
Data and text mining

OpenVariant: a toolkit to parse and operate multiple input
file formats
David Mart�ınez-Mill�an 1,�, Federica Brando 1, Miguel L. Grau 1, M�onica S�anchez-Guix�e 1,2,
Carlos L�opez-Elorduy 1, Iker Reyes-Salazar1, Jordi Deu-Pons 1,2, N�uria L�opez-Bigas 1,2,3,4,
Abel Gonz�alez-P�erez 1,2,3,�

1Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
2Centro de Investigaci�on Biom�edica en Red en C�ancer (CIBERONC), Instituto de Salud Carlos III, Madrid, 28029, Spain
3Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
4Instituci�o Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
�Corresponding authors. Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028,
Barcelona, Spain. E-mails: abel.gonzalez@irbbarcelona.org (A.G.-P.); david.mart.millan@gmail.com (D.M.-M.)
Associate Editor: Jonathan Wren

Abstract
Summary: Advances in high-throughput DNA sequencing technologies and decreasing costs have fueled the identification of small genetic
variants (such as single nucleotide variants and indels) across tumors. Despite efforts to standardize variant formats and vocabularies, many
sources of variability persist across databases and computational tools that annotate variants, hindering their integration within cancer genomic
analyses. In this context, we present OpenVariant, an easily extendable Python package that facilitates seamless reading, parsing and refine-
ment of diverse input file formats in a customizable structure, all within a single process.
Availability and implementation: OpenVariant is an open-source package available at https://github.com/bbglab/openvariant. Documentation
may be found at https://openvariant.readthedocs.io.

1 Introduction
The recent advances in sequencing technologies and the asso-
ciated drop in sequencing prices have fueled the identification
of somatic single nucleotide variants (SNVs) and short indels
(collectively, mutations) in tumors. This has facilitated nu-
merous studies in cancer genomics that—in the course of less
than two decades—have revolutionized our understanding of
somatic mutational processes and our knowledge of the ge-
netic roots of cancer (Hudson et al. 2010, Weinstein et al.
2013, Bailey et al. 2018, ICGC/TCGA Pan-Cancer Analysis
of Whole Genomes Consortium 2020). These advances, and
their application to personalized cancer medicine, rest
upon our capability to integrate large numbers of mutations
identified across projects (Tamborero et al. 2018, Mart�ınez-
Jim�enez et al. 2020, Mui~nos et al. 2021) carried out in
different centers, using different sequencing technologies, and
variant calling and annotation pipelines (Wang et al. 2010,
McLaren et al. 2016). Despite efforts to homogenize the for-
mats produced by different variant callers (Danecek et al.
2011) and the availability of tools and software, such as
SAMTools (Li et al. 2009), VCFtools (Danecek et al. 2011),
VEP (McLaren et al. 2016), Maftools (Mayakonda et al.
2018), and OpenCRAVAT (Pagel et al. 2020) to process and
annotate variants, differences in the variants produced by
various projects persist. These include the usage of different

reference genomes, slightly different vocabularies to encode
SNVs or indels, the production of different output formats
(e.g. VCF or MAF), as well as different variant annotation
vocabularies and tools. This variability hinders the task of in-
tegrating somatic mutations from different sources, which is
key for the success of large cancer genomics analyses.
Moreover, currently no tool solves the problem of including
metadata relative to mutational datasets obtained from dif-
ferent cohorts of tumors (e.g. dataset name, working direc-
tory name, file name), to allow the automated integrated
analysis of cohorts sequenced by different projects. The exist-
ing systems, such as the ClinGen Allele Registry (Pawliczek et
al., 2018) and the GA4GH Variation Representation
Specification (VRS) (Wagner et al., 2021), aim to address the
limitations of current frameworks and tackle the challenges
of large-scale data aggregation. However, these approaches
lack versatility and are unable to operate independently of
database linkage. Here, we introduce OpenVariant (https://
github.com/bbglab/openvariant), a comprehensive Python
(Van Rossum and Drake Jr 1995) package that addresses
these two problems. On the one hand, OpenVariant encom-
passes a wide range of functionalities for reading, parsing,
and operating multiple variant file formats at once. On the
other hand, it manages the annotation of metadata required
for automated parallel downstream analysis. Thus,

Received: 28 August 2024; Editorial Decision: 22 November 2024; Accepted: 28 November 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(12), btae714
https://doi.org/10.1093/bioinformatics/btae714
Advance Access Publication Date: 2 December 2024
Applications Note

https://orcid.org/0000-0002-4903-029X
https://orcid.org/0000-0003-0537-0281
https://orcid.org/0000-0002-5137-9976
https://orcid.org/0000-0002-9430-4413
https://orcid.org/0000-0001-8971-9051
https://orcid.org/0000-0002-1150-1586
https://orcid.org/0000-0003-4925-8988
https://orcid.org/0000-0002-8582-4660
https://github.com/bbglab/openvariant
https://openvariant.readthedocs.io
https://github.com/bbglab/openvariant
https://github.com/bbglab/openvariant

OpenVariant enables the generation of a customized output
file that combines all the different input files with a proper
annotation file structure. In summary, OpenVariant provides
an efficient solution that simplifies and expedites the pro-
cesses of mutation data cleaning and data management and
integration to support the success of cancer geno-
mics analysis.

2 Design, implementation, and availability
OpenVariant is a versatile toolkit designed to facilitate the
transformation, manipulation, and parsing of mutation data,
and cohort metadata with multiple formats. The package can
be installed and imported as any other Python package in a
script or run through a command-line interface within a shell.
The OpenVariant workflow comprises three essential compo-
nents: input files, annotation files, and output file (one per co-
hort), as visually illustrated in Fig. 1A. The input files and the
annotation files are provided by the user and OpenVariant
returns the output file(s). The software extracts a set of rules
from the annotation file(s) structure and, then, they are applied
to determine how the input files are read, processed and trans-
formed. Upon completion of the entire process, one output file
per cohort contains the resulting transformed dataset.

OpenVariant has been developed to ensure efficiency. The
package incorporates parallel execution capabilities in some
of its functionalities to exploit all available computational
resources and expedite processing. The complexity time of
the transformation displays a linear relationship with the
number of different data conversions done during the parsing
process, although the running time may vary based on the
complexity of each data transformation.

2.1 Annotation structure
The annotation structure serves as a core component which
describes how input files are parsed and how the output is
represented. The annotation file may describe general proper-
ties relevant for parsing and organizing the data, such as pat-
terns in the name of the input files to be included in the
analysis, (e.g. different file formats), the format desired for
the output, specific columns to be added to the output file, as

well as columns of the input files to be omitted in the output
file. Additionally, the annotation file specifies all the fields to
be parsed and modified by OpenVariant, to manage the con-
version of input files to output file(s) (Fig. 1B). The
OpenVariant documentation offers an extensive explanation
of these properties and their respective data transformation
possibilities.

2.2 Basic functionalities
OpenVariant encompasses a range of diverse functionalities
facilitating data curation and subsequent analyses. The soft-
ware reads and parses the different input files according to
the annotation structure explained above. OpenVariant has
been designed to perform four different tasks to aid collating
and organizing data for subsequent analysis:

� Find files: given a path, OpenVariant retrieves all input
files (with different formats) and the corresponding anno-
tation files that match the pattern parameter.

� Cat: shows the parsed result through the standard output.
� Group-by: retrieves the parsed result grouped based on

distinct values of a specific field.
� Count: returns the number of rows from the parsed result

that match a specific condition.

These methods can be run as part of a Python script or in a
command-line interface. They can be integrated in any pipe-
line workflow enabling the transformation of the input data
as a step within an analysis. Group-by and count tasks have
been designed to be executed in parallel. Further details re-
garding the methods and command-line features may be
found in the OpenVariant documentation (https://openvar
iant.readthedocs.io).

2.3 Plugin system
These basic functionalities may be readily extended through
plugins implementing specific data transformation tasks.
Some plugins already available within the OpenVariant pack-
age are described in Supplementary Methods. OpenVariant’s
plugin system is inspired by the Ensembl Variant Effect
Predictor (VEP; Yourshaw et al. 2015).

Figure 1. The essential functionality of OpenVariant with the orchestration of all its components. (A) Schematic representation of data workflow and file
composition. This diagram shows the interplay between the three main components: input files, annotation file and output file, displaying how the data is
processed. (B) Basic parsing functionality of the annotation structure. It illustrates the extraction of three distinct fields from diverse input formats

2 Mart�ınez-Mill�an et al.

https://openvariant.readthedocs.io
https://openvariant.readthedocs.io
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae714#supplementary-data

An OpenVariant plugin is composed of two parts: the
Context and the Plugin itself. The Context represents a class
that contains several properties of the file being parsed at that
moment and the input line that is currently being processed.
On the other hand, the Plugin is a class that encompasses the
function that is executed to achieve data transformation.
OpenVariant simplifies the generation of a plugin template
through a simple command, facilitating the customization of
data transformation to suit specific user requirements. The
software was built focusing on scalability and flexibility, pro-
viding the user with the ability to improve the preprocessing
steps in tandem with reading and parsing their input data.

3 Comparison with existing tools
No currently existing tool possesses the exact same function-
alities as OpenVariant. While some tools facilitate the parsing
of cancer genomic data with a particular format, to our
knowledge, none accepts multiple file formats simulta-
neously. This distinct feature, combined with the possibility
to annotate input datasets using metadata and carry opera-
tions on them, makes OpenVariant exceptionally useful and
sets it apart from other tools in the field. This unique charac-
ter of OpenVariant is manifested in Supplementary Table S1
that compares it to other commonly used tools in can-
cer genomics.

Furthermore, we evaluated the performance of OpenVariant
by comparing its execution time to similar Python-based
tools. This comparison was conducted using the input files
provided by Pedersen (2021). We executed OpenVariant on
the VCF example, achieving a median runtime of 26 s in real
time (Supplementary Table S2). It is important to note that
this runtime may vary if data conversion steps are introduced
in the process.

4 Usage
To demonstrate the utility of OpenVariant, we integrated it
as the first step in the Integrative OncoGenomics (IntOGen)
pipeline, aimed at the systematic identification of mutational
cancer driver genes across cohorts of tumors deposited in the
public domain (Mart�ınez-Jim�enez et al. 2020). In the context
of the latest IntOGen analysis, including 257 898 749 so-
matic mutations across 33 218 tumor samples, OpenVariant
plays an important role in efficiently handling and correctly
annotating datasets representing 271 cohorts sequenced by
different projects, and stored in different data formats, in-
cluding CSVs, TSVs, MAFs, and VCFs. The high flexibility of
the software allowed it to tailor the parsing process to the
specific IntOGen requirements. The integration with the tool
enhanced the preprocessing step along with the robustness
and adaptability of the pipeline to different format data.

5 Conclusion
We present OpenVariant, a scalable and comprehensive
Python package designed to facilitate reading, parsing and
manipulation of multiple input file formats. The aim of this
package is to simplify the curation step and enable research-
ers to work with diverse formats within a unified workflow.
This software package addresses two challenges inherent in
high-throughput DNA sequencing analysis: managing multi-
ple variant formats and vocabularies, and enabling the

incorporation of metadata associated with the ongoing data-
set analysis. The initial outcomes of its performance are
highlighted in the IntOGen pipeline. As a real case, it has the
capability to efficiently process and convert a significant
amount of mutations. We believe that OpenVariant is a novel
and indispensable tool that efficiently archives a task valuable
in the field. We could not find any comparable solution that
performs analogous tasks. The conventional statistical and
data analysis packages may achieve this similar goal but their
suitability is compromised due to their lack of specialization
in the specific task, resulting in their usability being worse.
OpenVariant has been developed as an open-source software,
designed in an easily extendable way to encourage collabora-
tion in its development and promote the enhancement of its
functionalities across diverse use cases. Its extensibility allows
users to contribute to its ongoing development and for their
own requirements.

Acknowledgements
The authors express their gratitude for the support received
from Barcelona Biomedical Genomics Lab members. In par-
ticular, we would like to thank Paula Gomis-Rosa for her as-
sistance in the development of the tool.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest: None declared.

Funding
N.L.-B. acknowledges funding from the European Research
Council [consolidator grant 682398]. This project has re-
ceived funding from the European Union’s Horizon Europe
programme [grant agreement CGI-Clinics 101057509]. IRB
Barcelona is a recipient of a Severo Ochoa Centre of
Excellence Award from the Spanish Ministry of Economy
and Competitiveness (MINECO; Government of Spain) and
an Excellence Institutional grant by the Asociaci�on Espa~nola
contra el Cancer, and is supported by CERCA (Generalitat
de Catalunya). This work has also been funded by the
Institute of Health Carlos III [project IMPaCT-Data, exp.
IMP/00019], co-funded by the European Union, European
Regional Development Fund (ERDF, “A way to
make Europe”).

Data availability
OpenVariant is open-source and is freely available for public
use under BSD-3 Clause license (OSI; Open Source Initiative).
This is a permissive license that prohibits the utilization of
the copyright holder’s or contributors’ names to endorse de-
rivative products without obtaining prior written consent.
OpenVariant may be obtained via the Python Package Index
(PyPI; Python Software Foundation 2024).

References
Bailey MH, Tokheim C, Porta-Pardo E et al.; MC3 Working Group,

Cancer Genome Atlas Research Network. Comprehensive charac-
terization of cancer driver genes and mutations. Cell 2018;173:
371–85.e18.

OpenVariant 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae714#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae714#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae714#supplementary-data

Danecek P, Auton A, Abecasis G et al.; 1000 Genomes Project Analysis
Group. The variant call format and VCFtools. Bioinformatics 2011;
27:2156–8.

Hudson TJ, Anderson W, Artez A et al.; International Cancer Genome
Consortium. International network of cancer genome projects.
Nature 2010;464:993–8.

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium.
Pan-cancer analysis of whole genomes. Nature 2020;578:82–93.

Li H, Handsaker B, Wysoker A et al.; 1000 Genome Project Data
Processing Subgroup. The sequence alignment/map format and
SAMtools. Bioinformatics 2009;25:2078–9.

Mart�ınez-Jim�enez F, Mui~nos F, Sent�ıs I et al. A compendium of muta-
tional cancer driver genes. Nat Rev Cancer 2020;20:555–72.

Mayakonda A, Lin D-C, Assenov Y et al. Maftools: efficient and com-
prehensive analysis of somatic variants in cancer. Genome Res
2018;28:1747–56.

McLaren W, Gil L, Hunt SE et al. The ensembl variant effect predictor.
Genome Biol 2016;17:122.

Mui~nos F, Mart�ınez-Jim�enez F, Pich O et al. In silico saturation muta-
genesis of cancer genes. Nature 2021;596:428–32.

Open Source Initiative. The 3-clause bsd license, 1999. https://open
source.org/licenses/BSD-3-Clause

Pagel KA, Kim R, Moad K et al. Integrated informatics analysis of
cancer-related variants. JCO Clin Cancer Inform 2020;4:310–7.

Pawliczek P, Patel RY, Ashmore LR et al. Clingen allele registry links infor-
mation about genetic variants. HumanMutation 2018;39:1690–701.

Pedersen B. vcf-bench. 2021. https://github.com/brentp/vcf-bench
Python Software Foundation. Python package index. 2024. https://

pypi.org/
Tamborero D, Rubio-Perez C, Deu-Pons J et al. Cancer genome inter-

preter annotates the biological and clinical relevance of tumor alter-
ations. Genome Med 2018;10:25.

Van Rossum G, Drake FL Jr. Python Reference Manual. Centrum voor
Wiskunde en Informatica Amsterdam, Amsterdam, Netherlands:
University of Amsterdam, 1995.

Wagner AH, Babb L, Alterovitz G et al. The GA4GH variation repre-
sentation specification: A computational framework for variation
representation and federated identification. Cell Genomics 2021;
1:100027.

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic
Acids Res 2010;38:e164.

Weinstein JN, Collisson EA, Mills GB et al.; Cancer Genome Atlas
Research Network. The cancer genome atlas Pan-Cancer analysis
project. Nat. Genet 2013;45:1113–20.

Yourshaw M, Taylor SP, Rao AR et al. Rich annotation of DNA se-
quencing variants by leveraging the ensembl variant effect predictor
with plugins. Brief Bioinform 2015;16:255–64.

© The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–4
https://doi.org/10.1093/bioinformatics/btae714
Applications Note

4 Mart�ınez-Mill�an et al.

https://opensource.org/licenses/BSD-3-Clause
https://github.com/brentp/vcf-bench
https://pypi.org/
https://pypi.org/

	Active Content List
	1 Introduction
	2 Design, implementation, and availability
	3 Comparison with existing tools
	4 Usage
	5 Conclusion
	Acknowledgements
	Supplementary data
	Funding
	Data availability
	References

