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Abstract
Due to the complex pathophysiology of AD (Alzheimer’s Disease), there are currently no effective clinical treatments avail-
able, except for acetylcholinesterase inhibitors. However, CREB (cyclic AMP-responsive element binding protein) has been 
identified as the critical factor for the transcription in memory formation. Understanding the effect of potential drugs on the 
CREB pathway could lead to the development of new therapeutic molecules. Rufinamide has shown promise in improving 
memory in animal models, and these effects may be associated with modulation of the CREB pathway, however, this has not 
been previously reported. Thus, the present study aimed to determine the involvement of the CREB pathway in the cognitive 
improvement effects of rufinamide in STZ (streptozotocin) induced mouse model of dementia. Administration of STZ [3 mg/
kg, i.c.v. (intracerebroventricular) bilaterally] significantly impaired cognitive performance in step-down passive avoidance 
and Morris water maze tests in animals, reduced brain endogenous antioxidant levels (GSH, superoxide dismutase, and 
catalase), and increased marker of brain oxidative stress [TBARS (thiobarbituric acid reactive substances)] and inflammation 
[IL-1β (Interleukin-1 beta), IL-6 (Interleukin-6), TNF-α (Tumor necrosis factor alpha) and NF-κB (Nuclear factor kappa B)], 
along with neurodegeneration. These effects were markedly reversed by rufinamide (50 and 100 mg/kg) when administered 
to STZ animals. However, the pre-treatment with the CREB inhibitor (666-15) in STZ and rufinamide-administered animals 
neutralized the beneficial influence of rufinamide. Our data suggest that rufinamide, acting via CREB signaling, reduced 
oxidative stress and inflammatory markers while elevating anti-oxidant levels. Our study has established that rufinamide 
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may act through CREB signaling in an investigational AD model, which could be crucial for developing new treatments 
beneficial in progressive neurological disorders.

Graphical Abstract
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Introduction

Alzheimer’s disease (AD) has been classified by the WHO 
(World Health Organisation) as the leading cause of death 
and is a neurological degenerative ailment that is also the 
primary cause of dementia worldwide (Haque and Levey 
2019). It is characterized by cognitive impairment, behav-
ioral abnormalities, and the loss of functional abilities (Vig-
giano et al. 2020). AD is one of the most frequent forms 
of dementia, and it is believed that more than 50 million 
individuals worldwide suffer from it today. This figure is 
predicted to exceed 150 million by 2050 (Kwan et al. 2020). 
It disrupts daily living due to the loss of cognitive skills 
and impedes behavioral competence and language abilities 
(Neha et al. 2014; Gutiérrez-Rexach and Schatz 2016). In 
the early phases, patients are unable to identify family mem-
bers, making patient care difficult (Zafeer et al. 2019). The 
symptoms and indications of AD differ in each individual 
and are often neglected during the early stages. It is a neu-
ropathological disorder characterized by neuronal/synapse 
degeneration, senile plaque formation, hyperphosphorylated 
tau tangles, oxidative stress neuroinflammation, and apop-
totic cell death (Behl et al. 2021a; Wang et al. 2021). How-
ever, no neuroprotective therapies are currently available, so 
therapeutic strategies remain palliative.

Following a subdiabetogenic i.c.v. (intracerebroventricu-
lar) dose of streptozotocin, certain clinical characteristics 
of AD, such as disrupted glucose and energy metabolism in 
the brain, are closely replicated in animals (Liu et al. 2020; 

Latina et al. 2021; Guo et al. 2017), causing progressive 
cognitive problems in animals (Kumar and Singh 2017a). 
Various pharmacological interventional agents have been 
explored for their mitigating effects against Alzheimer’s 
disease in diverse labs, including protriptyline, resveratrol, 
melatonin, mirodenafil, icarside-II (PDE 5 inhibitor), nico-
randil, valproate, and cilostazol (PDE-3 inhibitor). These 
pharmacological agents could ameliorate cognitive disrup-
tions in the animal models of AD by targeting a range of 
receptors and their downstream signaling cascades, like 
BDNF/TrKB (brain-derived neurotrophic factor/tropo-
myosin-related kinase B), PI3k/Akt (phosphatidylinositol 
3-kinase), GSK-3β (glycogen synthase kinase-3 beta), CAM/
CAMKII  (Ca2+/calmodulin-dependent protein kinase II), 
ERK/CREB (extracellular signal-regulated kinases/cAMP-
response element binding protein), cGMP/PKG (cyclic 
guanosine monophosphate/protein kinase G) and altering 
the expression of numerous proteins such as HIF (hypoxia-
inducible factor), Bcl-2 (B-cell lymphoma 2), and others 
(Tiwari et al. 2021; Labban et al. 2021; Kang et al. 2022; 
Kumar et al. 2015; Kumar and Singh 2017b; Khalifa et al 
2022).

The CREB-TF is a transcription regulator protein found 
in cells that regulates the actions of various growth fac-
tors by binding to a specific segment of DNA called cAMP 
Response Elements (CRE) (Kaur et al. 2022). The CREB 
transcription factors have critical roles in plasticity, cell sur-
vival, oxidative stress, neuronal regeneration, and neuropro-
tection (Kular et al. 2019). Several studies have observed 



Cellular and Molecular Neurobiology            (2025) 45:4  Page 3 of 17     4 

CREB suppression in Alzheimer’s pathology, (Sharma and 
Singh 2020), Huntington’s disease (Choi et al. 2009), Par-
kinson’s Disease (Xu et al. 2022), and also Schizophrenia 
(Guo et al. 2020).

Rufinamide (RUF, 1-(2,6-difluorophenyl) methyl]-tria-
zole-4-carboxamide agent) is a new medication for the treat-
ment of epilepsy, particularly Lennox-Gastaut syndrome. 
Rufinamide has been characterized for its safety profile and 
no significant toxicity was observed for doses up to 1000 mg/
kg in rodent models (White et al. 2008). Several previous 
studies have shown RUF's antioxidant and anti-inflammatory 
effects in various rodent seizure models (Park et al. 2017; Yu 
et al. 2021; Park and Lee 2018). Rufinamide has been shown 
to ameliorate cognitive and behavioral impairments associ-
ated with diabetic neuropathy (Chen et al. 2018). Pugazhen-
thi and his colleagues reported reduced CREB expression in 
AD postmortem brains and Aβ treated neurons (Pugazhenthi 
et al. 2011). In light of these findings, we investigated the 
contribution of the CREB signaling pathway to rufinamide’s 
neuroprotective impact on streptozotocin (STZ)-induced AD 
in rodents.

Materials and Methods

All the reagents employed in this study were of analyti-
cal grade. STZ (streptozotocin) (Cat no. 18883-66-4; SRL 
Lab.); Rufinamide (Cat No. 106306-44-5; Sigma Aldrich); 
666-15 (Cat No. 3329082; EMD Millipore Corp); Done-
pezil (Cat No. 120011-70-3; TCI Chemicals); Thiobar-
bituric acid (Cat No. 504-17-6; Loba Chemie Pvt. Ltd.); 
1,1,3,3-tetramethoxypropane (Cat No. 1001609417; Sigma 
Aldrich); 5,5-dithiobis(2-nitrobenzoic acid) (Cat No. 69-78-
3; Sigma Aldrich); Reduced glutathione (Cat No. 7018-8; 
Molychem); NBT (nitrobluetetrazolium) (Cat No. 298-83-9; 
Loba Chemie Pvt. Ltd.); IL1-β (Cat No. KB3063; Krishgen 
Biosystem); IL-6 (Cat No. KB2068; Krishgen Biosystem); 
TNF-α (Cat No. E0117Mo; BT Lab); NFκB (Cat No. K-02-
2879; Kinesis Dx). Freshly prepared drug solutions were 
ensured for all experiments. Streptozotocin was solubilized 
in freshly prepared artificial cerebrospinal fluid (ACSF). 
Rufinamide was solubilized in 10% dimethyl sulfoxide 
(DMSO) and administered in a dose range of 50 mg/kg and 
100 mg/kg; i.p.) (Park et al. 2017, 2018); while 666–15 was 
solubilized in 10% DMSO (10 mg/kg; i.p.) was used as a 
CREB inhibitor.

Animals

Swiss albino male mice (16  weeks old and weighing 
28 ± 2 g) bred at the Chitkara College of Pharmacy, Rajpura, 
India, were used for the study. The animals were acclima-
tized for at least a week before initiating the experiments. 

The mice were kept in polypropylene cages and had proper 
access to both food and water. The animal housing condi-
tions were maintained at a 12-h light/dark cycle, and the 
experiments were performed in the semi-sound-proof labo-
ratory. The animal protocol was approved by IAEC via 
approval number IAEC/CCP/22/01/PR-10 and experiments 
adhered to the guidelines set by the Committee for Control 
and Supervision of Experiments on Animals (CCSEA), Gov-
ernment of India ensuring full compliance.

According to the a priori sample size calculation, a mini-
mum of 5 animals were required per group. In this study, 
we used 8 animals per group. Two observers, blinded to the 
treatment schedule, simultaneously observed each animal 
for all behavioral assessments, and the mean value obtained 
by both observers was recorded as study data.

Streptozotocin‑Induced Dementia (STZ)

Mice were anesthetized intraperitoneally using the cock-
tail solution of Xylazine/Ketamine (ketamine 90 mg/kg 
and xylazine 4.5 mg/kg). A polypropylene tube was placed 
around a hypodermic needle of 0.4 mm external diameter 
exposing about 3 mm at the tip, which was inserted perpen-
dicularly through the skull (not more than 3 mm) into the 
brain of a mouse. The injection site was 1 mm to the right or 
left midpoint on the line drawn through to the anterior base 
of the ears. Two doses of STZ (3 mg/kg, i.c.v, 5 µl each) 
were administered bilaterally on days 1 and 3 (Kumar and 
Singh 2017c). Injections were performed into the right/left 
ventricle on alternate days. A control group was included 
in which the mice received artificial cerebrospinal fluid 
(ACSF) injection (5 μl) via i.c.v. route.

The dose of streptozotocin (STZ) used for induction in the 
Alzheimer’s disease model was standardized based on well-
established protocols from previous literature (Anoush et al. 
2023; Mehla et al. 2013; Nakhate et al. 2018; Singh et al. 
2013). Numerous studies have demonstrated that intracer-
ebroventricular (i.c.v.) administration of STZ at a dose of 
3 mg/kg (administered on days 1 and 3) effectively induces 
cognitive deficits and mimics key pathological features of 
Alzheimer’s Disease, such as amyloid-beta deposition, tau 
hyperphosphorylation, and neuroinflammation (Mehla et al. 
2013; Kumar and Singh 2017a, 2018; Rani et al. 2021; Singh 
and Singh 2023). This dose is optimal for triggering neu-
ronal dysfunction and cognitive impairment without causing 
excessive mortality or systemic toxicity. Further, we have 
been working with this model for the last 8 years and found 
that STZ @ 3 mg/kg produces a marked deterioration of 
cognitive functions and altered brain biochemicals (Kumar 
and Singh 2017a, b, c, 2018; Rani et al. 2021). Based on our 
research and previous reports, this dose was chosen to relia-
bly replicate the AD-like symptoms for the current investiga-
tion. The dose has been successfully used in various rodent 



 Cellular and Molecular Neurobiology            (2025) 45:4     4  Page 4 of 17

models to study the underlying mechanisms and potential 
therapeutic interventions for Alzheimer’s disease.

Memory Evaluation

Morris Water Maze (MWM)

The MWM test was conducted to assess the spatial cogni-
tive performance of the mice (Mehta et al. 2020; Rani et al. 
2021).

Memory Acquisition Trial

The mice were subjected to four training trials each day, 
from days 19 to 22, to evaluate memory acquisition. The 
starting quadrant was changed for each trial. Quadrant 
Q4 served as the target quadrant. The escape latency time 
(ELT), measured on the 22nd day, was regarded as the meas-
ure of cognition and memory acquisition (Kumar and Singh 
2017c).

Memory Retrieval Trial

On day 23, the mice were given 120 s to move around and 
explore the maze while the platform was removed. The time 
spent in search of the missing platform in the Q1, Q2, and 
Q3 quadrants and the target Q4 quadrant were recorded. The 
time spent in target quadrant Q4 was taken as the indicator 
of memory retrieval (Kumar and Singh 2017c).

Step Down the Passive‑Avoidance Task

Electric shocks (ES) with a voltage of 36 V were delivered 
to the grid floor, and the latency for step-down in mice (step-
ping down with their paws on the grid floor) was recorded 
during the training trial. Escape behavior was considered 
a parameter of learning and memory. On day 22, after one 
hour of treatment, mice were trained using passive avoidance 
apparatus, followed by a retrieval test on day 23(24 h later) 
(Kameyama et al. 1986).

Biochemical Estimations

After evaluating behavior parameters on day 23, the mice 
were euthanized through the cervical dislocation method. 
The brains of mice were isolated and homogenization was 
performed using the phosphate buffer (pH 7.4, 10% w/v) 
with the help of a homogenizer. The homogenate was 
then centrifuged at 3000 rpm for 15 min to obtain a clear 
supernatant. Various biochemical estimations were done 
with the clear supernatant and the pellet. The intact brains 
were preserved in Bouin's solution for histopathological 
examinations.

Estimation of Thiobarbituric Acid Reactive Substances

Thiobarbituric reactive acid substance (TBARS) levels, a 
marker of lipid peroxidation in the brain, were measured 
using the method of Okhawa et al. (1979).

Estimation of Reduced Glutathione

The levels of reduced glutathione (GSH) were measured 
in the brain spectrophotometrically at the wavelength of 
412 nm (Boyne and Ellman 1972; Kumar and Singh 2017b).

Estimation of Superoxide Dismutase (SOD) Activity

Superoxide dismutase (SOD) activity was assessed using the 
technique described by Misra and Fridovich (1972).

Estimation of Catalase Activity

The activity of the antioxidant enzyme Catalase was meas-
ured using the technique described by Goth (1991).

Estimation of Myeloperoxidase Activity

The levels of the enzyme myeloperoxidase were measured 
using the technique described by Grisham et al. (1990).

Estimation of Brain Acetylcholinesterase Activity

The brain’s Acetylcholinesterase (AChE) activity was meas-
ured using the technique described by Ellman et al. (1961).

Histological Examination of Brain Tissues by HE Staining

Mice brains were removed and preserved in Bouin’s solu-
tion. Samples were processed according to the standard-
ized methods and stained with hematoxylin and eosin (HE) 
staining. Relevant stained sections were micrographed 
with the aid of a light microscope (OLYMPUS BX43F) at 
400 × magnification (Banchroft and Turner 1996). The slides 
were examined under normal light conditions at 400 × mag-
nification, using a 40 × objective lens, at 24ºC, Images were 
captured using an Olympus DP23 camera and were analyzed 
using Cell Sense software.

Estimation of Levels of IL‑1β, IL‑6, TNF‑α, NF‑κb, β1‑40

The brain tissue homogenate obtained was used to measure 
the levels of several key biomarkers: IL-1β, IL-6, TNF-α, 
NF-κb, β1-40, and CREB using an Enzyme-Linked Immu-
nosorbent Assay (ELISA). To ensure accuracy and statistical 
validity, triplicate readings were taken for each standard con-
trol and sample. This approach allows precise quantification 
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and reliable comparison of the results. The ELISA kits were 
used, and the assay was performed according to the manu-
facturer’s instructions.

Drugs and Treatment Schedule

The animals were randomly divided into 7 groups, with each 
group containing 8 animals.

Group 1: Control animals received bilateral ICV injec-
tions of (artificial cerebrospinal fluid) ACSF on days 1 and 3.

Group 2: The ICV-STZ group received bilateral ICV 
injections of STZ at 3 mg/kg on day 1 and day 3.

Groups 3, 4: ICV-STZ mice were administered rufina-
mide (50 mg/kg and 100 mg/kg, respectively) for 21 days 
(starting from the 3rd day).

Group 5: ICV-STZ mice were administered the CREB 
inhibitor (666-15) per se for 21 days (starting from the 3rd 
day).

Group 6: ICV-STZ mice were administered the CREB 
inhibitor (666–15) (10 mg/kg; i.p.) and rufinamide (100 mg/
kg, i.p.) for 21 days (starting from the 3rd day).

Group 7: ICV-STZ mice were administered with done-
pezil (3 mg/kg; i.p.) as standard for 14 days (starting from 
the 3rd day).

Statistical Analysis

The normality distribution of the data was tested using the 
Shapiro–Wilk test, which yielded a p-value greater than 
0.05, indicating that the data was normally distributed. 

Fig. 1  Effect of various 
pharmacological interven-
tions on escape latency time 
in Morris Water Maze. Values 
are presented as mean ± SD 
and analyzed by two way 
ANOVA followed by Tukey’s 
multiple comparison test. F (6, 
98) = 27.60, p value < 0.0001; 
F (1, 98) = 252.50, p 
value < 0.0001; F (6, 
98) = 36.66, p value < 0.0001. 
****p < 0.0001
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time spent in target quadrant 
in Morris Water Maze. Values 
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****p < 0.0001
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Additionally, a Q-Q plot suggested that all data points were 
close to the diagonal line. Skewness and kurtosis were also 
found to be within the normal range. Given that the data 
was normally distributed, parametric tests were applied. The 
results were expressed as mean ± standard deviation (S.D.) 
and analyzed using one-way ANOVA followed by Tukey’s 
multiple comparison test.

Results

Assessment of the Effect of Rufinamide on Memory 
Impairment Induced by STZ by the Morris Water 
Maze Test

In the Morris water maze, the vehicle control group exhib-
ited statistically lower escape latencies (ELT) (p < 0.0001) 
on day 4 compared to day 1 ELT of the control group and 
increased time spent in the target quadrant (p < 0.0001) 
on day 5 as compared to other quadrants (Figs. 1 and 2). 
ICV-STZ mice demonstrated impaired performance in the 
Morris Water Maze (MWM), as reflected by the markedly 
increased escape latency time (p < 0.0001) on day 4 and a 
reduced time spent in the target quadrant (p < 0.0001) Q4 on 
day 5 compared to the control group (Figs. 1, 2). Treatment 
with rufinamide (50 and 100 mg/kg)/ donepezil shortened 
the time for escape latency (p < 0.0001) on day 4 indicat-
ing better memory acquisition and increased time spent 
in the target quadrant Q4 (p < 0.0001) on day 5 indicating 
improved memory retrieval compared to STZ group (Figs. 1, 
2). However, pre-treatment with the CREB inhibitor (666-
15) prior to administration of rufinamide showed a potential 
elevation in the day 4 ELT (p < 0.0001) and a decrease in day 
5 TSTQ (p < 0.0001) as compared to the rufinamide + STZ 
group. Notably, the CREB inhibitor (666-15) alone, when 
administered with STZ produced no difference as compared 
to the STZ group.

Assessment of the Effect of Rufinamide on Memory 
Impairment Induced by STZ by the Step‑Down Test

During retention trials, STZ mice showed long-term 
behavioral deficits characterized by a shortened latency 
(p < 0.0001) in touching the grid floor where the current 
was applied and an increased number of errors compared 
with vehicle control mice (Fig. 3). The rufinamide/donepezil 
treatment group showed a longer latency (p < 0.0001) to 
touch the grid floor and longer retention time on the platform 
compared to the STZ-treated mice, indicating improved task 
retention with rufinamide treatment. However, pre-treatment 
with the CREB inhibitor (666-15) prior to administration 
of rufinamide resulted in progressive memory impairment, 
as evidenced by decreased latency time (p < 0.0001) and 

retention time as compared to the rufinamide + STZ group. 
Notably, the CREB inhibitor (666-15) alone, when admin-
istered with STZ produced no difference as compared to the 
STZ group.

Effect of Rufinamide on Acetylcholinesterase (AChE) 
Activity

Brain tissues were biochemically analyzed which showed 
that AChE activity in the hippocampal sample regions of 
the STZ group were significantly higher (p < 0.0001) com-
pared to the control group. Treatment with rufinamide (50, 
100 mg/kg) or donepezil resulted in reduction of AChE 
activity (p < 0.0001) in the hippocampus compared to the 
STZ group, indicating elevated levels of acetylcholine in 
the brain, which is crucial for cognitive processes (Fig. 4). 
However, administration of the CREB inhibitor (666-15) in 
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the STZ + CREB inhibitor (666-15) group reversed the ben-
eficial effect of rufinamide (p < 0.0001). Notably, the CREB 
inhibitor (666-15) alone, when administered with STZ pro-
duced no difference as compared to the STZ group.

Effect of Rufinamide on Histopathological Changes 
in the Brain

Pathological alterations in hippocampal neurons were 
assessed using Hematoxylin–Eosin (HE) staining. The 
STZ group exhibited a significant presence of neutrophilic 
infiltration. A similar pattern was observed in mice treated 
with both STZ and CREB inhibitor (666-15). In contrast, 
the vehicle control group showed the normal neurons in the 
hippocampus. Treatment with rufinamide (50 and 100 mg/
kg) and donepezil demonstrated reduced neuronal degenera-
tion and decresed neutrophilic infiltration in the hippocam-
pal regions. However, sections from mice administered with 

CREB inhibitor along with rufinamide and STZ revealed 
neutrophilic infiltration (Fig. 5).

Effect of Rufinamide on Brain Tissue Thiobarbituric 
Acid Reactive Substances (TBARS) Level

The effects of rufinamide pre-treatment on TBARS were 
measured to assessed the rate of lipid peroxidation in the 
hippocampus of ICV-STZ-induced mice. The ICV-STZ 
resulted in a significant elevation in TBARS (p < 0.0001) 
compared to the vehicle control group (Fig. 6). Treatment 
with rufinamide/donepezil in the STZ group restored 
TBARS levels (p < 0.0001) in the brain compared to STZ 
group. However, the administration of the CREB inhibi-
tor (666-15) in the STZ + rufinamide group reversed the 
beneficial effect of rufinamide (p < 0.0001). In contrast, 
CREB inhibitor (666-15) administered alone with STZ 
produced no difference compared to the STZ group.

Effect of Rufinamide on Brain Tissue Glutathione 
(GSH) Levels

ICV-STZ induced mice exhibited significantly reduced 
GSH levels in the brain. Treatment with rufinamide (50 
and 100 mg/kg) or donepezil significantly improved the 
attenuated GSH levels in the brain when compared to 
the STZ-treated mice (Fig. 7). The CREB inhibitor (666-
15) administered alone had no significant effect on GSH 
levels compared to the STZ group. However, when the 
CREB inhibitor was given in the STZ + rufinamide group, 
it reversed the beneficial effects of rufinamide.

Effect of Rufinamide on Brain Tissue Superoxide 
Dismutase (SOD) Levels

ICV-STZ administered mice showed significantly reduced 
SOD activity (p < 0.0001) in the brain compared to control 
animals (Fig. 8). However, administration of rufinamide 
(50 and 100 mg/kg) or donepezil resulted in a significant 
and dose-dependent increase in SOD activity (p < 0.0001) 
compared to ICV-STZ-treated mice. The CREB inhibitor 
(666-15) administered alone had no significant effect on 
SOD levels compared to the STZ group. However, when the 
CREB inhibitor was given in the STZ + rufinamide group, 
it reversed the beneficial effects of rufinamide (p < 0.0001).

Effect of Rufinamide on Brain Tissue Catalase Levels

Catalase activity in the cerebral cortex and hippocam-
pus demonstrated a significant decrease (p < 0.0001) 
in the ICV-STZ group compared to the normal control 
group (Fig. 9). Treatment with rufinamide (50 mg/kg 
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Fig. 4  Effect of various pharmacological interventions on acetylcho-
linesterase activity. Values are presented as mean ± SD and analyzed 
by one way ANOVA followed by Tukey’s multiple comparison test. F 
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and 100 mg/kg) and donepezil significantly elevated the 
catalase activity (p < 0.0001) in comparison to the ICV-
STZ group. There was no significant effect of the CREB 
inhibitor (666-15) administered alone on catalase levels 
compared to the STZ group. However, when the CREB 
inhibitor was given in the STZ + rufinamide group, it 
reversed the beneficial effects of rufinamide (p < 0.0001).

Effect of Rufinamide on Brain Tissue 
Myeloperoxidase (MPO) Levels

ICV- STZ group exhibited a marked increase in MPO 
(myelo-peroxidase) activity (p < 0.0001) when compared 
to the vehicle control group. Treatment of rufinamide/
donepezil in ICV-STZ mice significantly decreased the 
MPO activity (p < 0.0001) as compared to the STZ-treated 
mice (Fig. 10). In contrast, the CREB inhibitor (666-15) 
administered alone had no significant effect on MPO 
levels compared to the STZ group. However, when the 
CREB inhibitor was given in STZ + rufinamide group, it 
reversed the beneficial effects of rufinamide (p < 0.0001).

Effect of Rufinamide on Brain Tissue Tumor Necrosis 
Factor (TNF‑α) Levels

Neuroinflammation was manifested in the STZ-ICV group 
through a significant increase in the TNF-α levels of brain 
(p < 0.0001) compared to the vehicle control group. Rufi-
namide/donepezil + STZ group showed reduction in the 
STZ-triggered rise in brain TNF-α levels (p < 0.0001) with 
respect to the STZ-ICV group (Fig. 11). CREB inhibitor 
administration in the STZ + rufinamide group exhibited 
enhanced brain TNF-α levels (p < 0.0001) in comparison 
to the rufinamide + STZ group. However, CREB inhibitor 
(666-15) treatment alone did not significantly affect TNF-α 
levels when compared to the STZ group.

Effect of Rufinamide on Brain Tissue IL‑6 Levels

IL-6 levels in the brain were markedly upregulated 
(p < 0.0001) in the STZ-treated mice compared to con-
trol group. However, rufinamide (50 and 100 mg/kg) and 
donepezil treatment significantly reduced IL-6 release 
(p < 0.0001) in the STZ-treated mice (Fig. 12). When com-
pared to the STZ group, the CREB inhibitor (666-15) alone 

Fig. 5  Effect of various pharmacological interventions on histo-
pathological alterations in hippocampal region. Vehicle control 
group showed normal neurons and pathological features. STZ group 
exhibited a significant presence of neutrophilic infiltration. Treatment 
with donepezil and rufinamide (50 and 100  mg/kg) demonstrated 

reduced neuronal degeneration and decresed neutrophilic infiltration 
in the hippocampal region. STZ and CREB inhibitor (666-15) group 
showed presence of neutrophilic infiltration. CREB inhibitor along 
with rufinamide and STZ revealed neutrophilic infiltration
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did not significantly affect IL-6 levels. Notably, administra-
tion of the CREB inhibitor in the STZ + rufinamide group 
led to a reduction in IL-6 levels (p < 0.0001) compared to 
the rufinamide + STZ group.

Effect of Rufinamide on Brain Tissue IL‑1β Levels

Levels of IL-1β were significantly upregulated in the STZ 
group (p < 0.0001) compared to the vehicle control group. 
Treatment with rufinamide (50 and 100 mg/kg) or done-
pezil significantly reduced the levels of IL-1β (p < 0.0001) 
in the brain when correlated with the STZ group (Fig. 13). 
Administration of the CREB inhibitor in the STZ + rufina-
mide group resulted in increased IL-1β levels (p < 0.0001) 
compared to the rufinamide + STZ group. In contrast, there 

was no significant effect of the CREB inhibitor (666-15) 
alone on IL-1β levels when compared to the STZ group.

Effect of Rufinamide on Brain Tissue Nuclear Factor 
Kappa‑B (NF‑κB) Levels

A profound rise in brain NF-κB level (p < 0.0001) was 
observed in the STZ-ICV group compared to the vehi-
cle control group. Treatment with rufinamide/donepezil 
attenuated the STZ-induced rise in brain NF-κB function 
(p < 0.0001) in mice when compared to STZ-ICV treated 
mice (Fig. 14). Administration of the CREB inhibitor in the 
STZ + rufinamide group resulted in increased NF-κB levels 
(p < 0.0001) compared to the rufinamide + STZ group. In 
contrast, the CREB inhibitor (666-15) alone showed no sig-
nificant effect on NF-κB levels compared to the STZ group.
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Fig. 6  Effect of various pharmacological interventions on TBARS 
level. Values are presented as mean ± SD and analyzed by one 
way ANOVA followed by Tukey’s multiple comparison test. F (6, 
35) = 87.87, p value < 0.0001. *p < 0.05, **p < 0.005, ****p < 0.0001
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Fig. 7  Effect of various pharmacological interventions on reduced 
glutathione level. Values are presented as mean ± SD and analyzed by 
one way ANOVA followed by Tukey’s multiple comparison test. F (6, 
35) = 87.87, p value < 0.0001. *p < 0.05, **p < 0.005, ****p < 0.0001
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Effect of Rufinamide on Brain Tissue β1‑40 Levels

The levels of brain β1-40 were significantly upregulated in 
the STZ group (p < 0.0001) compared to the vehicle con-
trol group. Treatment with rufinamide (50 and 100 mg/
kg) or donepezil treatment significantly reduced the β1–40 
levels (p < 0.05) in the brain compared to the STZ group 
(Fig. 15). However, administration of the CREB inhibitor 
to the STZ + rufinamide group resulted in increased β1-40 
levels (p < 0.0001) relative to the rufinamide + STZ group. In 
contrast, the CREB inhibitor (666-15) alone had a negligible 
effect on β1-40 levels compared to the STZ group.

Effect of Rufinamide on Brain CREB Levels

CREB levels in the brain were significantly reduceed in 
the STZ group (p < 0.0001) compared to the vehicle con-
trol group. Treatment with rufinamide (50 and 100 mg/kg)/
donepezil significantly restored CREB levels in the brain 

(p < 0.0001) compared to STZ group (Fig. 16). Administra-
tion of the CREB inhibitor in the STZ + rufinamide group 
resulted in decreased CREB levels (p < 0.0001) compared to 
the rufinamide + STZ group. However, the CREB inhibitor 
(666-15) alone had a negligible effect on CREB levels when 
compared to the STZ group.

Discussion

Alzheimer’s disease (AD) is becoming a more serious haz-
ard to public health and the health-care system, with far-
reaching implications on both the individual and social 
levels (Boyle et al. 2022). Characteristic neuropathological 
features of AD include Amyloid-beta (Aβ) plaques in the 
extracellular space of brain and hyperphosphorylated tau 
proteins that may form neurofibrillary tangles in the intra-
neuronal space (Twohig and Nielsen 2019; Virk et al. 2021). 
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Fig. 8  Effect of various pharmacological interventions on superoxide 
dismutase. Values are presented as mean ± SD and analyzed by one 
way ANOVA followed by Tukey’s multiple comparison test. F (6, 
35) = 288.2, p value < 0.0001. ****p < 0.0001
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Fig. 9  Effect of various pharmacological interventions on cata-
lase. Values are presented as mean ± S.D and analyzed by one way 
ANOVA followed by Tukey’s multiple comparison test. F (6, 
35) = 159, p value < 0.0001. *p < 0.05, **p < 0.005, ***p < 0.0005, 
****p < 0.0001
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The accumulation of these proteins lead to neuron destruc-
tion, resulting in decreased brain mass and cognitive perfor-
mance (Huber et al. 2018). With increase in global longevity, 
the incidence of AD is rising, highlighting critical need for 
therapies that can prevent or delay disease onset and subse-
quent dementia (Rasmussen and Langerman 2019). Mice 
are employed as animal models of AD as they principally 
mimic symptoms such as cognitive deficits and behavioral 
alterations due to neurodegeneration in the hippocampus and 
cortex.

In the current study, the effects of rufinamide (50 and 
100 mg/kg i.p.) in STZ-induced dementia on various behav-
ioral and biochemical parameters were explored. Rufinamide 
treatment resulted in decreased ROS, reduced lipid peroxida-
tion, diminished neuroinflammation, along with improved 
learning and memory. However, administration of CREB 
Inhibitor, 666-15 (10 mg/kg i.p.) attenuated the protective 
effect of rufinamide, signifying the role of CREB phospho-
rylation in the effects produced by rufinamide.

Retrospective reports have corroborated that the STZ 
model is a useful preclinical model for studying Alzhei-
mer’s disease dementia, which is frequently characterized 
by a continual decline in learning ability and memory capac-
ity (Rani et al. 2021). STZ impairs cognition and increases 
aggregated Aβ fragments, total tau protein, and Aβ deposits 
in the brain. Researcher had demonstered that STZ injection 
into the mouse brain causes inflammation of neurons, oxi-
dative stress, and biochemical changes (Kamat et al. 2016; 
Ravelli et al. 2017). Hence, in the present study, the STZ-
induced rodents were used in the AD model.

Cognitive impairment linked with AD is considered to 
the atrophy of cholinergic neurons in the cortical and hip-
pocampal regions, resulting in the impairments of choliner-
gic neurotransmission (Yang et al. 2013). Acetylcholine is 
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Fig. 10  Effect of various pharmacological interventions on myelop-
eroxidease. Values are presented as mean ± S.D and analyzed by one 
way ANOVA followed by Tukey’s multiple comparison test. F (6, 
35) = 404.8, p value < 0.0001. ***p < 0.0005, ****p < 0.0001
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Fig. 11  Effect of various pharmacological interventions on TNF-α 
levels. Values are presented as mean ± SD and analyzed by one 
way ANOVA followed by Tukey’s multiple comparison test. F (6, 
35) = 107.3, p value < 0.0001. *p < 0.05, **p < 0.005, ****p < 0.0001
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a neurotransmitter that is required for learning and memory 
processing; however, Alzheime’s patients have reduced lev-
els of it. AChE is responsible for the hydrolysis of acetyl-
choline by controlling its metabolism (Stanciu et al. 2019). 
These cholinergic deficiencies lead to the cognitive and 
behavioral symptoms of AD. Deficiency of choline results 
in cortical impairment, memory issues, abnormal cerebral 
blood circulation, learning difficulties, sleep cycle disrup-
tions, and compromised cortex development in Alzheimer’s 
disease. AChE also contributes to inflammatory reactions, 
Aβ complex formation, and cytotoxicity mechanisms in 
Alzheimer’s disease (Siddiqui et al. 2021). The modifica-
tion in AChE activity enhances ACh degradation, which 
reduces ACh receptor activation, resulting in negative effects 
on neurotransmission and increased cognitive impairment 

(Abdalla et al. 2013). In the current study, therefore, the 
AChE enzyme activity was evaluated.

Neuronal loss and gliosis in the hippocampus are two 
neuropathological abnormalities seen in Alzheimer’s dis-
ease (Kumar and Singh 2018; Schneider 2022). When the 
hippocampus is injured, pathogenesis of Alzheimer’s dis-
ease occurs, such as blood–brain barrier (BBB) leakage, 
oxidative stress, cognitive impairments, and memory dete-
rioration. The accumulation of Aβ may result in neurotoxic 
amyloid fibrils; while tau proteins combine to form NFTs 
(neurofibrillary tangles), contributing to neuronal dysfunc-
tion in the hippocampus (Nelson et al. 2016). Hence, in the 
present study, memory was examined using stepdown pas-
sive avoidance and Morris water maze tests. Furthermore, 
neurodegeneration and hippocampus neuronal loss were 
assessed using hematoxylin–eosin (HE) staining.

There is growing evidence that inflammation could be 
a crucial contributor in the development and worsening of 
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Fig. 12  Effect of various pharmacological interventions on IL-6 
levels. Values are presented as mean ± SD and analyzed by one 
way ANOVA followed by Tukey’s multiple comparison test. F 
(6, 35) = 202.1, p value < 0.0001. **p < 0.005, ***p < 0.0005, 
****p < 0.0001
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Fig. 13  Effect of various pharmacological interventions on IL-1β 
levels. Values are presented as mean ± SD and analyzed by one 
way ANOVA followed by Tukey’s multiple comparison test. F (6, 
35) = 173.3, p value < 0.0001. ***p < 0.0005, ****p < 0.0001
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Alzheimer’s pathology. In this condition, pro-inflammatory 
cytokines such as TNF-α, IL-1β, NF-κB, and IL-6 are ele-
vated in the brain leading to the accumulation of Aβ plaques 
and tau hyperphosphorylation, and ultimately results in 
neuronal death (Sinyor et al. 2020). The enzyme secreted 
by active neutrophils is myeloperoxidase (MPO), which 
is primarily deposited in morphonuclear cells (PMNs) as 
well as monocytes. Despite the fact that MPO is released by 
immune cells, investigations have established its function 
in AD pathology (McGeer and McGeer 2002). MPO activ-
ity has been assessed to evaluate neutrophil invasion in the 
brain for the prognosis and diagnosis of Alzheimer's (Pandi-
Perumal et al. 2013). Therefore, in the current study, we 
evaluated the inflammatory parameters TNF-α, IL-6, IL-1β, 
NF-κB, and MPO.

Growing evidence suggests that ROS-induced stress plays 
a role in the onset and development of Alzheimer’s disease. 
There are evidence of oxidative stress in the brains of peo-
ple with AD by the oxidation of proteins and lipids (Singh 
et al. 2016; Behl et al. 2021b). Protein oxidation and lipid 
peroxidation are outcomes of oxidative stress owing to an 

imbalance that occurs at a molecular or cellular level when 
free radical generation surpasses antioxidant scavenging 
capacity (Butterfield and Boyd-Kimball 2018). Cognitive 
impairment and alterations in nerve terminal activity pre-
cede the neuronal death in the advanced stages of AD. This 
might be caused due to glial cells which leads to abnormal 
production of chemokines, cytokines, complement systems, 
and reactive oxygen and nitrogen species leading to inflam-
mation. (Agostinho et al. 2010). Moreover, previous reports 
showed antioxidant potential of rufinamide (Park and Lee 
2018; Sabir et al. 2024), so by measuring the levels of these 
enzymes SOD, GSH, catalase, and TBARS, we aimed to 
evaluate the neuroprotective effects of rufinamide in reduc-
ing oxidative damage and improving the antioxidant defense 
system in the STZ-induced AD model.

In the current investigation, intracerebroventricular 
treatment with STZ (3 mg/kg) on day 1 and day 3 resulted 
in a significant impairment in MWM metrics as well as 
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Fig. 14  Effect of various pharmacological interventions on NF-κB 
levels. Values are presented as mean ± SD and analyzed by one 
way ANOVA followed by Tukey’s multiple comparison test. F (6, 
35) = 220.7, p value < 0.0001. ****p < 0.0001
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Fig. 15  Effect of various pharmacological interventions on β1-40 
levels. Values are presented as mean ± SD and analyzed by one 
way ANOVA followed by Tukey’s multiple comparison test. F (6, 
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stepdown passive avoidance test in mice, demonstrating 
cognitive impairment. Mice treated with STZ showed an 
increase TBARS, AChE activity and MPO levels, alongwith 
decreased GSH, SOD, and catalase levels, as well as the ele-
vated neuroinflammatory biomarkers (TNF-α, NF-κB, IL-6, 
and IL-1). Furthermore, H&E-stained micrographs of mice 
treated with STZ indicated pathogenic changes, including 
substantial infiltration of neutrophils and amyloid deposi-
tion. The results reported here align with findings from other 
laboratories (Singh and Singh 2023; Rani et al. 2021; Singh 
et al. 2013; Randhawa et al. 2021).

In the developing brain, CREB modulates critical cel-
lular processes, including cell proliferation, survival, and 
differentiation. It also plays an important role in adult brain 
development, learning, and memory (Ortega-Martínez 
2015). CREB signaling has subsequently been related to 
several brain pathologies, including cognitive and neurode-
generative illnesses. Beta-amyloid is a crucial factor in the 
development of AD. It affects the hippocampal-dependent 
plasticity of synapses and causing synaptic loss via CREB 

signaling pathway (Saura and Valero 2011). Inactivation of 
CREB is related to poor autophagy in Alzheimer’s disease 
models. In cultured neural cells, Aβ oligomers founds to 
deactivate CREB (Zimbone et al. 2018), whereas its excita-
tion promotes autophagy and protects against amyloid beta-
induced damage (Singh et al. 2017; Wang et al. 2021).

As a consequence of the aforementioned evidence and 
research results, it is suggested that rufinamide reduces STZ-
induced memory impairment along with neuropathological 
abnormalities through a variety of activities, including anti-
oxidant, anticholinesterase, and anti-inflammatory effects, 
in a dose-dependent way. However, administering a CREB 
inhibitor prior to rufinamide reduced the protective impact 
of rufinamide on memory and other pathological measures 
such as inflammation and oxidative stress, indicating that 
rufinamide may function via CREB pathway.

To fully investigate the mechanistic understanding at 
the protein level, which is a limitation of the current study, 
further research is needed. This should include validation 
through immunohistochemistry and microarray techniques, 
as well as proteomic analysis to assess inflammatory and 
apoptotic changes in neuronal cells in STZ-induced Alzhei-
mer’s disease.

Conclusion

The findings of this study suggest that rufinamide exhib-
its significant neuroprotective effects in a streptozotocin 
(STZ)-induced model of Alzheimer’s Disease. Rufinamide 
treatment significantly improved learning and memory, 
decreased oxidative stress and neuroinflammation, and 
reduced acetylcholinesterase (AChE) activity, indicating 
that the drug can mitigate several pathological hallmarks of 
AD. Based on the evaluation of various parameters, includ-
ing memory performance, neuronal integrity, and molecular 
signalling, it is proposed that the neuroprotective effects may 
be largely attributed to the activation of the CREB (cAMP 
response element-binding) protein. CREB plays a critical 
role in synaptic plasticity and memory formation, and its 
activation could enhance neurogenesis and cognitive resil-
ience against neurodegenerative processes.

Additionally, the reduction in pro-inflammatory cytokines 
(TNF-α, IL-1β, IL-6, NF-κB) and the antioxidant enzyme 
activity of GSH, SOD, and catalase, combined with reduced 
lipid peroxidation, suggests that rufinamide also exerts anti-
inflammatory and antioxidant effects, effectively countering 
the oxidative stress and neuroinflammation associated with 
AD.

While these findings highlight the therapeutic potential of 
rufinamide in AD, further studies are warranted to fully elu-
cidate the underlying mechanisms at the protein level using 
techniques such as PCR or Western blotting. Additionally, 
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Fig. 16  Effect of various pharmacological interventions on CREB 
levels. Values are presented as mean ± SD and analyzed by one 
way ANOVA followed by Tukey’s multiple comparison test. F (6, 
35) = 30.03, p value < 0.0001. *p < 0.05, **p < 0.005, ***p < 0.0005, 
****p < 0.0001
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approaches like immunohistochemistry and proteomic analy-
ses could provide deeper insights into the neuroprotective 
pathways, enabling the development of more targeted thera-
peutic interventions.
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