cost of 

increased mutagenesis

Stretching tension
When both ends of a segment of DNA are anchored (for example, by proteins) and the DNA 

is pulled mechanically, it carries stretching tension coupled with twisting torsion along the 

helix and can be elongated by up to 70% without disrupting base pairs

Topoisomerases
A class of enzymes that are able to cleave one or both strands of DNA to release topological 

stress on DNA duplex, and to link or unlink, knot or unknot associated DNA molecules

Translesion synthesis polymerases
Polymerases that can catalyse DNA polymerization at damaged templates during replication 

and/or repair, although often with lower fidelty than replicative polymerases

Unequal sister chromatid exchange
A mitotic crossover event that leads to the exchange of genetic material between 

homologous chromosomes and is also a major repair pathway for double-strand breaks
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Box 1

Non-B DNA as a driver of evolution

Non-B DNA-forming sequences have been found to co-localize with evolutionarily 

active regions3,318. Transposable elements comprise a large fraction of many eukaryotic 

genomes and most contain terminal inverted repeats319 and direct repeats that can 

stimulate double-strand breaks (DSBs). A comparative autosomal map covering >90% of 

the mouse and human genomes revealed that the breakpoint regions of intrachromosomal 

rearrangements contained a high density of repetitive sequences320. Although it is not 

easy to distinguish which occurred first, a mutagenic non-B DNA-forming sequence or 

an active evolution hotspot over time, unstable non-B DNA is considered as a driving 

force for genetic variations and evolution321–323.

Insects contain a xenobiotic-metabolizing P450 gene that can detoxify xenobiotics, and 

its expression is regulated by a G4 motif in the promoter region that is thought to be 

acquired from an HzIS1–3 transposon324. Bacterial transposon Tn7, which encodes a 

TnsC protein that can bind to triple-helical DNA, created selective insertion of Tn7 

adjacent to a H-DNA-forming sequence in an in vitro transposition assay325. It will 

be interesting to see whether similar H-DNA-directed transposon mobility and genome 

evolution also occurs in mammalian genomes.

The genome of muntjac deer has undergone drastic evolutionary changes with a dramatic 

reduction in the number of chromosomes from 2n = 70 in the ancestral karyotype to 

2n = 6 in female and 7 in male Muntiacus muntjak vaginalis. Analysis of the fusion 

sites revealed repetitive elements that may have stimulated DSB formation and mediated 

recurrent fusions between different chromosomes326. Non-B DNA structures formed 

in simple sequence repeats (SSRs), including microsatellites, also stimulate replication 

slippage, crossover and/or gene conversion events327. SSRs are very abundant in penaeid 

shrimp and the distribution is highly associated with transposable element expansion and 

intrachromosomal rearrangements328. Compared with Fenneropenaeus chinensis, which 

lives exclusively in salt water, Litopenaeus vannamei, which is capable of surviving 

in a large range of salinities, showed significant alterations of SSRs within introns 

or untranslated regions (UTRs) of differentially expressed genes related to amino acid 

and lipid metabolism involved in osmoregulation, suggesting a regulatory role of these 

repetitive elements in adaptive evolution in these species328.

A more direct connection between non-B DNA structure and evolution comes from 

comparing marine stickleback fish, which have developed a robust pelvic apparatus, 

and many independently derived freshwater populations that have adaptively lost pelvic 

hind fins over the past ~15,000 years. This repeated pelvic loss maps to recurrent 

deletions of a pelvic enhancer (Pel) of the homeodomain transcription factor gene Pitx1 
(ref.329). The Pel sequence from marine populations contains a long Z-DNA-forming GT 

repeat that was shown to stimulate the formation of DSBs and large deletions (>100 

bp) in a repeat length- and orientation-dependent fashion in yeast and on mutation 

reporters in mammalian cells mirroring the situation in stickleback fish. Similar repeats in 

human genomes were also mapped with aphidicolin-sensitive breakage sites, suggesting 
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that non-B DNA structure-induced genetic instability is a common process that has 

contributed to genetic evolution330.

The male-specific region of the human Y chromosome occupies ~95% of the 

chromosome, and eight nearly identical palindromic sequences, the result of duplication 

events, contain many of the testis-specific genes. The variations on palindromic 

sequences in existing human populations suggest frequent recurrent arm-to-arm gene 

conversion events in testis gene families331.

Notably, non-B DNA-forming sequences are not always deleterious. Many non-B DNA-

forming sequences are associated with distinct genomic features that are evolutionarily 

conserved, such as regulatory elements in promoters5,88. Motif-containing elements 

for the formation of G4 DNA, triplexes and hairpins increased rapidly in eumetazoan 

genomes during evolution and seemed to be under positive selective pressure, suggesting 

that the conservation of non-B DNA-forming sequences may be beneficial during 

evolution89.
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Fig. 1 |. Schematic of non-B DNA structures.
a, Canonical B-form DNA. b, Z-DNA forms at alternating purine–pyrimidine sequences, 

where the syn-formation purines and anti-conformation pyrimidines twist the backbone 

into a zigzag shape310. c, H-DNA forms at polypurine or polypyrimidine sequences that 

contain a mirror repeat, where half of the repeat in single-stranded form folds back into 

the major groove of the DNA duplex to form a triplex structure via Hoogsteen hydrogen 

bonding311,312. H-DNA can exist in various isomers depending on strand orientation 

and whether the purine-rich or pyrimidine-rich strand is used as the third strand. d, G 

quadruplexes form at sequences containing four runs of three or more guanines. Four 

guanine bases associate through Hoogsteen hydrogen bonding (guanine tetrad), and three 

continuous guanine tetrads stack to form a G quadruplex (G4 DNA)88,313. e, Cruciform 

or hairpin structures form at inverted-repeat sequences167,314,315, whereby two symmetrical 

arms self-anneal to form a duplex stem. f, R-loops contain a nascent RNA strand annealed 

to the DNA template strand316, leaving the non-template strand unpaired, which can adopt 

a stable structure, such as a hairpin or G4 DNA. The red/blue letters in the sequences 
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represent the bases involved in the non-B conformation. RNAP, RNA polymerase; ssDNA, 

single-stranded DNA.
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Fig. 2 |. Dynamic non-B DNA structure induced by transcription.
The inverted-repeat sequence (blue) is maintained in B-DNA form on histones and is 

unwrapped during transcription. The progressing transcription machinery unwinds DNA 

from the nucleosome structure and creates positive supercoiling in front (removed by 

topoisomerases) and negative supercoiling behind, which facilitates non-B DNA structure 

formation (shown in the schematic as a cruciform). RNAP, RNA polymerase; ssDNA, 

single-stranded DNA.
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Fig. 3 |. Biological functions of non-B DNA.
a, Non-B DNA can facilitate the initiation of transcription and replication. Non-B DNA 

formation (shown in the schematic as G quadruplexes (G4 DNA)) unwinds DNA from 

nucleosomes and creates an open structure that facilitates the assembly of transcription (left) 

and replication (right) complexes. b, Non-B DNA can stimulate homologous recombination 

(HR). There are multiple pathways by which non-B DNA can directly or indirectly stimulate 

HR. Shown in the schematic is a unique structural alteration between two H-DNA isomers 

containing complementary single-stranded DNA (ssDNA) regions. With the presence of 

a nick on either strand or with the assistance of a topoisomerase, the two strands could 

wind around each other to form Watson–Crick base pairs. Owing to the dynamic nature 

of H-DNA in vivo, the third strand in both H-DNA structures could disassociate from the 
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duplex and anneal to each other to form a double Holliday junction structure and thereby 

stimulate HR317. RNAP, RNA polymerase; TBP, TATA-box-binding protein.
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Fig. 4 |. Replication-associated genetic instability induced by non-B DNA.
A, Non-B DNA formed at a progressing replication fork. A progressing DNA replication 

fork is depicted on the top. Aa, A non-B DNA structure (shown in the schematic as 

H-DNA) in front of a replication fork slows or stalls replication, which gives rise to 

further structural alterations on the replication complex. Ab, A hairpin structure formed 

on the template of a lagging strand can lead to replication stalling or repeat contraction 

(repeat template skipping). Ac, Ad, Hairpin structures formed on the nascent strands on the 

leading and lagging strands can lead to repeat expansion (via nascent strand self-folding 

and misalignment). B, Non-B DNA-induced transcription and replication collisions. Ba, 

Transcription and replication forks in the same direction. Bb, Non-B DNA (shown as a 

cruciform structure) slows or stalls transcription elongation and leads to a co-directional 
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collision. Bc, Non-B DNA slows or stalls replication or transcription and disrupts the 

coordination, leading to headon collisions. Collisions in either direction can lead to 

replication stress and genetic instability. RNAP, RNA polymerase; Pol, DNA polymerase.
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Fig. 5 |. Structure-specific cleavage modulates non-B DNA structure-induced genetic instability.
a, Structure-specific cleavage of non-B DNA leads to genetic instability. A non-B DNA 

structure (shown in the schematic as H-DNA) causes helical distortions and creates an open 

structure for recruiting DNA repair nucleases. DNA structure-specific cleavage generates 

breaks within or surrounding the non-B DNA structure, followed by error-free or error-

generating repair. This ‘structure forming–repair’ cycle can occur repeatedly until a mutation 

interrupts the formation of non-B DNA or a deletion removes the non-B DNA-forming 

sequence. b, A non-B DNA structure (shown in the schematic as H-DNA) is formed in front 

of a progressing replication fork and stalls DNA replication, increasing the chance for fork 

collapse and double-strand break (DSB) formation. Structure-specific cleavage of the non-B 

DNA structure creates a nick or DSB, which unwinds the non-B DNA conformation and 

reduces structure-induced genetic instability by allowing continuous replication.
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