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ABSTRACT
Background: Though receptor binding specificity is well established as a contributor to host tropism and spillover potential of 
influenza A viruses, determining receptor binding preference of a specific virus still requires expensive and time-consuming 
laboratory analyses. In this study, we pilot a machine learning approach for prediction of binding preference.
Methods: We trained a convolutional neural network to predict the α2,6-linked sialic acid preference of influenza A viruses 
given the hemagglutinin amino acid sequence. The model was evaluated with an independent test dataset to assess the stand-
ard performance metrics, the impact of missing data in the test sequences, and the prediction performance on novel subtypes. 
Further, features found to be important to the generation of predictions were tested via targeted mutagenesis of H9 and H16 
proteins expressed on pseudoviruses.
Results: The final model developed in this study produced predictions on a test dataset correctly 94% of the time and an area 
under the receiver operating characteristic curve of 0.93. The model tolerated about 10% missing test data without compromising 
accurate prediction performance. Predictions on novel subtypes revealed that the model can extrapolate feature relationships be-
tween subtypes when generating binding predictions. Finally, evaluation of the features important for model predictions helped 
identify positions that alter the sialic acid conformation preference of hemagglutinin proteins in practice.
Conclusions: Ultimately, our results provide support to this in silico approach to hemagglutinin receptor binding preference 
prediction. This work emphasizes the need for ongoing research efforts to produce tools that may aid future pandemic risk 
assessment.

1   |   Introduction

Affinity for specific conformations of the terminal sialic acid is 
regarded as a determinant of host tropism for influenza A viruses 
(IAVs); IAVs from human hosts tend to have a higher affinity 
to α2,6-linked sialic acids, while IAVs from avian hosts tend to 

have a higher affinity to α2,3-linked sialic acids [1]. While there 
are many amino acid changes to the receptor binding protein 
hemagglutinin (HA) that have been found to result in a change 
in affinity from α2,3-linked to α2,6-linked sialic acid receptors 
[2], the single and combinatorial amino acid changes that lead 
to this switch are not comprehensively known, particularly for 
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subtypes that historically have not caused outbreaks of infec-
tions in humans.

In this study, we developed a convolutional neural network 
(CNN) that predicts the receptor binding specificity of IAV 
given the HA amino acid sequence using binding data gener-
ated in house and collected from the Consortium for Functional 
Glycomics (CFG) [3]. Such a tool may be useful for identifying 
IAVs collected during surveillance efforts that may warrant fur-
ther study for evidence of viral transmission between avian and 
mammalian hosts that present a risk of spillover to humans. To 
assess whether the model generates predictions based on mean-
ingful amino acid sequences features, the importance of amino 
acids for generating predictions was derived and used to inform 
targeted mutagenesis in search of binding class changes. The 
limits of this CNN modeling approach were also tested through 
an evaluation of performance over test sequences with varying 
degrees of missing amino acids. Finally, a CNN was trained 
using the same approach without H16 sequences in the training 
data to evaluate the predictive performance of this modeling ap-
proach on a novel sialic acid-binding HA type. In all, this study 
provides a model that accurately predicts the sialic acid confor-
mation binding preference of IAVs and helps to identify areas for 
future research based on the limitations observed during model 
testing.

2   |   Methods

The training and testing data used in the modeling comes from 
two sources: viruses and pseudoviruses collected and tested in 
the Runstadler laboratory and data collected from the CFG. The 

phylogenetic relationships of the 358 training samples and 48 
test samples are visualized in Figure S1, and sample size details 
are available in Table 1.

2.1   |   Modeling Data Generated in House

2.1.1   |   Viruses and Plasmids

In total, 197 IAV isolates, RNA, or HA plasmids were obtained 
for use in this study (sources in Table  S1). The sequences of 
all HA genes from viruses or plasmids were confirmed via 
nanopore sequencing (Plasmidsaurus, Eugene, OR, USA). Of 
these, 149 were used for model training and 48 were used as an 
independent test dataset.

2.1.2   |   Pseudovirus Generation

To generate receptor binding results for IAVs where only RNA 
or HA plasmids were available, a lentiviral vector approach for 
pseudovirus generation was employed. Human embryonic kid-
ney (HEK)-293T cells cultured in DMEM high glucose with 
GlutaMAX (Thermo Scientific, Waltham, MA, USA) supple-
mented with 10% heat inactivated fetal bovine serum, 1% pen-
icillin–streptomycin, and up to 2.5 μg/mL amphotericin B. At 
60% confluence, HEK293T cells were transfected with plasmids 
expressing HIV Gag with GFP (National Institutes of Health, 
HIV Reagent Program, Manassas, VA, USA) and HA using 
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) per man-
ufacturer instructions. At 24 and 48 h post transfection, spent 
culture media was removed, and Vibrio cholerae neuraminidase 

TABLE 1    |    Summary of training data and independent test data.

Sample type

Active virus Inactive virus Isolated protein Pseudovirus

Train 186 1 134 37

Test 38 0 0 10

Host class

Avian Mammalian
Other/

unknown

Train 143 134 81

Test 40 8 0

Virus subtype

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

Train 72 15 66 14 54 14 31 7 14 15 13 9 16 6 2 10

Test 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Receptor specificity

No preference for α2,6-linked sialic acid
Preference for α2,6-

linked sialic acid

Train 277 81

Test 39 9



3 of 13

(Type III, Sigma, St. Louis, MO, USA) supplemented culture 
media (7 mU/mL) was added to free the newly budded pseudo-
viruses from the host cells. At 48 and 72 h, the media was har-
vested, centrifuged, and filtered to remove cellular debris and 
concentrated by ultracentrifugation at 77,000 g for 2 h at 4°C 
with a 1-mL 20% sucrose in phosphate buffered saline (PBS) 
cushion. Concentrated pseudoviruses were resuspended over-
night in 250-μL PBS.

2.1.3   |   Modified Hemagglutination Assay

A modified hemagglutination assay was used to determine the 
receptor binding specificity of the IAV isolates and pseudoviruses 
[4]. Briefly, 62.5 μL of 20% turkey red blood cells (RBCs; Lampire 
Biological Laboratories, Pipersville, PA, USA) were desialylated 
with 12.5 mU of Vibrio cholerae neuraminidase (Type III) for 
1 h at 37°C. The desialylated RBCs were selectively resialylated 
with 4.4 μg of α2,3-sialyltransferase (ST3Gal6; R&D Systems, 
Minneapolis, MN, USA) or 2.7 μg of α2,6-sialyltransferase 
(ST6Gal1; R&D Systems, Minneapolis, MN, USA) and 1.5-mM 
CMP-sialic acids (Sigma, St. Louis, MO, USA) with 1% bovine 
serum albumin (BSA) in PBS in a total volume of 75 μL for 2 h at 
37°C. The untreated, desialylated, and sialyltransferase-treated 
RBCs were washed with PBS and brought to a final concentra-
tion of 0.5% in PBS with 1% BSA. The viruses and pseudoviruses 
were serially diluted in PBS (two-fold) and mixed in equal parts 
with 0.5% treated or untreated RBCs and allowed to incubate 
at room temperature for 30 min. All samples were tested in 
duplicate.

2.2   |   Modeling Data Collected From CFG

2.2.1   |   Data Collection

Glycan binding profiles from any array version (1 through 5.2, 
containing 200–609 glycans, respectively) of IAVs or purified 
HA proteins were collected from CFG in May 2022 [3]. The 
corresponding HA amino acid sequence for each binding pro-
file was provided by the submitting investigator or collected 
from the Influenza Research Database (IRD) [5] by the acces-
sion number or strain name. Entries completely missing bind-
ing or sequence data were removed. Binding profiles with the 
most extensive binding data were selected in cases of sequences 
with multiple submissions. This resulted in a total of 209 bind-
ing profiles with complete HA sequences, which were used for 
downstream analyses. Additionally, 42,416 and 50,241 unique 
and complete HA amino acid sequences with associated meta-
data were obtained from the IRD [5] and the Global initiative on 
Sharing All Influenza Data (GISAID) [6], respectively, for use in 
model training.

2.2.2   |   Defining Binding Labels

For each binding profile, the dominant glycans bound by each 
virus or HA protein were determined using a method from 
Grant et  al. [7] whereby the glycans having a signal at least 
10% of the maximum affinity signal for that virus or protein 
were considered dominant binders. Comparisons of binding 

affinity were made by pairing the sialylated glycans present in 
the binding arrays such that each pair differed only the in ter-
minal sialic acid conformation (glycan pairings are available in 
Table  S2). Welch's t-test was used to identify a significant dif-
ference (p < 0.05) in binding affinity between each glycan pair. 
Sequences were labelled as showing a preference for α2,6-linked 
sialic acid receptors or not if there was a significant difference 
in affinity within all binding pairs meeting the dominant binder 
threshold.

2.3   |   Modeling

2.3.1   |   Data Encoding

A heterosubtypic alignment of all sequences used in this study 
was performed per the method published by Burke and Smith 
[8] using MAFFT [9] and Jalview [10]. The aligned sequences 
were coded with a binary indication of the presence or absence 
of each amino acid at each position in the sequence (one-hot en-
coding) using Sklearn [11].

2.3.2   |   CNN Architecture

The model used in this study was adapted from a tailored 
CNN developed by Scarafoni and colleagues to identify avian 
versus human-origin influenza virus sequences  [12] and per-
formed using Keras [13]. The CNN was comprised of five con-
volutional layers, where each layer detects specific patterns in 
the input data or features extracted from the preceding layer. 
These patterns are identified by passing filters over the data, the 
number and size of which determines the range and complex-
ity of the patterns recognized. For each convolutional layer, a 
ReLU function is applied to enhance the ability of the network 
to capture relationships within the data. Following each convo-
lutional layer is a maxpooling layer which reduces the spatial 
dimensions of the data by selecting the maximum value within 
each “window” (or kernel) of data. The size of the kernel and 
the amount by which it moves along the data (stride) determines 
how much the data dimensionality is reduced. Batch normaliza-
tion was performed after each maxpooling layer to standardize 
and rescale the data. After these layers, the data is flattened and 
passed through two fully connected layers where the model as-
sociates the features extracted from the earlier layers with the 
target host class. A sigmoid activation function was applied in 
the final layer to produce a probability distribution ranging from 
0 to 1 for classification of the samples.

The host prediction model was trained with the sequences 
from IRD [5] and GISAID [6] to recognize those of avian or 
mammalian origin. Model training was performed by passing 
batches of 128 training samples through at a time, calculat-
ing the binary cross-entropy loss function which quantifies 
the difference between the predicted probability and actual 
label of the data, and updating, through backpropagation, the 
model parameters via Adam optimization. During training, a 
dropout rate of 0.5 was applied to prevent overfitting by ran-
domly dropping out half of the connections between nodes be-
fore the final fully connected layer in each training iteration. 
The samples were class and subtype weight biased to account 
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for differences in training data representation. Training was 
stopped using an early stopping strategy, which tracks the 
model performance on a 20% held out validation set of sam-
ples to identify when prediction performance peaks during 
model training, thereby preventing overfitting of the training 
data. The trained origin host model showed an AUC of 0.99 
and accuracy of 0.99 on the validation set. The weights of the 
convolutional and maxpooling layers of the origin host CNN 
were frozen, and new fully connected layers were trained 
with binding data from 358 samples with subtype and class 
weighting. Early stopping with a 5% held out validation set 
was used to prevent overtraining. A simplified illustration of 
the final model is shown in Figure 1 and details of the model 
parameters and hyperparameters are available in Table  S3. 
Hyperparameters tested included the Adam learning rate (0.1, 
0.01, 0.001, 0.0001) and batch size (8, 16, 32, 64) which led to 
optimum performance at 0.01 and 32, respectively.

2.3.3   |   Testing Model Performance

The AUC and accuracy of the model was determined by generat-
ing predictions on a test data set of 48 samples, 3 of each subtype, 
covering all major sialic acid binding subclades (Figure S1). To 
assess the impact of missing data on test predictions, a random 
stretch of amino acids was coded as missing data (10, 20, 40, 

80, 160, and 320 amino acids) in each test sequence. Predictions 
were generated over 100 bootstraps per amount of missing data. 
The mean and standard deviation of the test AUC and accuracy 
were recorded. Additionally, to evaluate the positions at which 
missing amino acids impact performance, a length of 80 ambig-
uous amino acids was coded into each possible start position of 
the test data prior to model prediction; AUC and accuracy were 
recorded. Finally, to assess the performance of this CNN mod-
eling approach for novel HA-type sialic acid receptor binding 
prediction, a new CNN was trained in the absence of H16 se-
quences in the base host model used for transfer learning and 
the labelled training data. Predictions were generated on the 48 
test sequences and the sequences of H17, H18, and H19.

2.3.4   |   Amino Acid Importance

Assessments of amino acid saliency in predicting binding labels 
were performed using Shapley additive explanations (SHAP 
values) on the independent test dataset  [14]. These values are 
derived from cooperative game theory principles to assign a 
relative importance to each feature (presence or absence of an 
amino acid at each position) to the prediction the model gener-
ated (preference for α2,6-linked sialic acids). In that way, it aids 
in the understanding of the contribution of each amino acid in 
the sequence to the decision-making process of the model. The 

FIGURE 1    |    Simplified convolutional neural network architecture.
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absolute means of the SHAP values across all test samples and 
amino acids for each position were calculated to assess global 
amino acid importance. SHAP values were also generated for 
specific H9 and H16 amino acid sequences to inform site di-
rected mutagenesis targets.

2.4   |   Laboratory Follow-Up of Model-Determined 
Amino Acid Importance

2.4.1   |   Amplification of Hemagglutinin

RNA was extracted from viral stocks of A/Guinea Fowl/
Hong Kong/WF10/1999(H9N2) and A/shorebird/Delaware/​
172/2006(H16N3) with the Mag-Bind Viral DNA/RNA ex-
traction kit (Omega Biotek, Norcross, GA, USA) per manufac-
turer instructions. Reverse-transcription of RNA into cDNA 
was performed using the qScript Ultra Flex Kit (Quantabio, 
Beverly, MA, USA) per manufacturer instructions with a 
final concentration of 1 μM of gene-specific forward prim-
ers designed for assembly into a pcDNA3.1(+) (Invitrogen, 
Carlsbad, CA, USA) vector (Table S4). HA genes were ampli-
fied using the NEBNext Q5 Hot Start HiFi PCR Master Mix 
(New England BioLabs Inc., Ipswich, MA, USA) with a final 
concentration of 0.5 μM each of forward and reverse primers 
(Table  S4) and 4 μL of cDNA template. Thermocycling con-
ditions were as follows: initial denaturation at 98°C for 30 s, 
35 cycles of denaturation at 98°C for 10 s followed by anneal-
ing/extension at 72°C for 90 s, and final extension at 72°C for 
2 min. The amplified HA genes (~1.7 kilobases) were gel ex-
tracted with the QIAquick gel extraction kit (Qiagen, Hilden, 
Germany). The concentration of the gel extracted dsDNA was 
determined by Qubit (Invitrogen, Carlsbad, CA, USA), and 
the DNA sequences were confirmed by nanopore sequencing 
(Plasmidsaurus, Eugene, OR, USA).

2.4.2   |   Molecular Cloning

The pcDNA3.1(+) vector was digested by NheI and BamHI re-
striction enzymes (New England BioLabs Inc., Ipswich, MA, 
USA) overnight, and the linearized vector was gel extracted. 
The linearized vector and amplified HA genes were mixed 
at a 1:2 DNA molar ratio (50-ng vector + 31.7-ng HA) with 
NEBuilder HiFi DNA Assembly Master Mix (New England 
BioLabs Inc., Ipswich, MA, USA) and incubated at 50°C for 
15 min. The assembled plasmids were transformed into NEB 
Stable Competent E. coli (New England BioLabs Inc., Ipswich, 
MA, USA), plated on Luria-Bertani (LB) agar with 100 μg/
mL ampicillin, and incubated at 30°C overnight. Individual 
colonies were screened for the presence of the insert using 
OneTaq Hot Start Quick-Load 2X Master Mix (New England 
BioLabs Inc., Ipswich, MA, USA) with primers outside of the 
insertion site (Table  S4) at a final concentration of 0.2 μM 
using the following thermocycling conditions: initial denatur-
ation at 94°C for 5 min, 30 cycles of denaturation at 94°C for 
30 s followed by annealing at 52°C for 30 s and extension at 
68°C for 2 min, and final extension at 68°C for 2 min. Colonies 
containing the appropriate-sized insert were grown in a start 
culture of sterile LB broth with 100 μg/mL ampicillin. Flasks 
of 100–200 mL of sterile LB broth with 100 μg/mL ampicillin 

were inoculated with start culture at a 1:500 dilution. The 
final cultures were pelleted and maxipreps were performed 
using the E.Z.N.A. Endo-Free Plasmid Maxi Kit (Omega 
Biotek, Norcross, GA, USA) per manufacturer instructions. 
The concentration of each plasmid was determined by Qubit, 
and the DNA sequences of the plasmids were confirmed to 
contain no changes to the HA insert by nanopore sequencing 
(Plasmidsaurus, Eugene, OR, USA).

2.4.3   |   Site-Directed Mutagenesis

Site-directed mutagenesis was performed using the Q5 
Site Directed Mutagenesis Kit (New England BioLabs Inc., 
Ipswich, MA, USA) per manufacturer instructions. Briefly, 
the plasmids bearing HA were amplified using primers with 
base changes (Table  S5) per the following conditions: initial 
denaturation at 98°C for 30 s, 25 cycles of denaturation at 98°C 
for 10 s followed by annealing at a primer specific tempera-
ture (Table S5) and extension at 72°C for 3 min and 30 s, and 
final extension at 72°C for 2 min. The amplified PCR products 
were treated with Kinase-Ligase-DpnI and used to transform 
E. coli.

3   |   Results

3.1   |   Binding Predictions on Independent Test 
Dataset

On an independent test dataset, the model generated predic-
tions correctly 94% of the time with an area under the re-
ceiver operating characteristic curve (AUC) of 0.93 (Figure 2). 
Samples that were correctly predicted not to preferentially 
bind α2,6-linked sialic acid receptors were predicted with a 
greater certainty than those correctly predicted to prefer α2,6-
linked sialic acid receptors. Additionally, no samples that did 
not preferentially bind α2,6-linked sialic acid receptors were 
misclassified (i.e., no false positives were predicted). Three 
of the test samples were incorrectly classified, including: 
A/swine/Missouri/4296424/2006(H2N3), A/swine/Missouri/
A01727926/2015(H4N6), and A/herring gull/Massachusetts/
A00080255/2006(H13N2). These are all false negative predic-
tions. When broken down by HA group, group 1 HA (H1, H2, 
H5, H6, H8, H9, H11, H12, H13, and H16) binding was pre-
dicted with an AUC 0.96 and accuracy of 0.93, while group 2 
HA (H3, H4, H7, H10, H14, and H15) binding was predicted 
with an AUC of 0.81 and accuracy of 0.94.

3.2   |   Amino Acids That Influence Binding 
Predictions

The highest magnitude absolute mean SHAP values for the 
test samples globally were more localized to the head of HA 
(HA1) over the stalk region (HΑ2) (Figure  3). The site with 
the highest absolute mean SHAP value was 226. To see 
whether binding switch predictions could be made with this 
model evaluation technique, viruses that violate the canonical 
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tropism were selected for site directed mutagenesis, that is, 
avian-derived IAVs that bind preferentially to α2,6-linked si-
alic acid receptors. To understand which residues are import-
ant for conferring α2,6-linked sialic acid preference, SHAP 

values for each amino acid at each position were generated 
for A/Guinea Fowl/Hong Kong/WF10/1999(H9N2) and A/
shorebird/Delaware/172/2006 (H16N3) (the wild-type [WT] 
are henceforth known as H9 WT and H16 WT, respectively).

FIGURE 2    |    Probabilities predicted from an independent test of a convolutional neural network trained to classify hemagglutinin sequences by 
α2,6-linked sialic acid binding preference.

FIGURE 3    |    Saliency map of SHAP values rendered on a hemagglutinin protein. The values rendered are the absolute mean of SHAP values of a 
convolutional neural network trained to differentiate hemagglutinin sequences by binding preference to α2,6-linked sialic acid receptors. The abso-
lute means were taken for each amino acid position generated on an independent test dataset. The dotted line box indicates the region of a zoomed 
in view of the binding pocket (on the right). Important structures and residues are annotated in black. The depictions used PDB 6TZB and were gen-
erated in ChimeraX [15].



7 of 13

The highest SHAP values for α2,6-linked sialic acid binding 
preference are listed in Table  2. Three iterations of site di-
rected mutagenesis were performed. First, positions with the 
highest magnitude SHAP values for each HA were evaluated 
(position L226Q for H9 and K160A for H16 WT). Second, po-
sitions that had two relatively high SHAP values at the same 
position (suggesting the specific amino acid substitution) and 
were within two nucleotide changes of WT (G145S and Q227G 
for H9 WT and R227A for H16 WT) were evaluated. Finally, 
substitutions at a series of positions with high SHAP values 
near the receptor binding site were evaluated for potential 
additive effect on binding preference (G159S, K160A, G222K, 
R227A, and S228G).

Results of binding analyses after these HA amino acid substi-
tutions were performed are presented in Table 3. The L226Q 
substitution was the only change to impact H9 receptor bind-
ing; terminal sialic acid conformation affinity was entirely 
reversed. No switches in binding preference from α2,6- to 
α2,3-linked sialic acids were observed for H16 with these 
substitutions, though some changes did diminish preference 

for both α2,3- and α2,6-linked sialic acid receptors (R227A, 
G222K, as well as the 2, 3, and 4 amino acid substitution H16s). 
Additionally, H16 S228G agglutinated RBCs but did not agglu-
tinate RBCs after resialylation with α2,3- or α2,6-linked sialic 
acid receptors. In combination with the four other amino acid 
changes, S228G resulted in no agglutination of RBCs.

3.3   |   Impact of Missing Sequence Data on 
Predictions

To understand how well this model tolerated missing sequence 
data, varying lengths of the test sequences were artificially coded 
as missing (ambiguous amino acid “X”), and test predictions were 
generated. Predictions for test sequences with 40 consecutive 
missing amino acids showed an AUC of 0.91 and accuracy of 0.90 
(Figure 4). Performance rapidly deteriorated after more than 80 
missing amino acids per sequence. To understand where missing 
sequence data most impacted model performance, predictions 
were generated on the test data with 80 missing amino acids at 
each possible starting position in the sequence. Missing data on 

TABLE 2    |    Highest magnitude SHAP values from CNN predictions of α2,6-linked sialic acid binding preference on two IAV strains.

A/guinea fowl/Hong Kong/WF10/1999(H9N2) A/shorebird/Delaware/172/2006(H16N3)

Position SHAP Position SHAP

226Q 0.2206 160A 0.0665

226L 0.0682 327Q 0.0589

145G 0.0221 328N 0.0535

531F 0.0173 327E 0.0487

227Q 0.0133 227R 0.0449

189A 0.0127 532L 0.0431

196V 0.0115 122E 0.0391

508S 0.0113 222G 0.0386

227X 0.0112 500Q 0.0381

63D 0.0107 222K 0.0341

227G 0.0101 159S 0.0341

63T 0.0096 164V 0.0336

508K 0.0091 50K 0.0324

24T 0.0090 227A 0.0320

196K 0.0084 527L 0.0312

219P 0.0082 228G 0.0287

523— 0.0081 489E 0.0279

145S 0.0075 327S 0.0273

262G 0.0074 431L 0.0268

188T 0.0067 454T 0.0256

Note: HA positions are listed using H3 numbering. Positions tested in the first round of site directed mutagenesis are written in orange, the second in blue, and third 
in green. A higher SHAP value implies that the presence or absence of a specific amino acid at that position contributes more to the prediction generated by the model. 
For example, for the H9N2 sample, whether or not there was a glutamine (Q) at position 226, it was highly informative to the prediction made by the model, while 
a whether or not there was leucine (L) at position 226 had less of an impact on the prediction generated. This may suggest that a glutamine is more associated with 
binding to one of the receptor types.
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either end of the HA gene had little impact on the AUC and ac-
curacy (Figure 5). There was a notable dip in performance (AUC 
between 0.7 and 0.8, accuracy between 0.7 and 0.85) where the 
missing sequence removes part or all of the receptor binding site 
structures.

3.4   |   Prediction on Novel HA Subtypes

With all H16 samples removed from all parts of model training 
(base model, binding data, and validation data for early stop-
ping), a CNN generated predictions on the independent test 
dataset with an AUC of 0.91 and accuracy of 0.85 (Figure 6). All 
three of the H16 test samples were classed as not preferring α2,6-
linked sialic acid receptors, thus two were incorrectly classified. 
In addition to changes in H16 classification, the model trained 

without H16 training examples also failed to correctly classify 
A/camel/Mongolia/335/2012(H3N8) and A/Guinea Fowl/Hong 
Kong/WF10/1999(H9N2). On the more novel, non-sialic acid 
binding subtypes of H17, H18, and H19, both the fully trained 
CNN and the CNN lacking H16 classified these samples as hav-
ing no preference for α2,6-linked sialic acid receptors with a 
probability below 0.2.

4   |   Discussion

4.1   |   General Model Performance

In this study, we developed a machine learning model trained 
to predict the sialic acid conformation preference of IAVs 
given the HA sequence. Our tests on an independent dataset 

TABLE 3    |    Impact of site-directed mutagenesis of H9 and H16 viruses on sialic acid binding.

Site-directed mutagenesis Round 1: change at highest SHAP value

Subtype

Residue numbering

Predicted probability RBC dRBC 3-RBC 6-RBC160 226

H9 WT F L 0.6665 64 0 0 64

H9 L226Q F Q 0.0000 64 0 64 0

H16 WT K Q 0.8937 128 0 64 128

H16 K160A A Q 0.0837 128 0 64 128

Site-directed mutagenesis Round 2: change at positions with high SHAP value with a suggested direction and 
within two nucleotide changes

Subtype

Residue numbering Predicted 
probability RBC dRBC 3-RBC 6-RBC145 227

H9 WT G Q 0.6665 128 0 0 128

H9 G145S S Q 0.6571 128 0 0 128

H9 Q227G G G 0.0000 128 0 0 128

H16 WT A R 0.8937 128 0 64 128

H16 R227A A A 0.1730 128 0 16 64

Site-directed mutagenesis Round 3: additive changes with high SHAP values

Subtype

Residue numbering Predicted 
probability RBC dRBC

3-
RBC

6-
RBC159 160 222 227 228

H16 WT G K G R S 0.8937 128 0 32 128

H16 G159S S K G R S 0.4387 128 0 32 128

H16 G222K G K K R S 0.2156 128 0 4 64

H16 S228G G K G R G 0.5847 128 0 0 0

H16 K160A + R227A G A G A S 0.0023 128 0 2 64

H16 K160A + R227A + G222K G A K A S 0.0000 128 0 0 64

H16 K160A + R227A + G222K + G159S S A K A S 0.0000 128 0 0 64

H16 K160A + R227A + G222K + G159S + S228G S A K A G 0.0000 0 0 0 0

Note: Hemagglutination unit titers are reported for untreated turkey red blood cells (RBC), desialylated red blood cells (dRBC), red blood cells resialylated by α2,3-
sialyltransferase (3-RBC), and red blood cells resialylated by α2,6-sialyltransferase (6-RBC). Residues are colored by Clustal X convention.
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showed that 94% of the test predictions were correct and the 
test AUC was 0.93. Dissecting the model test predictions 
reveals that there were no false positive predictions, and 
the samples with no preference for α2,6-linked sialic acids 
were more certain (closer to the true label) than those with 
a true preference for α2,6-linked sialic acids. This can be at-
tributed to the class imbalance of the training data. Across 
all IAVs, preference for α2,6-linked sialic acids is a more rare 

phenotype both in nature and in the available training data. 
While class-weighting was applied to help reduce biases, it did 
not fully mitigate the effect of the imbalance. Thus, the model 
tended towards a prediction of no preference for α2,6-linked 
sialic acids. A closer look at the incorrectly classified samples 
revealed that the model misclassified some uncommon sub-
type and binding preference pairings. Two mammalian-origin 
IAVs of subtypes H2 and H4 were incorrectly classified as not 

FIGURE 4    |    Convolutional neural network test predictions on sequences with missing data. A length of missing data was coded randomly into 
each test data sequence prior to model prediction. Bootstraps (100) were performed for each length of missing amino acids. The mean and standard 
deviation of the area under the receiver operating characteristic curve (AUC) and accuracy were recorded.

FIGURE 5    |    Convolutional neural network predictions on sequences with missing data by position. A length of missing data was coded into each 
possible start position of the test data prior to model prediction. The area under the receiver operating characteristic curve (AUC) and accuracy were 
recorded. A simple illustration of hemagglutinin is below the plot to give context for the missing data start position. Chains A and B are separated by 
the protease cleavage site. The receptor binding site (RBS) includes the 130-Loop, 150-Loop, 190-Helix, and 220-Loop.
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preferring α2,6-linked sialic acids; these HA types are more 
commonly found in avian hosts, which may signal to misclas-
sification due to this anomaly. The other incorrectly classified 
sample was a gull-derived H13 virus with a preference for 
α2,6-linked sialic acids. H13 influenza viruses are most com-
monly detected among Charadriiforms, especially gulls, and 
evidence of H13 influenza viruses that bind to α2,6-linked 
sialic acid receptors is limited [16], so this too represents an 
anomalous example that was understandably misclassified. 
These findings signal to room for improvement in the diver-
sity of samples in the training dataset.

One future direction for increasing the available sample size is 
the development of higher throughput assays for determining 
IAV receptor binding specificity. In the absence of additional 
binding data, use of generative algorithms to create synthetic 
datapoints is an alternative approach worth exploring. One 
such example are generative adversarial networks; this ap-
proach pits two neural networks against each other, one to 
generate fake datapoints based on the distribution of a real 
dataset, and one to discriminate between real and fake dat-
apoints that are generated. In doing so, realistic, synthetic 
data are produced to help improve model performance with 
less risk of overfitting a small number of training samples. 
Alternatively, repositories to share paired viral genotype 
and phenotype data would allow for a more concerted effort 
among influenza researchers, enable large-scale analyses 
with more sophisticated in silico approaches, and overcome 
limitations in resources and time that prevent individual labs 
from achieving sample sizes that are great enough for large-
scale data analyses.

4.2   |   Model-Derived Amino Acid Importance

To understand what features of the amino acid sequences most 
impacted prediction of sialic acid binding preference, we cal-
culated SHAP values. Globally, the highest mean SHAP values 

were identified in the HA1 region of the protein. The highest 
magnitude feature was at position 226. A Q226 L substitution is 
often regarded as pivotal to change avian IAV receptor binding 
preference and has previously been shown to confer this change 
across multiple subtypes [17–19]. Overall, this suggests that the 
model does recognize meaningful features.

Taking this further, we calculated the SHAP values of H9 and 
H16 test sequences that exhibited affinity for α2,6-linked sialic 
acid receptors. The highest magnitude SHAP value, by some 
margin, for H9 was 226Q. Indeed, a substitution of L226Q com-
pletely reversed the binding behavior of the H9 pseudovirus. No 
other H9 substitutions were found to impact binding in this way. 
For H16, there were not the same type of standout substitutions 
as H9 Q226L. We tested a variety of substitutions informed by the 
highest SHAP values for positions in the receptor binding struc-
tures, but no switch from α2,6- to α2,3-linked sialic acid prefer-
ence was observed. Some of the amino acid changes tested did 
affect the binding phenotype, including one position that oblit-
erated binding to both α2,6- and α2,3-linked sialic acids, but still 
retained the ability to hemagglutinate sialylated RBCs. We sus-
pect that this reflects a binding preference for α2,8-linked sialic 
acid terminated receptors, as these receptors are also removed 
during the desialylation. Additionally, two of the three H16 pro-
teins (A/mallard/Gurjev/785/83 (H16N3) and A/black-headed 
gull/Sweden/2/99 (H16N3)) that have binding data available on 
CFG showed a high affinity for α2,8-linked sialic acids. Still, fu-
ture work to understand if H16 viruses have a broader affinity 
for other sialic acid conformations or if these observations are an 
artifact of laboratory manipulation is warranted.

Looking more closely at positions identified in the H16 substi-
tution search, there is a dichotomy in the residues present at po-
sition 160 for IAVs that prefer α2,6- or α2,3-linked sialic acids. 
Among IAVs that bind α2,3-linked sialic acids in our training 
dataset, 30% of the samples have the A160 amino acid variant, 
while 5% have the K160 amino acid variant. On the other hand, 
for the IAVs that bind α2,6-linked sialic acids, 4% have the A160 

FIGURE 6    |    Probabilities predicted from an independent test of a convolutional neural network trained without samples of subtype H16 to classify 
hemagglutinin sequences by α2,6-linked sialic acid binding preference. Arrows indicate sample predictions that changed class after omission of H16 
in the training data. The test metrics do not include predictions on H17, H18, or H19.
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amino acid variant, while 32% have the K160 amino acid vari-
ant. Generally, K160 is more common among mammalian H3 
and avian H13 or H16 viruses. Changes at position 160 that have 
previously been shown to impact sialic acid preference were re-
lated to loss of N-linked glycosylation at N158 by a change to 
position 160 [20]. Interestingly, combinatorial substitutions at 
positions 160 and 227 have also been shown to influence bind-
ing preference of H5 viruses [21, 22]. Given the previous data 
that cites similar positions as were identified through this mod-
eling, it is possible that the model is currently assigning classes 
based on subtypes with receptor binding site sequence similari-
ties, but the training dataset is not yet at a state to reflect import-
ant differences between H16 viruses and H3 or H5 viruses that 
bind α2,6-linked sialic acids.

Another explanation for why we were unable to identify changes 
that shifted receptor binding preference from α2,6- to α2,3-
linked sialic acids is that methods beyond SHAP values might 
be useful for assigning amino acid importance. Studies that 
use CNNs often visualize the convolutional filters that pick up 
patterns in the input data to aid interpretation of the decision-
making process [23]. In the more typical application of CNN 
modeling for image classification, convolutional filters can be 
mapped to an input image to highlight regions of the image that 
had a pattern picked up by the filter. However, the interpretation 
of such filters is more complicated for a classification problem, 
such as this sequence-based problem, that is not image-based.

4.3   |   Evaluation of Model Limitations

Finally, other limits of the model and approach were probed 
by testing the impact of missing sequence data and testing 
prediction on novel subtypes, respectively. For the former, dif-
ferent lengths of missing amino acids were coded into the test 
datapoints at random to mimic prediction on low coverage se-
quences. This analysis showed that sequences with up to 40 
missing amino acids resulted in minimal impact on prediction 
performance, with average performance metrics above 0.9. Even 
predictions on sequences with 80 missing amino acids are well 
above random chance. Thereafter, however the performance 
dips considerably. This suggests that this modeling approach 
is tolerant to a reasonable degree (~10%) of missing data. The 
location of the missing sequence data was an important deter-
minant of the loss in performance. We found that missing data 
at the ends of the HA gene had less impact on performance than 
missing data that obscured the receptor binding structures. This 
demonstrates that accurate predictions could be made on some 
low coverage sequences depending on the positions that are im-
pacted and can also serve as further evidence that the model pulls 
predictions from meaningful features of the input sequence. 
To assess prediction performance on novel subtypes, the same 
CNN modeling approach was applied without representation 
of H16 sequences in the base model and training data. The test 
performance on H16 takes an understandable dip when com-
pared to the model trained with H16 samples. This represents 
a model limitation that the approach requires future refinement 
before this modeling is used on novel subtypes. Interestingly, 
prediction of other subtypes was also impacted by the exclu-
sion of H16 training data, namely A/camel/Mongolia/335/2012 
(H3N8) and A/Guinea Fowl/Hong Kong/WF10/1999 (H9N2). 

This demonstrates the transferability of information related to 
binding behavior across subtypes and underscores the impor-
tance of a heterosubtypic approach to decoding the HA receptor 
binding structures.

4.4   |   Limitations and Future Directions

There are several limitations to this model beyond the aforemen-
tioned sample size and diversity constraints of the training data. 
Given that protein alignment was used to preprocess the sequences 
for input, this model does not handle novel insertions. Since this 
model only uses virus sequence data to generate a binding predic-
tion, differences in binding behavior of different virus or protein 
preparation types are not accounted for in prediction generation; 
these may include the effects that post-translational modifications, 
like glycosylation, may have on binding activity, which have been 
previously observed [24]. Future studies might also benefit from 
including input features beyond the linear amino acid sequences 
used in this study. Other studies that have applied machine learn-
ing approaches to prediction of IAV host or antigenicity have used 
inputs that incorporate protein properties in the input, such as 
secondary structures and van der Waals volume [25, 26]. Such an 
approach may overcome some of the limitations of the CNN ap-
proach used here, which is more tuned to localized relationships in 
the input sequence. Finally, this model cannot be used for predic-
tion of IAV binding beyond α2,3- or α2,6-linked sialic acid recep-
tor preference. Recent studies have showed a shift in affinity from 
sialylated to nonsialylated glycans over time for human-adapted 
seasonal IAVs due to antigenic pressure [27, 28]. Additionally, mul-
tiple subtypes of IAVs (H2, H17, H18, and H19) have recently been 
found to use MHCII proteins as receptors [29–31], and bat-derived 
H9N2 may also share this phenotype given similarities to the H19 
receptor binding site [32]. While there is currently not sufficient 
publicly available data to model HA binding to these alternative 
receptors, this is an important area for future research. With this 
model, we were able to, to a limited degree, identify amino acid 
changes that impacted H16 receptor binding, a subtype for which 
the receptor binding sites have not been well studied for pheno-
typic effects. While we hypothesize some of the changes made 
inadvertently increased H16 affinity to α2,8-linked sialic acid, as-
certaining preference for other sialic acid conformations was out-
side of the scope of this study.

Ultimately, this study presents an in silico approach to sialic 
acid conformation-preference prediction of IAVs in a way that 
our tests suggest are generalizable to unseen sequences and 
draw predictions from regions with known association to re-
ceptor binding specificity. Future validation and refinement of 
the modeling approach used in this study is needed before it is 
field-ready for critical decision making and wide use. Areas for 
improvement upon the modeling include expansion of the train-
ing dataset, in particular, to balance the α2,3-sialic acid binding 
bias, to improve prediction performance and further interro-
gation into how to decode these types of models in a way that 
allows for prediction of amino acid substitutions that change 
receptor binding preferences. With improvements, models of 
this sort could be useful additions to the Tool for Pandemic Risk 
Assessment and Influenza Risk Assessment Tool protocols for 
identifying viruses showing signs of mammalian adaptation 
and enhanced transmissibility in humans.
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