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Predicting prognosis in lung adenocarcinoma by predicting TIGIT 
expression: a pathomics model
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Background: Traditional diagnostic methods have limited efficacy in predicting the prognosis of lung 
adenocarcinoma (LUAD), T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-
based inhibitory motif domain (TIGIT) is a new biomarker. This study aimed to evaluate TIGIT expression 
as a LUAD biomarker and predict patient prognosis using a pathological feature model. 
Methods: Clinical data and pathological images from The Cancer Genome Atlas (TCGA) were analyzed. 
The prognostic value of TIGIT was verified by genetic prognostic analysis and gene set enrichment analysis 
(GSEA). The OTSU algorithm was used to segment LUAD pathological images, and features were extracted 
using the PyRadiomics package and standardized with z-scores. Feature selection was performed using min-
redundancy, recursive feature elimination (RFE) and stepwise regression algorithms, and a logistic regression 
algorithm was used to establish the pathomics model. Receiver operating characteristics, calibration, and 
decision curves were used for model evaluation. The pathomics score (PS) was used to predict TIGIT gene 
expression and analyze prognostic value and pathological mechanisms through Spearman correlation. 
Results: The study included 443 clinical samples and 327 pathological images. Prognostic analysis showed 
significantly higher TIGIT expression in tumor tissues (P<0.001), with TIGIT being a protective factor 
for overall survival (OS) in LUAD [hazard ratio (HR) =0.65; 95% confidence interval (CI): 0.44–0.95; 
P=0.03]. GSEA revealed significant enrichment of differentially expressed genes in the TGF-β and MAPK 
signaling pathways. From 465 pathological features, the four best features were selected to construct a 
pathomics model with good predictive performance. Higher PS values were observed in the TIGIT high-
expression group, correlating with improved OS (P=0.009). PS was positively correlated with the epithelial-
mesenchymal transition related (EMT-related) genes (WIPF1, GLIPR1, IL15) and immune checkpoints 
(ICOS, CTLA4, LAG3) (P<0.001). Increased abundance of G2/M checkpoint-related genes (MARCKS, 
CASP8AP2) and infiltration of CD8+ T cells and M2 macrophages were noted in the high PS group (P<0.05). 
Conclusions: TIGIT expression is significantly correlated with LUAD prognosis and can effectively 
predict patient outcomes.
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Introduction

Lung adenocarcinoma (LUAD), a type of non-small cell 
carcinoma (1), is typically managed with surgical resection. 
Nevertheless, for advanced-stage patients, the prognosis is 
dismal, with only a 15% 5-year survival rate (2). Conventional 
prognostic indicators for LUAD include clinicopathological 
features, laboratory diagnostic indicators, such as 
carcinoembryonic antigen and carbohydrate antigen 125, 
and computed tomography (CT) imaging. Due to limited 
specificity and subjective interpretation, they cannot meet 
the precision medicine demands of today’s clinical practice. 
Researchers are continuously exploring new prognostic 
markers, such as ALG3 (3), PZP (4), and TBL2 (5), aiming 
to refine patient prognosis stratification for personalized and 
precise treatment.

T cell immunoreceptor with immunoglobulin and 
immunoreceptor tyrosine-based inhibitory motif (ITIM) 
domains (TIGIT) is a co-inhibitory receptor found on the 
surface of lymphocytes (6), including CD4+ T and CD8+ T 
cells, natural killer (NK) cells, regulatory T cells (Tregs), 
and follicular helper T cells (Tfh). TIGIT’s overexpression 
on these cells allows tumors to evade the immune system by 
inducing and regulating immune cell activity, thus hindering 
antitumor immune responses at various stages of the 
tumor immune cycle (7). Researchers have demonstrated 
the potent inhibitory effect of TIGIT on tumor growth 
in knockout mouse models (8). TIGIT can also be used as 
a predictive biomarker and has been employed in efficacy 
detection for colorectal cancer (9) and gastric cancer (10).

At present, TIGIT expression can only be detected 
through peripheral blood cytokine assessment (real-time 
detection, expensive, lacks tumor-specific insights, and 

other defects) and messenger RNA (mRNA) [quantitative 
polymerase chain reaction (qPCR), RNA sequencing 
(RNA-seq)] or protein (Western blotting, flow cytometry, 
etc.) analysis in fresh tissue samples (challenging sample 
collection and operator- and antibody-dependent). 
Formalin fixation and paraffin embedding are commonly 
chosen for structural staining and immunohistochemistry. 
This method effectively preserves morphological details 
and biomarkers, offering a convenient and cost-effective 
approach to specimen preservation. Artificial intelligence 
has gradually been applied to pathology, introducing 
significant changes in the field. Pathomics refers to 
the transformation of pathological images into high-
fidelity, high-throughput, and mining data using artificial 
intelligence. It includes quantitative features, such as 
texture, morphology, edge gradients, and biological 
characteristics, and is used for quantitative pathological 
diagnosis, molecular expression, and disease prognosis  
(11-13). Hematoxylin and eosin stained (H&E-stained) 
sections are commonly used in clinical pathological 
diagnosis. They are easily obtainable, with mature staining 
technology, low cost, and no dependence on operators or 
antibodies, making them highly suitable for pathological 
research.

Based on these factors, this research presents a novel 
method for evaluating TIGIT expression in LUAD 
tissue through the utilization of pathomics technology. 
It concurrently incorporates bioinformatics analysis to 
investigate the potential molecular mechanisms underlying 
pathomics discoveries. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-24-978/rc).

Methods

Data source

Data were sourced from The Cancer Genome Atlas 
(TCGA)-LUAD dataset within the TCGA database (https://
portal.gdc.cancer.gov/). Following the exclusion of non-
primary LUAD cases, instances with missing follow-up 
data, cases with survival times less than 30 days, absent 
clinical data, and samples without RNA-seq data, the study 
encompassed the remaining patients for survival analysis.

Pathological images were retrieved from the TCGA-
LUAD dataset, and samples with unsatisfactory image 
quality were removed. Samples that did not align with 
clinical data and RNA-seq information were also excluded, 
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resulting in the selection of final pathological image samples 
(refer to Figure 1 for the screening process). The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The data in this investigation were 
acquired from publicly available databases; therefore, the 
study was exempt from ethical review.

Analysis of prognostic value

RNA-seq data were downloaded and organized in transcript 
per million (TPM) format. The R package “ggplot2” 
was used for visualization. We utilized the “surminer” R 
package to determine the cutoff value for TIGIT gene 
expression levels, subsequently classifying patients into 
high-expression and low-expression groups. Variations in 
survival rates across the distinct groups were visualized 
using Kaplan-Meier survival curves. We conducted 
univariate and multivariate Cox regression analyses with 
the R packages “survival” and “forestplot”. We performed 
an exploratory subgroup analysis utilizing univariate Cox 

regression to assess how TIGIT high expression and low 
expression affected patient prognosis in different subgroups 
for each covariate. To investigate the molecular mechanism 
underlying the expression disparities between the TIGIT 
high- and low-expression groups, we utilized the R package 
“clusterProfiler” to conduct gene set enrichment analysis 
(GSEA) on Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (c2.cp.kegg.v7.5.1.symbols.gmt) and Hallmark 
(h.all.v7.5.1.symbols.gmt) gene sets, and the first 20 
pathways were identified. 

Screening of pathological features

We obtained H&E-stained tissue pathological images from 
the TCGA database (https://tcga-data.nci.nih.gov/tcga/) in 
ScanScope virtual slide (SVS) format, which were prepared 
by embedding in formalin and paraffin, with a maximum 
magnification of either ×20 or ×40. Pathological image 
processing and segmentation (14) were performed using 
the OTSU algorithm (15) (https://opencv.org/) to obtain 

Figure 1 Data analysis workflow. (A) Inclusion criteria for the study. (B) Processing of the pathological images. (C) The process of 
establishing and evaluating the pathomics model. (D) The relevant mechanisms explored. TGCA, The Cancer Genome Atlas; LUAD, lung 
adenocarcinoma; mRMR, max-relevance and min-redundancy; RFE, recursive feature elimination; LR, logistic regression; ROC, receiver 
operating characteristic; AUC, area under the curve; DCA, decision curve analysis; PS, pathomics score.

http://c2.cp
https://tcga-data/
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tissue areas from pathological sections. Subsequently, image 
segmentation was applied at both ×40 and ×20 to multiple 
subimages of 1,024×1,024 pixels and 512×512 pixels; ×20 
images were upscaled to 1,024×1,024 pixels. The pathologist 
reviewed and excluded subimages with subpar image 
quality, including contamination, blurry images, or blank 
areas exceeding 50%. We randomly chose 10 subimages 
from each pathological image for subsequent analysis. 
Subsequently, we employed the PyRadiomics open-source 
package (https://pyradiomics.readthedocs.io/en/latest/) to 
standardize the subimages and extract features. Finally, the 
average value was considered the pathological characteristic 
of each sample for subsequent data analysis (16).

Construction of the pathomics model

The entire set of pathological images, gene matrices, 
and clinical information for the samples were randomly 
partitioned into training and validation sets, maintaining 
a ratio of 7:3. The pathological feature values from the 
training and validation sets were standardized using 
z-scores and the training set’s mean and standard deviation, 
respectively. We then conducted an intergroup difference 
analysis of the clinical variables between the datasets. 
Features with zero variance and those exhibiting strong 
correlations (Pearson correlation coefficient values higher than 
0.9) were removed using max-relevance and min-redundancy 
(mRMR), recursive feature elimination (RFE), and stepwise 
regression algorithms to filter out the optimal feature subset. 
A logistic regression (LR) algorithm was applied to fit the 
selected pathological features using the R “stats” package and 
establish a binary model for predicting gene expression.

Evaluation of the pathomics model

We assessed the calibration of pathological prediction 
models through the construction of calibration curves and 
the implementation of Hosmer-Lemeshow goodness-of-
fit tests. The clinical applicability of the pathological model 
was established by decision curve analysis (DCA). 

Clinical intersection samples and survival analysis

The pathomics score (PS) for the overlapping samples was 
computed using the pathomics model. PS was combined 
with clinical data, and a cutoff value for PS was determined, 
categorizing it into a binary variable (low/high). Survival 
analysis, Cox regression, and subgroup analysis were carried 

out using steps similar to those in section “Analysis of 
prognostic value”.

Pathological mechanism analysis

We investigated the relationship between PS and epithelial-
mesenchymal transition (EMT) gene expression using 
Spearman correlation analysis. We also conducted a 
difference analysis between the PS high and low groups and 
G2/M checkpoint gene expression using Wilcox. test (comes 
from the “Analysis of prognostic value” pathway enrichment 
results). Representative pathway-related genes were 
subjected to correlation analysis, and the LUAD sample 
gene expression matrix was uploaded to the CIBERSORTx 
database (https://cibersortx.stanford.edu/) to determine 
each sample’s immune cell infiltration.

Statistical analysis

All clinical quantitative indicator results were expressed as 
mean and standard deviation. The differences between each 
indicator’s results were compared using independent sample 
t-tests for normally distributed quantitative data, or the 
Mann-Whitney U test for non-normally distributed data. 
The chi-squared test was used for categorical variables. The 
log-rank test was used to determine the significance of the 
survival rate between groups. TIGIT expression and other 
factors were examined for interactions using the likelihood 
ratio test. By drawing the calibration curve and conducting 
the Hosmer-Lemeshow goodness-of-fit test, the forecast 
model was calibrated on the pathology evaluation set. To 
examine the variations between the high and low TIGIT 
and PS groups, the Wilcoxon test was employed. P<0.05 
and a 95% confidence interval (CI) were used to determine 
statistical significance. The R program was used for all 
statistical studies (version 4.1.0).

Results

Baseline data

A survival analysis was conducted on a cohort of 327 LUAD 
patients from the TCGA database who were stratified 
into two groups: TIGIT high expression (n=197) and low 
expression (n=130), determined by applying a cutoff value 
of 1.0425 for TIGIT expression.

The patients’ clinical information is presented in  
Table 1. No significant disparity was observed in the 

https://pyradiomics.readthedocs.io/en/latest/


Journal of Thoracic Disease, Vol 16, No 11 November 2024 7621

© AME Publishing Company. J Thorac Dis 2024;16(11):7617-7629 | https://dx.doi.org/10.21037/jtd-24-978

Table 1 Features of The Cancer Genome Atlas cohort of patients

Variables Total (n=327) High (n=197) Low (n=130) P

Gender, n [%] 0.53

Female 183 [56] 107 [54] 76 [58]

Male 144 [44] 90 [46] 54 [42]

Age (years), n [%] 0.46

<66 164 [50] 95 [48] 69 [53]

≥66 163 [50] 102 [52] 61 [47]

Pathologic stage, n [%] 0.41

I/II 265 [81] 163 [83] 102 [78]

III/IV 62 [19] 34 [17] 28 [22]

Radiotherapy, n [%] 0.46

No 293 [90] 179 [91] 114 [88]

Yes 34 [10] 18 [9] 16 [12]

Chemotherapy, n [%] 0.71

No 219 [67] 134 [68] 85 [65]

Yes 108 [33] 63 [32] 45 [35]

Smoking status, n [%] 0.74

Nonsmoker 41 [13] 23 [12] 18 [14]

Former 204 [62] 126 [64] 78 [60]

Current 82 [25] 48 [24] 34 [26]

Residual tumor, n [%] 0.24

R0 220 [67] 136 [69] 84 [65]

R1/R2 13 [4] 5 [3] 8 [6]

RX/unknown 94 [29] 56 [28] 38 [29]

Histologic type, n [%] 0.48

NOS 204 [62] 128 [65] 76 [58]

Others 56 [17] 32 [16] 24 [18]

Mixed subtype 67 [20] 37 [19] 30 [23]

Tumor location, n [%] 0.76

L-lower 56 [17] 34 [17] 22 [17]

L-upper 76 [23] 47 [24] 29 [22]

R-lower 63 [19] 38 [19] 25 [19]

R-middle 14 [4] 6 [3] 8 [6]

R-upper 118 [36] 72 [37] 46 [35]

NOS, not otherwise specified; L, left; R, right. 
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distribution of clinical characteristics, including gender, age, 
and pathological stage, between the high and low TIGIT 
expression groups.

High TIGIT expression is a protective factor for overall 
survival (OS)

The analysis of intergroup differences between tumor 
and normal tissues showed that tumors expressed TIGIT 
at a considerably greater level (P<0.001) (Figure 2A). A 
strong relationship between increased OS and elevated 
TIGIT expression was highlighted by the Kaplan-
Meier curve (P=0.01) (Figure 2B). In the univariate Cox 
analysis [hazard ratio (HR) =0.63; 95% CI: 0.44–0.92; 
P=0.02] and the multivariate analysis (HR =0.65; 95% CI: 
0.44–0.95; P=0.03), TIGIT high expression was found to 
be a protective factor for OS. In order to better visualize 

all the characteristics of the data and avoid the influence 
of individual extreme values on the visualization, log2 
was taken for HR in the process of drawing (Figure 2C). 
Exploratory subgroup analysis revealed that elevated 
TIGIT served as a significant protective factor against OS 
in subgroups younger than 66 years (HR =0.51; 95% CI: 
0.30–0.86). The interaction test’s P value of 0.23 shows that 
TIGIT’s impact on OS was similar between the two age 
groups (Figure S1A). The top 20 pathways in the Hallmark 
gene set were identified by GSEA, demonstrating that 
signaling pathways such as the G2/M checkpoint and EMT 
were significantly enriched in differentially expressed genes 
in the low and high TIGIT groups (Figure 2D). Differential 
genes indicated considerable enrichment in the TGF-β 
and MAPK signaling pathways in the high and low TIGIT 
groups, and GSEA displayed the top 20 pathways in the 
KEGG gene collection (Figure S1B). 

Figure 2 Relationship between TIGIT and clinical features. (A) Differential analysis of tumor versus healthy tissue. (B) Relationship 
between TIGIT expression and OS. (C) Univariate and multivariate Cox regression analysis. We performed log2 processing of HR. (D) 
GSEA in the Hallmark gene set. ***, P<0.001. TIGIT, T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based 
inhibitory motif domain; TPM, transcript per million; OS, overall survival; HR, hazard ratio; CI, confidence interval; NOS, not otherwise 
specified; L, left; R, right; GSEA, gene set enrichment analysis.
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Screening of pathological features

A total of 465 features were extracted, encompassing 93 
original features, including first-order and second-order 
features, along with higher-order features, such as wavelets 
[low-low (LL), low-high (LH), high-low (HL), high-high 
(HH)]. The P>0.05 differential analysis of each variable 
between groups demonstrated comparability between the 
groups (Table S1). The mRMR method was used to select 
the top 30 features, followed by RFE feature screening 
(Figure 3A), ultimately resulting in four features using a 
stepwise regression algorithm (Figure 3B).

Building and assessing the pathomics model

A model was built using the LR algorithm in the training set. 
Table 2 lists the regression coefficients for the characteristics 
of the LR model. In the training and validation sets, the 
model’s area under the curve (AUC) values were 0.735 
(Figure 3C) and 0.738 (Figure 3D), respectively, as indicated 

by the receiver operating characteristic (ROC) curve. The 
Hosmer-Lemeshow goodness-of-fit test and calibration 
curve demonstrated that the pathological prediction model 
had a high degree of agreement between the actual value 
and the projected likelihood of gene overexpression (P>0.05) 
(Figure 3E,3F), and DCA confirmed the model’s clinical 
applicability (Figure 3G,3H).

PS high expression is the protection factor in OS

In the training set, the PS distribution of the high and low 
TIGIT molecular groups differed significantly (P<0.001). 
The high TIGIT expression group exhibited elevated PS 
values, and this pattern aligned with the validation set’s 
findings (Figure 4A,4B). The cutoff value of the predicted 
PS value from the LR model was 0.542, and patients 
were split into groups according to their PS expression 
levels: 197 in the high group and 130 in the low group  
(Table S2). Incorporating them into the survival analysis 

Figure 3 Pathological image feature selection, model establishment, and evaluation. (A) RFE feature screening for six characteristics. (B) 
The stepwise regression algorithm obtained the final four features. (C) ROC curve of the training set. (D) ROC curve of the validation set. 
(E) Calibration curve for the training set. (F) Calibration curve for the validation set. (G) DCA curve of the training set. (H) DCA curve of 
the validation set. glcm, gray-level co-occurrence matrix; MCC, maximal correlation coefficient; ROC, receiver operating characteristic; 
AUC, area under the curve; Dxy, the rank correlation between the predicted probability and the observed value; R2, Nagelkerke-Cox-Snell-
Maddala-Magee R-squared index; D, discrimination index; U, unreliability index; Q, quality index; S:z, Z value of Spiegelhalter Z-test; S:p, 
P value of Spiegelhalter Z-test; DCA, decision curve analysis. 
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Figure 4 Clinical characteristics and PS correlation. (A) Difference analysis between tumor tissue and normal tissue in the training set. 
(B) Study of the variations between the validation set’s normal and malignant tissues. (C) Relationship between PS high/low and OS. (D) 
Univariate and multivariate Cox regression analysis. OS, overall survival; PS, pathomics score; HR, hazard ratio; CI, confidence interval; 
NOS, not otherwise specified; L, left; R, right.

Table 2 The coefficients of the features in the LR algorithm

Features Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.509848505 0.151270552 3.370441223 0.000750479

wavelet_HL_glcm_ClusterShade −0.827517113 0.209353981 −3.952717343 7.73E−05

wavelet_HH_firstorder_Skewness 0.28227864 0.191334092 1.475318053 0.140127055

wavelet_LL_firstorder_Median 0.669757441 0.172515604 3.882300642 0.000103473

wavelet_LH_glcm_MCC 0.480485434 0.161624622 2.972847999 0.002950505

LR, logistic regression; Std. Error, standard error; Pr(>|z|), P values of the z-test were applied to the regression coefficients; glcm, gray-
level co-occurrence matrix; MCC, maximal correlation coefficient. 
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unveiled a strong correlation between increased PS and 
better OS (P=0.009) based on the Kaplan-Meier curve 
(Figure 4C). Elevated PS expression served as an OS 
preventive factor (Figure 4D). Subgroup analysis suggested 
that there was no significant interaction between PS and the 
different age subgroups (Figure S2).

Correlation analysis between model prediction results (PS) 
and pathway genes

A more thorough examination of the relationship between 
PS and the expression of EMT-related genes, namely 
WIPF1, GLIPR1, and IL15, showed a strong positive 
association (P<0.001) between PS and the expression 
of these genes (Figure 5A). Depending on the degree of 
immune cell infiltration in every sample, the abundance of 
CD8+ T cells and M2 macrophage infiltration significantly 
increased in the high PS group (P<0.05) (Figure 5B). The 
high PS group had significantly higher (P<0.05) expression 
of MARCKS and CASP8AP2, as revealed by differential 
analysis of genes associated with the G2/M checkpoint 

(Figure 5C). A substantial positive association (P<0.001) was 
found in the correlation analysis between PS and immune 
checkpoint-related gene expression, including ICOS, 
CTLA4, and LAG3 (Figure 5D).

Discussion

In contrast to normal tissues, tumor tissues exhibit higher 
levels of TIGIT expression, which this study examined and 
verified. Increased TIGIT expression and better OS were 
significantly correlated, according to the survival analysis. 
Both univariate and multivariate Cox regression analyses 
unequivocally confirmed that high TIGIT expression 
conferred a protective effect against OS. These findings 
provide substantial evidence that TIGIT may serve as a 
prognostic biomarker. We established a pathomics model 
using histopathological images to predict the expression of 
the main variable, TIGIT. Our results distinctly indicate 
that the pathological models could effectively predict 
TIGIT expression, thereby enabling LUAD prognosis.

Currently, the detection of TIGIT expression levels can 

Figure 5 The correlation between PS and pathway gene analysis. (A) Investigation of the relationship between PS and EMT gene 
expression. (B) Immune cell abundance differences between groups with high and low PS. (C) Correlation analysis of PS high and low 
groups and immune checkpoint expression. (D) Difference analysis between the PS high and low groups and G2/M checkpoint. ns, not 
significant; *, P<0.05; **, P<0.01; ***, P<0.001. PS, pathomics score; EMT, epithelial-mesenchymal transition.
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only be done through the following methods: detection 
of peripheral blood cytokines, detection of mRNA 
or protein levels based on fresh tissue specimens, and 
detection based on paraffin tissue specimens. All of these 
methods are subject to subjective influence of operators, 
antibodies, and high prices. Take immunohistochemistry 
(IHC) as an example. A large number of studies have 
found that diagnostic immunohistochemistry tests have 
performance differences between laboratories and cannot 
quantitatively and objectively evaluate the sensitivity 
of immunostaining (17). For example, in malignant 
mesothelioma, IHC specificity is not high and there is no 
exclusive specific antibody (18). However, H&E-stained 
sections are necessary for clinical diagnosis and are the 
most easily accessible image data. The pathomics model 
can digitize tissue slice information. By extracting digital 
features that cannot be observed by eye, it can analyze the 
characteristics of diseased tissues to a greater extent and 
has a good ability to predict the microscopic or molecular 
phenotype of tumors. For example, Chen et al. used the 
pathomics model to predict the prognosis of bladder cancer, 
and the model had good prediction performance (19). 
We constructed an objective batch pathomics prediction 
model for TIGIT expression in LUAD, with an AUC of 
0.735 for the training set and 0.738 for the validation set. 
Based on the current criterion that AUC >0.7 is a good  
performance (20), the pathomics prediction model 
for TIGIT expression in LUAD has good prediction 
performance. In addition, the calibration curve shows 
that the model has a good calibration degree; DCA shows 
that the model has a high clinical net benefit. Through 
pathomics, objective, batch, and accurate prediction of 
TIGIT expression can be achieved.

While TIGIT has predominantly commanded attention 
for its response to immune therapy efficacy, our study 
was uniquely tailored to explore its role in prognosis. 
Notably, our findings conform to those of Li et al. (21), 
which suggested that high TIGIT expression in LUAD is 
indicative of better OS. Moreover, the prognosis of oral 
cancer patients has been shown to improve due to elevated 
TIGIT expression (22). According to Zhong et al.’s (23) 

research, individuals with myelodysplastic syndrome 
who are younger than 60 years old and have high TIGIT 
expression have a lower OS rate. Zou et al.’s (24) study also 
reported shorter OS in TIGIT-positive cervical cancer 
patients with human papilloma virus (HPV) infection. 
These disparities could be attributed to the difference in the 

immune environments of various cancers, signifying that the 
same molecule may play different roles in different tumors. 
In this study, higher TIGIT expression levels predicted a 
better prognosis.

In the subsequent mechanism research, we observed 
that the immunological infiltration of CD8+ T cells and 
M2 macrophages was substantially linked with the PS 
based on TIGIT. Previous studies have demonstrated 
a close relationship between CD8+ T cells and TIGIT 
expression (25). TIGIT has the ability to directly impair 
CD8+ T cell function, thereby thwarting their tumor-
killing effect (26). Additionally, M2 macrophages are 
immune cells, and TIGIT, being an immunosuppressive 
molecule, typically suppresses immune responses by 
negatively regulating immune cell signaling pathways (27). 
Therefore, we speculate that our research findings may be 
the reason for the upregulation of immune checkpoints in 
the immune microenvironment in the high-TIGIT group. 
The enrichment analysis conducted in the subsequent study 
focused on the EMT and G2/M checkpoint pathways. The 
expression of EMT genes, such as WIPF1, GLIPR1, and 
IL15, and the PS showed a strong positive connection. In 
the high PS group, the expression of the G2/M checkpoint-
related genes MARCKS  and CASP8AP2  displayed 
significant augmentation. These findings have prompted us 
to explore the regulatory nexus between EMT genes, G2/
M checkpoint-related genes, and the immune checkpoint 
TIGIT in our forthcoming mechanistic research. 

Although EMT usually predicts a poor prognosis in the 
vast majority of studies, how TIGIT regulates EMT needs 
further mechanistic studies. We believe that it is necessary 
to discuss the significance of TIGIT for the prognosis 
of LUAD. In our study, we found that high expression 
of TIGIT (HR =0.65; 95% CI: 0.44–0.95; P=0.03) was a 
protective factor for OS. In previous studies, the effect of 
TIGIT on prognosis was analyzed in 33 types of cancer, 
and it was found that TIGIT played a completely different 
role in different cancers. High expression of TIGIT was 
associated with poor prognosis in kidney renal clear cell 
carcinoma (KIRC), kidney renal papillary cell carcinoma 
(KIRP), low-grade glioma (LGG), and uveal melanoma 
(UVM), and with good prognosis in breast cancer (BRCA), 
head and neck squamous cell carcinoma (HNSC), and 
cutaneous melanoma (28). A meta-analysis of solid 
tumors in East Asian populations found that no effect of 
TIGIT on tumor OS prognosis was found in 8 studies, 
and TIGIT was found to be a risk factor for tumor OS 
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prognosis in the remaining studies (25). Therefore, the 
role of TIGIT in tumors may be affected by tumor type 
and regional population, which still needs further research 
and exploration. Although the role of TIGIT in cancer is 
still controversial, it is undeniable that TIGIT has become 
an important indicator for lung cancer prognosis and 
immunotherapy.

It is widely acknowledged that ICOS, CTLA4, and LAG3 
are also common immune checkpoints. In our study, there 
was a significant positive correlation between PS and the 
expression of these immune checkpoints. This may explain 
the improved efficacy of the combination of immune 
checkpoints in clinical practice (29-32).

The application of pathological models to forecast 
clinical prognosis is a simple and convenient method. 
Cai et al. (33) studied 759 H&E-stained images from a 
multicenter cohort to construct a pathological model for 
predicting the malignant transformation of oral leukoplakia. 
Using pathological images from 480 patients with gastric 
cancer, Chen et al. (34) harnessed machine learning to 
construct a predictive model for gastric cancer prognosis. 
However, the predictive ability of a solitary image feature 
has its constraints; therefore, we employed LR algorithms 
to combine image features, enhancing the precision of 
prognosis prediction. The advantage of this study is that we 
not only extracted pathological features but also combined 
TIGIT molecules. Because of this, the model can forecast 
the expression of TIGIT molecules and thus the prognosis 
of individuals with LUAD, which is economical, fast, and 
highly accurate.

Nonetheless, there are some limitations in this study. 
For example, the data source was based on public databases, 
which introduced notable heterogeneity in both images and 
data. In addition, the sample size was small, necessitating 
substantial verification with large cohorts in future work. 
The images may have had selective offsets, and potential 
selective biases may have influenced the images. However, 
our pioneering use of pathological models for TIGIT 
molecule prediction represents a noteworthy contribution 
to the realm of clinical precision medicine.

Conclusions

As a molecular marker for LUAD prognosis research, 
TIGIT expression exhibits a substantial correlation with 
this condition’s prognosis. Employing pathological models 
to predict LUAD prognosis is convenient, economical, and 
effective.
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