Table 2. The coefficients of the features in the LR algorithm.
Features | Estimate | Std. Error | z value | Pr(>|z|) |
---|---|---|---|---|
(Intercept) | 0.509848505 | 0.151270552 | 3.370441223 | 0.000750479 |
wavelet_HL_glcm_ClusterShade | ā0.827517113 | 0.209353981 | ā3.952717343 | 7.73Eā05 |
wavelet_HH_firstorder_Skewness | 0.28227864 | 0.191334092 | 1.475318053 | 0.140127055 |
wavelet_LL_firstorder_Median | 0.669757441 | 0.172515604 | 3.882300642 | 0.000103473 |
wavelet_LH_glcm_MCC | 0.480485434 | 0.161624622 | 2.972847999 | 0.002950505 |
LR, logistic regression; Std. Error, standard error; Pr(>|z|), P values of the z-test were applied to the regression coefficients; glcm, gray-level co-occurrence matrix; MCC, maximal correlation coefficient.