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Abstract

Background Cancer-associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortal-
ity in lung cancer patients (LCP). CAC is typically defined using clinical non-imaging criteria. Given the metabolic un-
derpinnings of CAC and the ability of [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/com-
puter tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole-
body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the
onset or presence of CAC.
Methods This multi-centre study included 345 LCP who underwent WB [18F]FDG-PET/CT imaging for initial clinical
staging. A weight loss grading system (WLGS) adjusted to body mass index was used to classify LCP into ‘No CAC’
(WLGS-0/1 at baseline prior treatment and at first follow-up: N = 158, 51F/107M), ‘Dev CAC’ (WLGS-0/1 at
baseline and WLGS-3/4 at follow-up: N = 90, 34F/56M), and ‘CAC’ (WLGS-3/4 at baseline: N = 97, 31F/66M). For
each CAC category, mean standardized uptake values (SUV) normalized to aorta uptake (<SUVaorta>) and
CT-defined volumes were extracted for abdominal and visceral organs, muscles, and adipose-tissue using automated
image segmentation of baseline [18F]FDG-PET/CT images. Imaging and non-imaging parameters from laboratory
tests were compared statistically. A machine-learning (ML) model was then trained to classify LCP as ‘No CAC’, ‘Dev
CAC’, and ‘CAC’ based on their imaging parameters. SHapley Additive exPlanations (SHAP) analysis was employed
to identify the key factors contributing to CAC development for each patient.
Results The three CAC categories displayed multi-organ differences in <SUVaorta>. In all target organs, <SUVaorta>
was higher in the ‘CAC’ cohort compared with ‘No CAC’ (P < 0.01), except for liver and kidneys, where <SUVaorta>
in ‘CAC’ was reduced by 5%. The ‘Dev CAC’ cohort displayed a small but significant increase in <SUVaorta> of pancreas
(+4%), skeletal-muscle (+7%), subcutaneous adipose-tissue (+11%), and visceral adipose-tissue (+15%). In ‘CAC’
patients, a strong negative Spearman correlation (ρ = �0.8) was identified between <SUVaorta> and volumes of
adipose-tissue. The machine-learning model identified ‘CAC’ at baseline with 81% of accuracy, highlighting <SUVaorta>
of spleen, pancreas, liver, and adipose-tissue as most relevant features. The model performance was suboptimal (54%)
when classifying ‘Dev CAC’ versus ‘No CAC’.
Conclusions WB [18F]FDG-PET/CT imaging reveals groupwise differences in the multi-organ metabolism of LCP with
and without CAC, thus highlighting systemic metabolic aberrations symptomatic of cachectic patients. Based on a ret-
rospective cohort, our ML model identified patients with CAC with good accuracy. However, its performance in patients
developing CAC was suboptimal. A prospective, multi-centre study has been initiated to address the limitations of the
present retrospective analysis.
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Introduction

Cancer-associated cachexia (CAC) is a multifactorial syndrome
characterized by a chronic disease-related malnutrition with
inflammation1 that disrupts metabolic homeostasis in cancer
patients.2,3 This debilitating condition is encountered in up to
50% of cancer patients.2 Among these, lung cancer (LC)
stands as one of the most prevalent, where the incidence
of cachexia is notably high (40–50%).4 CAC is clinically de-
scribed as an ongoing, involuntary loss of skeletal muscle
mass and functional impairment and is considered the pri-
mary cause of death in approximately 30% of cancer
patients.5 Moreover, the presence of CAC is associated both
with reduced tolerance to anticancer therapy and overall
survival.6 The absence of a standardized, universally accepted
definition presents challenges in generalizing findings across
research populations.7

Since the introduction of the Fearon consensus in 2011,6

CAC is typically diagnosed when cancer patients lose more
than 5% of their body weight within 6 months and exhibit a
certain degree of systemic inflammation, by which time
symptoms and cancer stage have already advanced to a crit-
ical stage. Because of this generic definition, treatment strat-
egies should be multi-professional and involve anti-tumour
treatment, nutritional interventions, psychological support,
pharmacological interventions, physical exercise programs,
and, in the end, best supportive care.1,2,8 The overarching
goal is the reduction of systemic wasting by increasing both
food intake and muscle mass to compensate for weight
loss.1,2,8 However, management of CAC does not always pro-
vide sustained clinical benefits to patients, such as increased
quality of life and cancer-related survival. Although CAC can
affect different systems including tissues, organs, and bones,
the factors contributing to this condition remain
ambiguous.8,9 Therefore, novel approaches are needed to di-
agnose CAC in its early stages, before the onset of symptoms,
at a stage called pre-cachexia.

In order to detect CAC early, it is important to understand
the underlying pathophysiology and its effects on the metab-
olism across multiple organs.8,9 A simple, first approach, was
the introduction of the body mass index (BMI)-adjusted
weight loss grading system (WLGS) that allowed to relate
BMI and weight loss with the survival of cancer patients.10

Here, cancer patients undergo computed tomography (CT)
imaging for adequate staging.S1 CT image-based assessment
of muscle and adipose tissue distribution can then help char-
acterize body composition in cancer patients,11,S2 which has
been shown to be beneficial in obese cancer patients for

whom cachexia might easily be overlooked.12 More specifi-
cally to lung cancer patients (LCP), the recent TRACERx study
demonstrated a relevant association between low CT-derived
areas (measured on the axial slice of the vertebra L3) of sub-
cutaneous and visceral adipose tissue as well as skeletal mus-
cle tissue, and reduced patient survival.13

In contrast to CT, whole-body (WB) [18F]FDG-PET is a unique
imaging tool to observe and quantify metabolic processes
across various organs throughout the human body, promising
to detect systemic aberrations. Since its inception in the late
1990s,14 PET/CT has been accepted as a standard of care imag-
ing modality in daily clinical routine, particularly in oncology
for diagnosing cancer and monitoring disease progression. In
the context of lung cancer, PET/CT has proven its potential in
both diagnosis and treatment planning.15 However, its poten-
tial for detecting CAC remains underexplored with only a few
studies available.11 For example, a decreased [18F]FDG uptake
in the liver was found to be associated with anaemia, poor nu-
tritional state and systemic inflammation, leading to a more
probable CAC development and shorter overall survival.16 Ele-
vated [18F]FDG-derived metabolic tumour uptake was associ-
ated with a greater risk of malnutrition in LC patients, while
no correlation was found between the metabolic tumour up-
take and the CT-measured body composition parameters.17

Further, subcutaneous adipose tissue volume negatively corre-
lated with [18F]FDG uptake of LC, and, accordingly, higher vol-
umes were associated with better progression-free survival.18

However, these studies focused on specific regional uptake
patterns, thereby overlooking the systemic nature of CAC. To
address this shortfall, Jiang et al. recently investigated abnor-
mal glucose metabolism across multiple tissues using [18F]
FDG-PET/CT in LCP with CAC.19

Given the systemic effects of CAC on whole-body metabo-
lism, FDG-PET imaging is hypothesized to add value to the
diagnostic work-up of cancer patients at risk of developing
CAC at an early stage so as to maximize the efficacy of ther-
apeutic interventions directed not only toward the cancer
but to the associated CAC as well. In this retrospective study
with LCP, we analyse whole-body FDG-PET/CT imaging data
and available lab parameters, both of which were acquired
during the standard diagnostic workup of these patients, for
additional insights into the status of CAC. We seek to detect
distinctly different metabolic patterns and volume effects in
whole-body FDG-PET/CT images of LCP without (‘No CAC’)
and with CAC (‘CAC’), as well as in patients who will develop
CAC (‘Dev CAC’) during follow-up, and to generate machine-
learning based prediction models for each of these CAC cate-
gories. In this way, we hope to facilitate the early detection of
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CAC in cancer patients prior to evident signs or symptoms
such as loss of appetite, muscle, or body weight, ultimately
aiming to improve patient outcomes (quality of life and
survival).

Materials and methods

Study subjects

This multi-centre study comprised a retrospective cohort of
LCP who had undergone WB [18F]FDG-PET/CT examinations
for their initial clinical staging. The acquisition of all data ad-
hered strictly to the guidelines set forth in the Declaration of
Helsinki, prioritizing ethical considerations and compliance
with relevant legislation (Institutional Review Boards: 259/
18-ek, 21306_oss, 1649/2016). To safeguard patient confi-
dentiality, all imaging data from the retrospective cohorts
underwent complete anonymization.

In total, 490 WB PET/CT datasets (221 from the University
Hospital of Leipzig, Germany, 199 from the Azienda
Ospedaliero-Universitaria Careggi in Florence, Italy, and 70
from the Medical University of Vienna, Austria) were
included in this study. LCP were included if they were
diagnosed with LC but treatment-naive at the time of their
baseline scan, and if their body weight and weight loss over
the course of subsequent therapy were documented.

Further, the cachectic status was assessed using the
Weight Loss Grading System (WLGS), which classifies the
body mass index (BMI) and the body weight loss during the
past 6 months in five steps.10,S3 LCP exhibiting WLGS 0–1 at

both baseline and first follow-up were categorized as a non-
cachexia phenotype (‘No CAC’). LCP with WLGS 3–4 at base-
line were classified as a CAC phenotype (‘CAC’). Patients dis-
playing WLGS 0–1 at baseline and WLGS 3–4 at follow-up
were identified as being in the development of CAC (‘Dev
CAC’). In total, 345 patients were classified in one of the
three categories of CAC development and were considered
for subsequent analysis (Figure 1). Individuals falling within
the WLGS 2 were excluded to mitigate the inclusion of
subjects whose weight changes may be attributed to factors
other than CAC.

Demographic and clinical characteristics of patients were
collected from the hospital medical records and examination
report management systems, both at the baseline scan and
during the first follow-up (re-staging), at 3- to 9-month
post-baseline. Clinical LC stage was reported according to
the 8th edition of the TNM classification for LC.20 Baseline
blood values, including leukocytes (white blood cells count),
serum creatinine, serum aspartate aminotransferase (ASAT),
sodium, potassium, and total calcium, were available for
N = 276 (80%) of the patients enrolled in the study. Further-
more, C-reactive protein (CRP), triglycerides, cholesterol, pro-
teins, and albumin were accessible from the clinical records
of 100 (29%) patients enrolled. For these patients, the modi-
fied Glasgow prognostic score (mGPS) was assessed as a mea-
sure of the systemic inflammatory response:21 a score of 1
was assigned to patients with elevated CRP (>10 mg/L),
and a score of 2 was given to patients with both elevated
CRP and decreased serum albumin (<3.5 mg/L).

Survival data were retrieved and included the observation
period, defined as the time from the date of patient enrol-
ment (i.e., first diagnosis of LC with the date of PET/CT study)

Figure 1 Flow chart for inclusion and stratification of lung cancer patients. [18F]FDG-PET/CT, [18F]fluoro-2-deoxy-D-glucose positron emission tomog-
raphy/computer tomography; CAC, cancer-associated cacWB, whole-body; WLGS, weight loss grading system.
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to the date of an event (i.e., death, lost-to-follow-up), and the
endpoint overall survival (OS). Survival analyses were con-
ducted using the Kaplan–Meier estimator and log-rank test
to determine whether survival curves were significantly
different. For the analysis, the software package GraphPad
Prism (v10.2.1 for macOS, La Jolla, California, USA) was
utilized.

Imaging protocol

Image acquisitions were performed using four different
PET/CT systems: Siemens Biograph 64 TruePoint (N = 70),
Siemens mCT 16 (N = 221), Philips Gemini TF (N = 179),
and GE HealthCare Discovery MI (N = 20). At all three
sites, participants were asked to fast for 6 hours before
the examinations. Each subject underwent a static PET ac-
quisition in supine position following an intravenous injec-
tion of [18F]FDG (305 ± 66 MBq). Uptake times varied
across the three sites, with an average of 75 ± 29 minutes
post-injection. PET images were reconstructed with attenu-
ation and scatter corrections applied using the adjoined CT
information.

Image analysis

We report organ-based image readouts in all patients. The CT
was used to automatically segment multiple volumes of inter-
est (VOIs) using the automated segmentation tool MOOSE.22

Each segmentation was manually verified by an experienced
clinician and five medical students, by using the visualization
software 3D Slicer.23 In particular, target regions known to be
involved in maintaining systemic metabolic homeostasis were
consequently considered for the subsequent analysis: spleen,
kidneys, liver, pancreas, myocardium, skeletal muscle, subcu-
taneous, and visceral adipose tissue.24,S4 For muscle and adi-
pose tissue segmentations, the axial region around the verte-
bra L3 was considered as reference.25,S5 Each VOI was
subsequently overlapped on the corresponding PET image.
Particular attention was paid that the organ segments were
free from metastases. The mean standardized-uptake-values
(SUVs) and the corresponding volumes were extracted
(Figure S1). In order to standardize the quantitative PET infor-
mation across the three different medical sites, SUVs were
subsequently normalized to the aorta (including both blood
pool and aortic wall) uptake (<SUVaorta>).

Data analysis

Normality of continuous variables was assessed with a Sha-
piro–Wilk test. Imputing of null values was performed with
a k-nearest neighbour imputation.26 The Mann–Whitney U
test and percentage differences were used for comparing

the mean of blood parameters, age, BMI, SUVaorta, and
volumes from each VOI between the phenotypical groups of
‘No CAC’, ‘Dev CAC’, and ‘CAC’. We used the chi-square
test for comparing categorical variables and considered P-
values ≤ 0.05 as statistically significant. Correlations within
imaging parameters were studied with Spearman correlation
analysis and visualized with chord plots.

We performed multivariate analyses to identify indepen-
dent risk factors by training multiple machine-learning
models, including logistic regression, Extreme Gradient
Boosting, CatBoost, and Extra Trees Classifiers. The model
with the highest accuracy was then selected for binary classi-
fication between the two cohorts, ‘No CAC’ and ‘CAC’. This
analysis was subsequently repeated for classification be-
tween ‘No CAC’ and ‘Dev CAC’, and between ‘No CAC’ and
a merged ‘CAC Phenotype’ cohort (‘Dev CAC + CAC’). Ninety
per cent of the data were allocated to the training set, while
the remaining 10% were used as the test set for validation
purposes. Only variables that were statistically different
among the three cohorts were included in the training
process and normalized to a range of 0 to 1. Imbalance in
the data was addressed using the Synthetic Minority
Oversampling Technique (SMOTE). The model’s performance
was evaluated using the area-under-the-receiver-operating-
characteristic (AUC) curve and by constructing a confusion
matrix. We identified the key factors contributing to the
personalized prediction of cachexia for each patient with
the Explainable AI technique SHapley Additive exPlanations
(SHAP) analysis.

Results

Demographics and clinical characteristics

Using the WLGS, 158/345 (46%) patients were classified as
‘No CAC’, 90/345 (26%) as ‘Dev CAC’, and 97/345 (28%) as
‘CAC’. Details of the patient demographics and tumour
characteristics are summarized in Table 1. The demographic
characteristics of the LC cohort, including age at diagnosis,
as well as the distribution of sex, tumour stage, and histology
types, align with the distributions typically observed in clini-
cal practice.27,28 Patients in the ‘CAC’ group had a median
BMI of 23 kg/m2, which was significantly lower (P < 0.001)
than in the ‘No CAC’ (26 kg/m2) and the ‘Dev CAC’ cohort
(24 kg/m2). The prevalence of metastasized LC (stage IV)
was highest in the ‘Dev CAC’ (49%) and the lowest in the
‘No CAC’ (26%). Out of the entire cohort (N = 345), informa-
tion on cancer stages was not available for 63 (18%) patients.
Similarly, information on 1-year overall survival was missing
for 43% of the patients.

The clinical characteristics of the LCP are summarized in
Table 2. No significant differences were observed in the blood
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tests among the three cohorts, except for leukocytes, serum
creatinine levels, and serum ASAT levels. Specifically, leuko-
cytes and creatinine were significantly lower in the ‘CAC’

group (P < 0.01), while ASAT levels were slightly higher in
the ‘CAC’ group. In addition, cholesterol levels were lower
(P = 0.05) in the ‘CAC’ group compared with the ‘No CAC’.

Table 1 Demographics of lung cancer patients according to their cachexia status

Parameter

Total No CAC Dev CAC CAC P-value P-value
N = 345 N = 158 N = 90 N = 97 No CAC vs.

Dev CAC
No CAC
vs. CAC100% 46% 26% 28%

Age, years, (range) 69 (33–89) 70 (33–88) 70 (34–85) 67 (38–89) 0.56 0.01*
Sex, F/M 116 (34%) /229 (66%) 51 (32%) /107 (68%) 34 (38%) /56 (62%) 31 (32%) /66 (68%) 0.38 0.95
BMI, kg/m2 (range) 25 (14–58) 26 (19–43) 24 (15–58) 23 (14–31) <0.01** <0.01**
≤18.5 17 (5%) 0 (0%) 7 (8%) 10 (10%)
18.6–24.9 167 (48%) 60 (38%) 49 (54%) 58 (60%)
25.0–29.9 108 (31%) 59 (37%) 25 (28%) 24 (25%)
≥30 53 (16%) 39 (25%) 9 (10%) 5 (5%)

Tumour stage <0.01** <0.01**
I 71 (21%) 43 (28%) 13 (14%) 15 (16%)
II 38 (11%) 23 (14%) 6 (7%) 9 (9%)
III 51 (15%) 27 (17%) 18 (20%) 6 (6%)
IV 122 (35%) 42 (26%) 44 (49%) 36 (37%)
Missing 63 (18%) 23 (15%) 9 (10%) 31 (32%)

Histology 0.20 <0.01**
ADC 169 (49%) 88 (56%) 42 (47%) 39 (40%)
LCC 11 (3%) 2 (1%) 4 (4%) 5 (5%)
NSCLC-NOS 22 (6%) 10 (6%) 9 (10%) 3 (3%)
SCC 92 (27%) 44 (28%) 24 (27%) 24 (25%)
SCLC 16 (5%) 5 (3%) 6 (7%) 5 (5%)
Missing 35 (10%) 9 (6%) 5 (5%) 21 (22%)

Data are shown as number of patients with percentage (%), unless otherwise specified. Significant differences are highlighted with
asterisks.
ADC, adenocarcinoma; BMI, body mass index; CAC, cancer-associated cachexia; Dev, developing; F, female, LCC, large cell carcinoma; M,
male; N, number of patients; NSCLC-NOS - non-small cell lung cancer - not otherwise specified; SCC, squamous cell carcinoma; SCLC, small
cell lung cancer.
*P < 0.05.
**P < 0.01.

Table 2 Summary of blood values of lung cancer patients according to their cachexia status

Total dataset
(N = 276) No CAC (N = 122) Dev CAC (N = 78) CAC (N = 76)

P-value P-value
No CAC vs. Dev CAC No CAC vs. CAC

Leukocytes (cells/nL) 7.6 (4.0–15.7) 7.7 (3.4–15.4) 6.8 (2.9–14.8) 0.96 0.01*
Creatinine (μmol/L) 69.9 (25.0–129.0) 65.2 (25.0–121.0) 60.0 (25.0–105.0) 0.09 <0.01**
ASAT (μkat/L) 0.3 (0.1–0.6) 0.3 (0.1–0.6) 0.4 (0.2–0.6) 0.27 <0.01**
Sodium (mmol/L) 141.0 (134.0–147.0) 141.4 (134.0–146.0) 141.0 (137.0–145.8) 0.80 0.58
Potassium (mmol/L) 4.3 (3.0–5.5) 4.4 (2.9–6.0) 4.5 (3.0–6.0) 0.09 0.19
Total calcium (mmol/L) 2.3 (2.0–2.6) 2.3 (2.1–2.6) 2.4 (2.1–2.8) 0.60 0.03

Available dataset
(N = 100) No CAC (N= 30) Dev CAC (N = 18) CAC (N = 52)

P-value P-value
No CAC vs. Dev CAC No CAC vs. CAC

CRP (mg/L) 12.0 (0.5–308.0) 6.2 (0.5–134.0) 15.5 (0.5–220.8) 0.42 0.96
Triglycerides (mol/L) 0.9 (0.6–6.7) 1.0 (0.5–7.4) 1.0 (0.4–5.3) 0.69 0.33
Cholesterol (mmol/L) 5.2 (1.0–7.6) 5.0 (1.3–7.6) 4.8 (2.1–7.6) 0.54 0.05*
Protein (g/L) 60.8 (31.0–80.6) 60.8 (41.4–70.2) 61.1 (44.8–80.6) 0.70 0.40
Albumin (g/L) 38.1 (0.4–47.3) 38.1 (0.7–44.8) 38.1 (26.3–45.0) 0.98 0.91
mGPS, N (%) 0.97 0.28
0 22 (73%) 12 (67%) 29 (56%)
1 5 (17%) 4 (22%) 14 (27%)
2 3 (10%) 2 (11%) 9 (17%)

Results are reported as median and minimum-maximum range. Significant differences are highlighted with asterisks.
ASAT, aspartate aminotransferase; CAC, cancer-associated cachexia; CRP, C-reactive protein; Dev, developing; mGPS, modified Glasgow
prognostic score.
*P < 0.05.
**P < 0.01.
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The mGPS differed between the three groups according to
the metabolic condition. In the ‘No CAC’ group, 73% of LCP
had an mGPS = 0 compared with 67% and 56% in ‘Dev CAC’
and ‘CAC’ groups, respectively. In contrast, 10% of LCP in
‘No CAC’ had an mGPS = 2 compared with 11% and 17% in
the ‘Dev CAC’ and in the ‘CAC’ group, respectively.

Median overall survival of LCP differed significantly
between the groups of ‘No CAC’, ‘Dev CAC’, and ‘CAC’ with
684, 311, and 513 days, respectively (P< 0.001). LCP who de-
veloped cachexia following the LC diagnosis had the lowest
survival of the three groups (Figure S2).

Imaging readouts

<SUVaorta> varied between a minimum of 0.2 ± 0.1 (subcuta-
neous adipose tissue) and a maximum 2.2 ± 2.1 (myocar-
dium) across the three cohorts and target organs (Figure 2).
The ‘CAC’ cohort exhibited significantly higher <SUVaorta>
(P < 0.01) in all target regions, except the kidneys and the
liver, where the <SUVaorta> was lower compared with the
‘No CAC’ group. The ‘Dev CAC’ cohort exhibited a small but
significant increase in <SUVaorta> in the pancreas (4%), skel-
etal muscle (7%), and adipose tissue regions (11%) compared
with the ‘No CAC’ group (Table 3).

Mean volumes of the target organs ranged from (62 ± 24)
cm3 in the pancreas to (1562 ± 359) cm3 in the liver (Table 3).
Patients in the ‘CAC’ group had smaller organ volumes
(P< 0.01) of the pancreas (11%), skeletal muscle (12%), subcu-
taneous adipose tissue (41%), and visceral adipose tissue
(42%), compared with the ‘No CAC’ group. The ‘Dev CAC’

group also exhibited smaller volumes as compared with the
‘No CAC’ group, in all regions except the spleen and visceral
adipose tissue, with the greatest percentage in difference of
23% observed in the visceral adipose tissue (Figure 2, Table 3).

The significant Spearman correlations (ρ ≥ 0.5) are
depicted for the three cohorts in Figure 3. The number of
significant correlations increased from the ‘No CAC’ to the
‘CAC’ group (Figure 3A). A similar trend was observed in
the connectivity profiles (<SUVaorta>) of skeletal muscle
(Figure 3B) and subcutaneous adipose tissue (Figure 3C).
Specifically, in the ‘No CAC’ cohort, Spearman’s correlation
indicated a moderate positive correlation (ρ = 0.5) between
the <SUVaorta> of skeletal muscle and subcutaneous adipose
tissue. In both the ‘Dev CAC’ and ‘CAC’ cohorts, a moderate
positive correlation existed between the <SUVaorta> of skel-
etal muscle and subcutaneous adipose tissue, as well as be-
tween subcutaneous and visceral adipose tissue (ρ = 0.6, re-
spectively). In the ‘CAC’ group, a moderate positive
correlation was seen between <SUVaorta> of skeletal muscle
and pancreas (ρ = 0.6), as well as between visceral adipose
tissue and pancreas (ρ = 0.6). Finally, a moderate and a strong
negative correlation between <SUVaorta> and volumes of
subcutaneous and visceral adipose tissue regions were found
in the ‘Dev CAC’ cohort (ρ = �0.6) and in the ‘CAC’ cohort
(ρ = �0.8), respectively.

Multivariate regression analysis

The machine-learning models for binary classification
between ‘CAC’ and ‘No CAC’ included the following variables:

Figure 2 Mean SUVaorta distributions in target organs for ‘No CAC’ (white), ‘Dev CAC’ (grey) and ‘CAC’ (black) cohorts. Significant differences are in-
dicated with stars (*P < 0.05, **P < 0.01, ***P < 0.001).
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Table 3 Mean SUVaorta and volumes in key organs of lung cancer patients according to their cachexia status

No CAC
(N = 158)

Dev CAC
(N = 90)

CAC
(N = 97)

%-difference %-difference
No CAC vs. Dev CAC No CAC vs. CAC

Mean SUVaorta
Spleen 0.93 ± 0.14 0.96 ± 0.14 1.06 ± 0.19 3% 13%
Kidneys 1.44 ± 0.25 1.55 ± 0.33 1.36 ± 0.23 7% �5%
Liver 1.27 ± 0.15 1.26 ± 0.16 1.21 ± 0.17 �1% �5%
Pancreas 0.86 ± 0.16 0.89 ± 0.15 0.95 ± 0.19 4% 10%
Myocardium 1.38 ± 1.18 1.57 ± 1.48 2.18 ± 2.12 13% 45%
Skeletal muscle 0.41 ± 0.09 0.43 ± 0.10 0.48 ± 0.15 7% 15%
Subcutaneous fat 0.21 ± 0.07 0.23 ± 0.08 0.26 ± 0.11 11% 23%
Visceral fat 0.44 ± 0.15 0.51 ± 0.19 0.53 ± 0.19 15% 18%

Volumes (cm3)
Spleen 225 ± 127 193 ± 96 223 ± 155 �16% �2%
Kidneys 317 ± 92 293 ± 99 321 ± 80 �8% 1%
Liver 1538 ± 450 1445 ± 461 1562 ± 359 �6% 2%
Pancreas 73 ± 23 62 ± 24 66 ± 23 �16% �11%
Myocardium 131 ± 34 116 ± 34 123 ± 33 �12% �6%
Skeletal muscle 817 ± 234 714 ± 199 726 ± 219 �13% �12%
Subcutaneous fat 1145 ± 550 947 ± 535 753 ± 471 �19% �41%
Visceral fat 1012 ± 565 806 ± 531 661 ± 463 �23% �42%

Data are shown as mean ± standard deviation.
CAC, cancer-associated cachexia; Dev, developing; SUV, standardized uptake value.

Figure 3 Correlations among imaging parameters (volumes and <SUVaorta>) of the target regions in the ‘No CAC’ (upper), ‘Dev CAC’ (middle) and
‘CAC’ (lower) cohorts. In the chord plots, external nodes represent the imaging parameters, while the thickness of the internal curves indicates the
strength of the correlation. (A) All significant correlations between the parameters and regions considered. (B, C) Connectivity profiles of subcutaneous
adipose tissue <SUVaorta> and visceral adipose tissue <SUVaorta>, respectively. SUV, standardized uptake value.
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imaging parameters (<SUVaorta> and volumes), BMI, leuko-
cytes, creatinine, and ASAT. Among the trained models, the
CatBoost Classifier yielded the highest values for accuracy
(81%), precision (82%), and AUC (0.91) (Figure 4A). Overall,
81% of LCP without cachexia were correctly classified as ‘No
CAC’, while 73% were correctly classified as ‘CAC’ by the
machine-learning model.

The SHAP analysis identified the independent features crit-
ical for prediction of CAC (Figure 4B). Here, low BMI, high
<SUVaorta> of spleen and pancreas, and low <SUVaorta> of
the liver were the most relevant characteristics of cachexia.
Other features, such as the <SUVaorta> in the kidney, the vis-
ceral adipose tissue, and the skeletal muscle, as well as the
subcutaneous adipose tissue volume, displayed distinct abso-
lute values but exhibited less overall impact on the model.
Low <SUVaorta> of kidneys, small adipose tissue volume,
and high <SUVaorta> of visceral adipose tissue and skeletal
muscle were indicative of CAC.

The binary classification, repeated with the ‘Dev CAC’
cohort against ‘No CAC’, did result in a lower accuracy
(54%), precision (50%), and AUC (0.52) (Figure 5A). The SHAP
analysis again identified high <SUVaorta> of visceral adipose
tissue, skeletal muscle and pancreas, low BMI, as well as small
volumes of the skeletal muscle, and subcutaneous adipose
tissue as independent predictors of CAC (Figure 5B). An
additional classification of ‘No CAC’ versus ‘CAC Phenotype’
(i.e., ‘Dev CAC’ and ‘CAC’) resulted again in a reduced perfor-
mance compared with the binary classification between
‘CAC’ and ‘No CAC’ (58% accuracy, 63% precision, and 0.65
AUC; Figure S4).

Discussion

CAC is a complex syndrome with delayed diagnosis, at a stage
when physical weight loss is already irreversible. Therefore,
novel approaches to detecting CAC at its onset are needed
to help facilitate improved patient outcomes.3,7 The goal of
this retrospective, multi-centre study across three European
clinical sites was a comprehensive analysis of WB [18F]FDG-
PET/CT image data of LCP to identify metabolic patterns asso-
ciated with CAC, in particular at early stage. Our analysis
demonstrated distinct metabolic patterns in the three groups
representing CAC development, with increased metabolic
activity (<SUVaorta>) in most of the target organs among
patients presenting with CAC at baseline (‘CAC’; Figure 2, Ta-
ble 3). Reduced <SUVaorta> were observed in the liver and
kidneys (Figure 2, Table 3). Furthermore, we found a negative
correlation between <SUVaorta> and volumes of adipose tis-
sue regions in LCP with CAC at baseline. The presence of CAC
did critically affect survival of LCP; LCP who had (‘CAC’) or de-
veloped CAC (‘Dev CAC’) at the time of LC diagnosis had the
poorest median overall survival compared with those LC
who did not develop CAC (Figure S2).

Patients developing CAC exhibited higher <SUVaorta> in
the pancreas, muscles, and adipose tissue compared with
patients without CAC. An increase in the number of signifi-
cant correlations between <SUVaorta> and volumes of the
target organs also appeared in the ‘Dev CAC’ group compared
with ‘No CAC’ (Figure 3), specifically between subcutaneous
adipose tissue and both visceral adipose tissue and skeletal
muscle mass (Figure 3C). Our explainable machine-learning

Figure 4 CatBoost classifier ROC curve (A) and SHAP analysis (B) for the binary classification between ‘No CAC’ and ‘CAC’ cohorts. The position of the
dots to the left or right in the SHAP plot (B) indicates their influence toward a ‘No CAC’ or ‘CAC’ classification, respectively. The colour of the dots
indicates the absolute value of each feature: Blue for lower and pink for higher values. ASAT, aspartate aminotransferase; BMI, body mass index,
SUV, standardized uptake value; Vol, volume.
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model yielded an accuracy of 81% in detecting CAC (Figure 4).
This accuracy was markedly reduced (54%) for classifying
‘Dev CAC’ against ‘No CAC’ (Figure 5). We assume that the
heterogeneity of our retrospective clinical training dataset
did contribute to this performance, which limits the applica-
bility of this particular model in detecting CAC in an individual
lung cancer patient during FDG-PET-based staging.

Increased splenic [18F]FDG uptake, as seen especially in the
‘CAC’ group (Figure 2, Table 3), is associated with inflamma-
tion, but the spleen also plays a crucial role in metabolic
control, including lipid metabolism.29 Likewise, the pancreas
is a vital metabolic organ responsible for maintaining glucose
homeostasis through the secretion of insulin, glucagon and a
variety of digestive enzymes; heightened SUV levels in the
pancreas are linked to pancreatitis.30 The liver is crucial for
regulating energy metabolism and nutrient storage, but in
contrast to the other two metabolic organs we observed a
slight reduction in liver uptake in the ‘CAC’ group, potentially
influenced by altered glucose uptake in hepatic cells in the
presence of metastatic cancer (49% in the ‘Dev CAC’ and
37% in ‘CAC’, Table 1).

In particular, the Cori cycle might be an important mecha-
nism that can explain the decreased hepatic glucose uptake
in LCP with CAC due to increased hepatic gluconeogenesis
stemming from lactate.31 In these LCP, lactate can originate
from the tumour or the skeletal muscle cells. The Cori cycle
as a shuttle system of lactate and glucose is energetically in-
efficient due to the cost of hepatic gluconeogenesis (6 aden-
osine triphosphate [ATP]) relative to energy yield by produc-
tion of lactate from glycolysis in the muscle tissue (2 ATP).

Nevertheless, it allows muscle activity to be maintained in
conditions of extreme energetic stress.32 There is evidence
of altered glycolytic and lactate metabolites, enzyme activity
and transporter protein expression in liver, muscle, and tu-
mour tissue during CAC.32 Changes in these three
energy-regulating tissues suggest ongoing substrate shuttling
that may contribute to tumour growth, energetic inefficiency
and therefore, unintended weight loss in patients with CAC.
However, these explanations remain to be proven in further
studies.

Patients with CAC exhibited significantly higher uptake in
subcutaneous adipose tissue (23%), visceral adipose tissue
(18%), and skeletal muscle (15%) compared with the ‘No
CAC’ cohort (Table 3). Glucose metabolism for lipogenesis
activated by CAC can contribute to increased FDG uptake in
adipose tissue, and increased glucose uptake in adipose
tissue regions may signify inflammation.19,S6 Further, height-
ened uptake in muscle mass could indicate proteolysis trig-
gered by CAC, leading to muscle degradation, loss of muscle
quantity and function, muscle strength, and thus
sarcopenia.33

The observed systemic inflammation pattern in ‘CAC’ was
supported by the available blood values, particularly the
differences observed in CRP serum concentrations and the
mGPS (Table 2). LCP with CAC at baseline exhibited elevated
CRP levels, although not significantly different from the ‘No
CAC’ group, and the percentage of patients with mGPS = 2
was higher with the development of CAC and in the ‘CAC’
cohort (17%, Table 2). The ‘No CAC’ group had instead the
highest percentage of patients withmGPS = 0 (73%), indicating

Figure 5 CatBoost classifier ROC curve (A) and SHAP analysis (B) for the binary classification between ‘No CAC’ and ‘Dev CAC’ cohorts. The position of
the dots to the left or right in the SHAP plot (B) indicates their influence toward a ‘No CAC’ or ‘Dev CAC’ classification, respectively. The colour of the
dots indicates the absolute value of each feature: Blue for lower and pink for higher values. ASAT, aspartate aminotransferase; BMI, body mass index,
SUV, standardized uptake value; Vol, volume.
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a lower systemic inflammatory response. Low creatinine levels
are also associated with systemic inflammation and muscles
degradation, a hallmark of CAC progression.34,S7 The survival
analysis revealed that LCP in the ‘Dev CAC’ cohort had the
lowest overall survival of the three groups (Figure S2). This
group also had the highest fraction of patients with stage
IV tumours (49%, Table 1), a confounder that may contribute
to the worse prognosis of these patients compared with the
‘CAC ‘cohort.

Our study identified group-wise metabolic patterns associ-
ated with the different stages of CAC, consistent with its
systemic nature as a metabolic syndrome affecting multiple
organs (Figure 3). While we were able to identify organs most
affected by the disease, the significant variability in
organ-based <SUVaorta> did not permit an individualized
detection of early CAC (‘Dev CAC’). Indeed, the observed
increases in glucose uptake across most regions of this retro-
spective cohort were not clinically indicative in the ‘CAC’
groups (Figure 2), as the SUVs fell within the normal ranges
of uptakes reported.35 This was also exemplified by the ma-
chine learning model, which detected cachexia (‘CAC’) with
high accuracy (81%, Figure 4) but failed to reliably detect
early stages of CAC (‘Dev CAC’) with an accuracy of only
54% (Figure 5). Due to the relatively small number of patients
developing CAC used for training the machine learning
model, we were unable to identify common patterns in clin-
ical or imaging parameters of the patients correctly identified
as being in the process of developing CAC (50% of the test
set).

Therefore, and given the similarity in imaging parameters
between the ‘Dev CAC’ and ‘No CAC’ groups, we attempted
to improve predictive performance by grouping all patients
with a CAC phenotype (‘Dev CAC’ + ‘CAC’). The comparison
of <SUVaorta> distributions in key organs between the ‘No
CAC’ and ‘CAC Phenotype’ groups led to better differentiation
than the comparison between the ‘No CAC’ and ‘Dev CAC’
groups alone (Figure S3). The accuracy of the
machine-learning model also slightly improved to 58%
(Figure S4), with 63% of LCP without CAC being correctly
identified and 53% accurately classified as having the ‘CAC
Phenotype’.

To reduce the complexity of our machine learning model
and avoid possible overfitting, which may lead to lower
performance, we repeated our binary classification of ‘No
CAC’ versus ‘CAC’ by only considering BMI, mean SUVaorta
and volumes and excluding the blood parameters
(Figure S5). The best-performing model, an Extreme Gradient
Boosting Classifier, achieved an accuracy of 73%, a precision
of 81%, and an AUC of 0.75. This confirms that the combina-
tion of both multiple imaging and non-imaging parameters
remains a better tool for cachexia detection (81%, 82%, and
0.91).

Although we could observe different metabolic patterns in
the FDG-PET/CT images of the three groups of LCP, our model

performance was limited. The challenge of identifying early
stages of CAC may be exacerbated by the several limitations
inherent to this study.36 Our data originated from three dif-
ferent medical centres, and exhibited a high heterogeneity,
both in acquisition protocols and uptake times, as well as
in the PET/CT systems employed on site. Moreover, unex-
pected variability in the dietary status could affect glycolysis
in specific organs, such as the myocardium, and impair the
reliability of mean SUV quantification. This could require a
preliminary assessment of the uptake pattern, for instance
according to what is already required in the setting of the
diagnosis of cardiac sarcoidosis.37 Repeating the analysis
with homogeneous data from a prospective setting, includ-
ing defined imaging protocols, comprehensive blood re-
cords, and detailed information on weight loss, nutritional
status, and survival, may enhance the robustness of our
results.

Among the N = 345 patients with documented weight
loss information, misclassification of CAC status both at
baseline and at the first follow-up could not be excluded.
Weight loss was documented based on patients’ self-re-
ports, and a standardized method for measuring weight
was lacking. Previous studies assessed the reliability of
self-reported weight loss in clinical scenarios, finding sig-
nificant differences between self-reported and measured
data, even though clinically irrelevant.38 In many cases,
other information on malnutrition status, such as the Mal-
nutrition Screening Tool, the Nutritional Risk Screening
2002, or the Malnutrition Universal Screening Tool was un-
available, despite evidence suggesting their potential util-
ity in the diagnosis of CAC.39,S8

Finally, in the present study, SUV quantification was con-
ducted as an average across the entire organ region, poten-
tially ignoring metabolic abnormalities occurring at a smaller
scale. The identification of potential metabolic aberrations
from normal metabolic activity patterns at a voxel level using
[18F]FDG-PET/CT imaging may offer more detailed insights
into altered metabolism in patients.40

Conclusion

Our analysis of WB [18F]FDG-PET/CT images of LCP revealed
significant group differences in metabolic uptake patterns
across relevant target organs. Higher <SUVaorta> of the
spleen, pancreas, skeletal muscle, and visceral adipose tissue,
and lower <SUVaorta> of the liver were found to be the most
relevant indicators of CAC in LCP. Purpose-built explainable
machine learning-based predictions demonstrated high accu-
racy in distinguishing between patients with (‘CAC’) and with-
out CAC (‘No CAC’). However, the identification of CAC at
early stages (‘Dev CAC’) in individual patients of our cohort
was not possible with sufficient accuracy, most likely due to
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the substantial protocol-based variability in this retrospective
cohort, which is currently being addressed in a follow-up pro-
spective study employing multi-centric, protocol
harmonization.
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