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Objective: To demonstrate the capability of a deep learning model to detect central retinal artery occlusion
(CRAO), a retinal pathology with significant clinical urgency, using OCT data.

Design: Retrospective, external validation study analyzing OCT and clinical baseline data of 2 institutions via
deep learning classification analysis.

Subjects: Patients presenting to the University Medical Center Tübingen and the University Medical Center
Hamburg-Eppendorf in Germany.

Methods: OCT data of patients suffering from CRAO, differential diagnosis with (sub) acute visual loss
(central retinal vein occlusion, diabetic macular edema, nonarteritic ischemic optic neuropathy), and from controls
were expertly graded and distinguished into 3 groups. Our methodological approach involved a nested multiclass
five fold cross-validation classification scheme.

Main Outcome Measures: Area under the curve (AUC).
Results: The optimal performance of our algorithm was observed using 30 epochs, complemented by an

early stopping mechanism to prevent overfitting. Our model followed a multiclass approach, distinguishing
among the 3 different classes: control, CRAO, and differential diagnoses. The evaluation was conducted by the
“one vs. all” area under the receiver operating characteristics curve (AUC) method. The results demonstrated AUC
of 0.96 (95% confidence interval [CI], � 0.01); 0.99 (95% CI, � 0.00); and 0.90 (95% CI, � 0.03) for each class,
respectively.

Conclusions: Our machine learning algorithm (MLA) exhibited a high AUC, as well as sensitivity and spec-
ificity in detecting CRAO and the differential classes, respectively. These findings underscore the potential for
deploying MLAs in the identification of less common etiologies within an acute emergency clinical setting.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2025;5:100630 ª 2024 by the American Academy of
Ophthalmology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).
Acute central retinal artery occlusion (CRAO) results in
painless, acute, and severe monocular vision loss, with an
estimated incidence of ca 2 to 6 per 100.000 person-years.1,2

Despite its rarity, patients in the emergency department
demand rapid professional assessment and accurate
diagnosis to implement the most effective treatment
strategies. Reperfusion therapy, effectively utilized in
neurology for the treatment of acute cerebral ischemic
strokes, can also be considered for the treatment of
CRAO.3,4 The correct execution of reperfusion therapy in
cerebral ischemic stroke relies heavily on neuroimaging
analysis of morphological changes via computed
tomography or magnetic resonance imaging.3,4 Recent
advancements in machine learning algorithms (MLAs)
have introduced promising new tools for enhancing the
assessment and treatment evaluation of ischemic strokes in
the brain.5

The efficacy of intravenous thrombolysis within the first
4.5 hours after the onset of CRAO is currently being
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investigated in multiple international prospective random-
ized trials, such as the REVISION, TenCRAOS, or THEIA
trial.6e8 Given its ischemic pathophysiology, CRAO is
closely linked to vascular risk factors, and its occurrence is
often associated with increased comorbidities, such as acute
stroke or myocardial infarction.9 As of today, there is no
established method for automatically detecting CRAO or
accurately determining its onset, which could significantly
enhance diagnosis, and treatment evaluation, and improve
overall prognosis.

Fundoscopy often serves as the initial diagnostic tool to
identify characteristic retinal changes of CRAO, such as the
cherry-red spot or retinal edema.10 Advancements in
ophthalmological imaging technology, such as high-
resolution and normalized OCT devices, have expanded
the potential for improved detection and monitoring of
retinal conditions. There is compelling evidence that
through OCT imaging one can objectively and manually
identify local pathophysiological morphological changes
1https://doi.org/10.1016/j.xops.2024.100630
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Table 1. Hyperparameters Used for Training and Validation

Hyperparameter Variable

Image size 300 px � 300 px
Layers 1, 16, 1
Criterion CrossEntropyLoss
Optimizer Adam
Learning rate 5 � 10e5

Batch size 4
Early stopping epoch 5

px ¼ pixel.
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within the critical timeframe for thrombolysis. An early
biomarker is the increased hyperreflectivity of the inner
retinal layer; additional studies have also highlighted the
relevance of gradual structural changes, such as ischemia,
edema, and subsequent atrophy of the retina.11e19

The application of MLAs to the analysis of ophthalmo-
logical entities with emergency clinical character has been
widely stated, as with fundoscopy regarding retinal vein
occlusion or papilledema.20,21 Building on this research, we
investigated the application of MLAs to detect CRAO
through OCT imaging. This approach aims to
automatically preprocess and distinguish specific local
pathophysiological morphological changes in the retina,
marking a novel application of imaging technology for
this purpose.

Methods

Data

We utilized a retrospective anonymized data set obtained from 2
university medical centers in Germany, specifically the University
Medical Center Tübingen and the University Medical Center
Hamburg-Eppendorf, for training, validation, and testing. The data
set was split into 3 classification categories: healthy control,
CRAO, and differential diagnoses of subacute vision loss. The
ground truth of the OCT images was carefully labeled by a retina
expert.

The OCT images included a diverse patient group, including
both women and men, with ages ranging from 21 to 98 years from
rural and urban communities. Three-dimensional volume OCT
scans for analysis and the respective 2D slides for analysis, were
collected using a Spectral-Domain OCT (Spectralis OCT, Heidel-
berg Engineering) device at the time of the patients’ emergency
visit to the departments.

For inclusion criteria, we defined as participants being >21
years old with no prior ocular surgery. Additionally, we only in-
tegrated images of participants with sufficient high-quality OCT
imaging, as a Spectralis Q-value (decibels) >12. The type of scan
for the CRAO group and most other scans is defined to be a hor-
izontal dense volume scan with usually a size of 512 columns, 496
rows, and 19 frames. The fixation point was the macular and if no
fixation was possible an external fixation light was used with the
fellow eye. The average slice thickness was 0.226 mm. All OCT
scans were normalized according to the criteria in Table 1
(hyperparameters, 300 pixels [px] � 300 px). All images have
been extensively screened, graded, and preclassified by a retina
specialist. No other significant OCT findings were described.
Patients with a quality control threshold beneath a Q-value of 12
(decibels), significant secondary OCT findings, aged �21 years,
or prior ocular surgery were excluded.

Of the 50 CRAO patients, 44 had no other retinal conditions.
Two patients had early-stage dry age-related macular degeneration
(small drusen), which was not relevant for OCT measurements.
One patient had a nonsignificant epiretinal membrane at stage 1,
and another patient had mild diabetic retinopathy without diabetic
macular edema. A more detailed list of the CRAO cohort is
detailed in Table 2.

Our algorithm was targeted to analyze a 3-classification task:
CRAO (n ¼ 50), a control group consisting of healthy control (n ¼
79) combined with the contralateral eye of the CRAO participants
(n ¼ 50) if graded without significant findings and differential
emergency diagnoses with (sub) acute monocular vision loss. For
the latter category, we selected central retinal vein occlusion (n ¼
2

9), diabetic macular edema (n ¼ 8) and nonarteritic ischemic optic
neuropathy (n ¼ 9). The average estimated time between the onset
of CRAO via patient medical history and clinic assessment was
13.2 hours. Twelve examples were examined within 4.5 hours after
symptom onset.
Model

We employed Python (ver. 3.9.7 Python Software Foundation) for
data infrastructure and all statistical analyses. For developing our
deep learning framework PyTorch on a Quadro RTX 8000 GPU
(NVIDIA) was utilized for this project.22

We applied transfer learning by choosing a pretrained deep
learning residual network (ResNet) convolutional neural network
model with a total of 18 layers.23 The structure of the model begins
with an initial convolution layer, then employs max pooling with a
3 � 3 kernel. After this, there are 4 blocks of convolutional layers,
each including 2 residual units and 2 convolutional layers per
residual unit. After the convolutional blocks, the network
employs a global average pooling layer, for spatial dimension
reduction to 1 � 1 size with a single fully connected layer that
outputs the results for our classification at the end.

ResNet-18, known for its “shortcut connections,” addresses
performance issues related to vanishing gradients and divergence
by supporting the integration and analysis of image data.

We used adaptive moment estimation (Adam) with a learning
rate of 5 � 10e5 to update and optimize the network weights. The
data were utilized by minibatches of 4 throughout the training,
validation, and test dataloader. For our multiclass classification, the
algorithm produced 3 outputs. The model, pretrained on the
ImageNet data set, includes >1000 classes with millions of images,
and utilized CrossEntropyLoss as the criterion.24 The loss
demonstrated quantitatively the distance between prediction and
true value. During training, the loss functions that operate on
logits give a numerically more stable result than probabilities.
The criterion applies the softmax function to the logits to obtain
log loss. An early stopping method was applied for results
without improvement after 5 epochs, minimizing overfitting
within a maximum of 30 epochs. To conclude, the outputs of
our model are logits as the final operation is a linear
transformation without any additional activation functions. For
training and validation, gradients were calculated and model
weights updated. The evaluation modus was activated after each
training epoch for validation, although the gradient update was
excluded. After this tuning process of the model based on its
performance at the validation set, the best set of weights was
chosen, and prediction capabilities were evaluated on the holdout
or test set. Test results were aggregated and used for later
evaluation. A summary of hyperparameters chosen for the model
tuning is presented in Table 1.



Table 2. Central Retinal Artery Occlusion Cohort Characteristics
Summary

Diagnosis

Arterial hypertension 68%
Atrial fibrillation 2%
Type 2 diabetes mellitus 16%
Cancer 10%
Chronic kidney disease 2%
Prior stroke 12%
Prior myocardial infarction or coronary heart disease 4%
Obesity 4%
Valvular heart disease 24%
Smoker 14%
Oral contraceptive 2%
Carotid artery stenosis or dissection 4%
Risk factor
No prior known risk factor 12%
1 prior known risk factor 30%
2 prior known risk factor 40%
�3 prior known risk factors 18%
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Preprocessing

For the DICOM volume data set, the fovea centralis was identified
by selecting the relative middle slice from its 3D-OCT volume
scan. The filtered image was saved in PNG format and loaded into
the MLA using our custom PyTorch dataloader. The selected im-
age slides were cohesively augmented by normalization, resizing
(384 px � 384 px), center cropping (300 px � 300 px), and being
shifted and rotated before being processed by the model eventually.
We utilized the open PyTorch albumentations module for trans-
formation preprocessing.25

Nested Cross-Validation

The entire data set of 293 images has been split, while being
stratified for balancing the 3 classes, randomly into 5 relatively
evenly distributed folds, hence a fivefold cross-validation. Splitting
the data into their respective folds allowed us to later precisely
evaluate the performance to generalize to an independent data set.
To further support a more accurate and unbiased estimation of the
model performance, we deployed a nested approach, with an inner
train and validation loop and an outer test loop. For improving the
generalization capabilities of the model, regarding the relatively
limited quantity, iterated through every fold through a nested
fivefold cross-validation approach, every fold has been used in the
training, validation, and test set respectively exactly once.

We further distributed the participants’ anonymous IDs, and
none were given in 2 different folds, preventing cross-fold data
leakage, as some entities allowed the usage of both eyes. The data
set was then distributed into training, validation, and test data sets
respectively, with an approximate 80%/20% distribution and
loaded in via the respective dataloader.

Evaluation

For our 3-class multiclassification task, we chose the area under the
curve (AUC) as the eventual evaluation metric. This metric
approach is especially suitable for binary classifications and can be
utilized for multiclass classifications via one-vs-all/one-vs-rest
approaches. The AUC calculates the performance of 1 class, for
example, CRAO cases versus the other 2 classes combined. Area
under the curve measures the capability of the model to effectively
discriminate between our classes. An outcome of 1.0 represents a
complete discrimination detection and 0.5 represents the worst
performance, equal to a random prediction of classes.

During the training and validation phases, we optimized the
model’s weights, which were then saved for the subsequent testing
phase. The optimal weights for testing were selected based on the
average “one-vs-all” AUC value across all classes, with each class
contributing equally.

During the subsequent test phase, themodel’s calculated predictions
will demonstrate its ability to correctly classify previously unseen data.
For each batch from the test dataloader, the imageswere forward-passed
through the model to gain the raw output logits for each class. Through
the application of a softmax function, given output logits are converted
into normalized values between 0 and 1, which can be interpreted as
probabilities. Probabilities are easier to interpret and are crucial for
decision-making, particularly in setting prediction thresholds and
evaluating overall classification performance.

Regarding our nested cross-validation strategy, the results of the
inner (training/validation) phases were used solely to fine-tune the
weights. In the outer loop, with the respective holdout test data set,
results were aggregated separately from each fold and averaged
across multiple folds to better estimate generalization. This aver-
aged AUC provides a summary metric of the entire mode,
throughout all cross-validation iterations.

To compute the AUC 95% confidence interval (CI) for both
sensitivity and specificity, we incorporated all classes of this mul-
ticlass data set. This cross-validation approach iterated over each of
the 3 classes for each fold, and the mean was computed across folds
to represent overall performance robustness. Upper and lower
bounds of the 95% CI were calculated to depict uncertainty.

For each sample, sensitivity and specificity were calculated. In
detail, the receiver operating characteristic curve was used to derive
the false positive rate, true positive rate, and matched thresholds.
The optimal threshold for sensitivity (true positive rate) and
specificity (1 e [false positive rate]) were determined by identi-
fying the point on the receiver operating characteristic curve closest
to the top-left corner (0;1).

The mean was calculated as the overall pooled estimate. For the
95% CI, no direct percentile was utilized; instead, the mean and
standard deviation (SD) of the true positive rate across the different
folds were used. This approach provides true sensitivity and
specificity values within the given intervals with 95% probability,
helping to assess uncertainty around these estimates. This method
is particularly advantageous when dealing with limited sample size
or when variability in estimates needs to be addressed.

Furthermore, we calculated the average values for sensitivity,
specificity, and AUC across multiple classes. For each chosen
metric and class, the mean, as well as the lower and upper bounds
of the 95% CI, was calculated to allow for a more thorough
evaluation of potential uncertainties.

Feature Map

Feature maps were integrated to explore the location of features,
especially imprinting for the decision-making of the model. For
this, we implemented the GRAD-CAM module in PyTorch.26 For
result depiction, we randomly selected 1 picture multiple test sets,
with correct prediction after argmax implementation to previously
returned values.

Results

Data Characteristics

This retrospective study cohort consisted of 155 individuals
and a total of 293 mobilized scans.
3



Figure 1. Receiver operating characteristic (ROC) curves demonstrating
the capabilities of our deep learning model to distinguish the 3 different
classes using 2-dimensional OCT images. An “One-vs-All” approach is
employed, where each of the given classes is tested against the other 2
classes respectively. AUC ¼ area under the curve; CRAO ¼ central retinal
artery occlusion.
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In the CRAO group, 54% were male and 46% were fe-
male. For the differential diagnosis group, 47% were male
and 52% were female. Both groups had a minimum age of
43 years. The maximum age was 93 years for the CRAO
group and 98 years for the differential diagnosis group. The
mean age for the CRAO group was 73 years (SD, 10 years),
whereas it was 71 years (SD, 15 years) for the differential
diagnosis group (34 scans). The control group, which did
not exhibit significant findings, consisted of 50 contralateral
eyes OCT scans from CRAO patients, as well 159 OCT
scans from an additional control cohort. This additional
physiological subcohort had a male-to-female ratio of 55%
to 45%, with a mean age of 47 years (SD, 22 years; range,
21e89 years).

Model Performance

In our nested 5-K Fold Cross-Validation Method analysis,
we illustrate the model’s performance through 3 separate
graphs in Figure 1. Each graph represents the AUC curve for
1 class versus the other 2 in a one-vs-all calculation, as AUC
calculations display binary classification tasks. The return
and depiction of such a figure allow for the comparison of
the overall prediction capabilities of the model.

In our evaluation, all 3 classes demonstrated very high
AUC values, all above 0.90. The CRAO class exhibited the
best predictions with an AUC of 0.99 (95% CI, � 0.00),
followed by the control group with an AUC of 0.96 (95%
CI, � 0.01) The class for differential diagnoses with the
fewest correct predictions still showed a very high AUC of
0.90 (95% CI, � 0.03). The model demonstrated robust
prediction capabilities via 2D-OCT slides, especially for
CRAO, but for the other 2 classes.

Further exploration of the 95% CI curves allows for the
mean calculation sensitivity, specificity, and AUC for each
4

class. The control class achieved high results across all
metrics with a sensitivity of 0.89, specificity of 0.89, and
AUC of 0.96. The CRAO class received the highest values
across all 3 metrics with a sensitivity of 0.96, specificity of
0.97, and AUC of 0.99. The differential diagnosis class,
although having the lowest values among the 3, still showed
strong results with a sensitivity of 0.79, specificity of 0.83,
and AUC of 0.90.

Attention Map

The feature map, as shown in Figure 2, was obtained using
the GRAD-CAM approach. One correct predicted image
was randomly selected for each class. The color intensities
could be interpreted as for class physiological (Fig 2A), that
the macula and its surrounding spatial area are especially
emphasized for its calculations. Regarding the
pathomorphological changes to class CRAO (Fig 2B) and
the class differential diagnosis (Fig 2C), the model seems
to focus more on changes in the middle retinal layer,
particularly on the periphery of the macula. The images in
Figure 2 show the original input (Fig 2A, A1) before
entering the MLA on the left, and the GRAD-CAM pre-
dictions (Fig 2A, A2) on the right.

Discussion

Findings and Interpretation

We developed, validated, and tested anMLA to detect CRAO
from OCT imaging using a data set consisting of 293 eyes
including CRAO cases, their partner eye, healthy controls,
and a range of differential diagnoses with (sub) acute vision
loss. The effectiveness of this triple multiclass classification
was assessed using a nested five fold cross-validation method
to ensure broad generalizability and robustness. Our analysis
demonstrated a high discriminative power, with AUC values
of 0.96 for controls, indicating strong identification of healthy
cases; 0.99 for CRAO, showing high detection capabilities;
and 0.90 for differential diagnoses, indicating a lower yet
highly significant effectiveness.

The integrated feature map analysis visualized the regions
of interest the model considered important for its predictions
by providing insights into the MLA’s decision-making pro-
cess. For correct classification of control images, the MLA
primarily focused on the outer retinal membranes and cho-
riocapillaris segments reflecting its ability to recognize
normal anatomical features. In contrast, for CRAO cases, the
model highlighted a broader area, including regions from the
inner membrane to the choriocapillaris suggesting a complex
pattern of pathomorphological changes that the algorithm
identifies. The derived feature map visualization of the auto-
matically classified pictures by our convolutional neural
network algorithm supports the recently published data
reporting that layer thickness, as well as the opacity, are of
interest to describe pathomorphological development within
the acute phase of CRAO.11,17

With the mobilized differential etiologies, the result un-
derscores the potential of MLAs for automated and accurate
classification in ophthalmology, enabling CRAO



Figure 2. A selection of 2 dimensional OCT images, which serve as inputs for our deep learning model (shown on the left) and the GRAD-CAM feature
map calculations (displayed on the right). One sample picture of each of the 3 classes has been randomly selected. The 3 figure subparts represent (A)
physiological class, depicting normal retinal strucuture; (B) CRAO class, showing distinctive occlusion-related abnormalities; and (C) differential class,
displaying other (sub) acute retinal pathologies. CRAO ¼ central retinal artery occlusion.
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classification with a practicable data set in the emergency
setting. Our investigation highlights the use of pretrained
MLAs for detecting less common conditions like CRAO in
small data sets through OCT imaging. Our promising initial
results suggest that MLAs could have significant future
applications in ophthalmological emergencies.

Machine learning algorithms have been a key topic in
recent research for a broad spectrum of clinical computation
questions. Various research has provided information sup-
porting the possibility of MLA classification to a huge range
of etiologies from diabetic retinopathy over the retinal
detachment to retinal vein occlusion via fundus or ultra-
widefield color fundus pictures.27e29 OCT images were
utilized for correct classification of a spectrum of findings
with pathological characters, such as cystoid macular
edema, epiretinal membrane, or macular hole.30

Possible advantages of the construction of clinical deci-
sion support systems by MLA implementation are broad.
Besides its direct and imminent diagnosis capabilities,
MLAs offer low implementation and upkeeping costs for
supporting clinical decision-making. This could indirectly
support young ophthalmologists in decision-making
regarding diagnosis and monitoring. More experienced
ophthalmologists could be supported by the enhancement in
intelligent prescreening assessments. Especially regions
with a lower distribution of experienced ophthalmological
experts could benefit through the support of more intelligent
automatic local- or telemonitoring-driven systems.

Limitations

For future research, several challenges need to be addressed.
The current limitations come from the given relatively small
size of the data set and the limited range of differential di-
agnoses available in the emergency clinic setting. Expand-
ing the data set to include a wider variety of patients,
considering factors such as age, ethnicity, and the diversity
5
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of imaging equipment, could significantly enhance the
validation of the model’s performance. A larger collection
of CRAO images captured within the critical window for
potential thrombolysis treatment would be particularly
valuable, potentially facilitated by prospective multicenter
studies. A major limitation is the usage of only high-quality
imaging for classification, which may limit the algorithms’
application to practical clinical data. This could be
addressed by incorporating additional methodologies for
quality control prescreening. With the nested five fold cross-
validation method, we maximized our model and data set for
generalization and robustness; future studies should include
data from various OCT devices. Complementary analyses
could compare OCT images with other modalities such as
fundus photography or combine them, optimizing MLA
multiclass detection in ophthalmic tasks.

Outlook

Exploring other imaging techniques, such as fundus
photography, widefield photography, 3D-OCT volumes,
and OCT-angiography, could provide comprehensive in-
sights into CRAO, its treatment, and the estimation of the
possibility of treatment with intravenous thrombolysis
6

within an acceptable time frame in an emergency setting.
Integrating MLA with a multimodal approach could lead to
more accurate diagnoses and better patient outcomes.
Fundus photography with artificial intelligence features
could serve as a cost-effective screening tool for CRAO,
especially in emergency departments lacking OCT imaging
capabilities or hospitals that are not linked to an ophthal-
mology department. As health care delivery and accessi-
bility face challenges, such as the declining availability of
medical professionals, particularly in rural regions, the
integration of MLAs could strengthen interdisciplinary
communication and improve patient assessments.31,32

Summary

In summary, our study marks the exploration of using an
MLA to analyze a mixed data set of imaging from a spec-
trum of acute clinical cases, important differential di-
agnoses, and a control group for the detection of CRAO. We
demonstrated the MLA’s promising capabilities in accu-
rately identifying CRAO, significantly aiding in diagnosis
and triaging for potential thrombolysis therapy in emer-
gency settings, where rapid and accurate decision-making is
critical.
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