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ABSTRACT: The Chepaizi Uplift, situated on the western edge of the X TS T2SE
Junggar Basin in northwestern China, has recently become a significant target I\ Zaire Mountain . 44
area for in situ leach sandstone-type uranium exploration. The Neogene & i Fan delta plain

Shawan Formation, a newly identified uranium-bearing layer, has gained \\\ Chepaizi

considerable attention for its potential. This study utilizes scanning electron &

microscopy (SEM), X-ray powder diffraction (XRD), whole-rock geo- U, &

chemistry, and electron probe microanalysis (EPMA) of uranium minerals. T el -
Combined with sedimentological and tectonic background analysis, these S ‘“ ek T
methods were applied to investigate geochemical characteristics and uranium S & El%f;L:.L::El.s
mineralization processes. The sandstones in the Shawan Formation are Eranite = s
primarily lithic sandstone and subarkose, with the provenance dominated by it

felsic rocks from the upper crust. Coffinite is the predominant uranium e e e e

mineral, accompanied by titanium—uranium oxides and minor amounts of

pitchblende. Coffinite appears as colloidal coatings around framboidal pyrite, in short-prismatic aggregates corroding albite, and as
banded structures within calcite cement. Elemental ratios indicate that the Shawan Formation’s paleo-hydrological environment was
arid, continental, and brackish, with paleo-redox conditions reflecting a hot, dry climate. Uranium mineralization occurred in two
stages: initially, uranium-containing oxygenated waters migrated laterally across slope zones, forming a redox transition zone and
resulting in the pre-enrichment of uranium. Subsequently, hydrocarbons migrated along faults and unconformities, leading to
secondary reduction of the interlayer oxidation zone and resulting in uranium enrichment and mineralization at the interface of
grayish-green and gray sandstone layers.

1. INTRODUCTION south.'*™"” However, research on the western margin of the
Junggar Basin is relatively underdeveloped, and no break-

Sandstone-type uranium deposits are characterized by their
throughs have been made in prospecting efforts. Substantial

large scale, economic viability, and ease of extraction, making

them the most widely utilized type of uranium deposit globally. natural gamma anomaly boreholes were discovered during oil
The Junggar Basin, a large basin in northern China with rich exploration by China National Petroleum Corporation and
coal, oil, and gas resources, is also a key area for in situ leach Sinopec Group in the Chepaizi Uplift in the western Junggar
sandstone-type uranium exploration." Since the Cenozoic era, Basin,”””" with high natural gamma anomalies primarily found
the Junggar Basin has been in a relatively stable sedimentary in the Neogene Shawan Formation conglomerates and
state, resulting in the formation of extensive sedimentary slope gristone.22 This indicates a promising prospect for mineral
belts along its margins. Furthermore, the region has exploration in this area. Thus, the Chepaizi Uplift is not only a

experienced arid to semiarid climatic conditions since the
Neogene, providing favorable structural and climatic con-
ditions for sandstone-type uranium mineralization.””
Currently, geological party no. 216 (China National Nuclear
Corporation, CNNC) has made successive discoveries of
interlayer oxidation zones and associated industrial uranium
ore bodies in various regions of the Junggar Basin, including
the Kamust area,* ® the Beisantai area,’ '® and the
Jiangjunmiao area in the east,' "% as well as in the Dingshan
area in the north"”™'° and the Louzhuangzi area in the

key area for oil extraction but also a promising region for
sandstone-type uranium exploration. The potential for sand-
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Figure 1. Division of structural units in the Junggar basin and geological sketch of Chepaizi Uplift (Revised from Mao et al.*”) Adapted with

permission from ref 27. Copyright: [Uranium Geology, 2023].

stone-type uranium mineralization in this area warrants further
analysis and research.

Currently, scholars have extensively studied the distribution
of sand bodies in the Chepaizi Uplift since the Neogene and
their influence on hydrocarbon accumulation patterns. Most
existing research focuses on sedimentary structures,”””’
tectonic evolution,™* hydrogeochemical characteristics,”® and
the assessment of mineralization potent1a1 2627 However,
research on the formation mechanisms of sandstone-hosted
uranium deposits in this area is relatively lacking, limiting
breakthroughs in the exploration of such deposits in the
Chepaizi Uplift. Therefore, this research focuses on the newly
discovered industrial uranium boreholes in the Neogene
Shawan Formation of the Chepaizi Uplift. Through petro-
logical, mineralogical, and geochemical methods, this research
systematically analyzes the properties of the Shawan Formation
sandstone parent rocks, tectonic background, and uranium
mineral characteristics, providing a basis for understanding the
metallogenic mechanisms of Neogene sandstone-type uranium
deposits in the Chepaizi Uplift of the Junggar Basin.

2. GEOLOGICAL SETTING

The Junggar Basin, located in northwest China, is rich in
multiple energy resources such as oil, gas, and coal (Figure 1a).
The Junggar Block belongs to the Paleo-Asian Ocean tectonic
domain, and the Junggar Basin mainly consists of six structural
units: the Western Uplift, the Ulungur Depression, the Luliang

Uplift, the Central Depression, the Eastern Uplift, and the
Northern Tianshan Fold and Thrust Belt (Figure 1b).**”
The Chepaizi Uplift is situated on the western edge of the
Junggar Basin, with a length of approximately 100 km from
north to south and a width of 20—95 km from east to west,
forming an inverted irregular triangle (Figure 1c). The
southern part of the Chepaizi Uplift is adjacent to the Sikeshu
Depression, the northern part borders the Zaire Mountain, and
the eastern part connects to the Shawan Depression.”* The
Chepaizi Uplift trends northwest-southeast, with uneven
internal uplift. The northwestern part, near the front of Zaire
Mountain, exhibits the highest uplift, gradually decreasing
toward the southeast, forming a gently southward-dipping
monocline (Figure 1d).*® The average leaching rate of active
uranium in the exposed K-feldspar granite of Zaire Mountain is
2.62%. Additionally, since the Neogene, alternating wet and
dry climates and tectonic movements during the Yanshanian
and Himalayan periods have intensified groundwater circu-
lation. These factors provide the Chepaizi Uplift with the
necessary conditions for forming sandstone-type uranium
deposits, including a rich uranium source, a large-scale slope
belt, a favorable groundwater recharge-flow-discharge system,
and a suitable redox environment.”’

The stratigraphy of the Chepaizi Uplift includes the Lower
Cretaceous Tugulu Group (K;tg), the Neogene Shawan
Formation (N;s), Taxihe Formation (N,t), Dushanzi For-
mation (N,d), and Quaternary sediments (Q) (Figure 1d).
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Figure 2. Comprehensive diagram of YC2023 borehole in Chepaizi Uplift.

The uranium-bearing target layer is the Neogene Shawan
Formation, which can be further subdivided into the first
(N;,S,), second (N;S,), and third (N,S;) members. The first
member (N;S;) is divided from bottom to top into three sand
groups.’””" The first sand group (N;S;') mainly consists of
thick layers of conglomerate, gritstone, medium sandstone and
fine sandstone, with occasional thin mudstone interbeds. The
second sand group (N;S,*) is primarily composed of thick
mudstone layers. The third sand group (N;S,*) mainly consists
of thick conglomerate layers and exhibits a significant uranium-
induced gamma-ray anomaly (Figure 2).

3. SAMPLES AND ANALYTICAL METHODS

3.1. Sample Collection and Petrographic Analysis.
Fourteen samples were collected from well YC2023 in the
Chepaizi Uplift, with the sampling interval taken from fresh
core samples of the Shawan Formation at a depth of 580 to
680 m. The lithology primarily consists of gray gritstone,
medium sandstone, grayish-green fine sandstone and mud-
stone, black oil-impregnated sandstone, and light brown
conglomerate. The samples were sent to Nanjing Mineral
Exploration Technology Co., Ltd. for thin section preparation.
Microscopic petrographic observations and clastic grain
composition analysis were conducted at the Basic Geology
Laboratory of the School of Earth Sciences, East China
University of Technology. The microscope used in this study
was a Zeiss Axiolmager M2m.

3.2. XRD, SEM and EPMA Analyses. The X-ray powder
diffraction (XRD) analysis and uranium mineral morphology
studies for this research were completed in the Scanning
Electron Microscope Laboratory of the State Key Laboratory
of Nuclear Resources and Environment at East China
University of Technology. The XRD analysis was conducted
using a Bruker D8 ADVANCE X-ray diffractometer, with a
relative deviation of less than 20% for the content of each
mineral in the samples and less than 10% for clay minerals. The
Cu target X-ray tube operated at a voltage of <40 kV and a
current of <40 mA, with the goniometer set in the 8/6 mode.
The scanning range was 5—80°, with a goniometer precision of
0.0001° and an accuracy of <0.02°. The scanning electron
microscope (SEM) used was a Zeiss Gemini Sigma 300 VP
SEM, operating at an acceleration voltage of 20 V to 30 kV.
The microchemical composition of uranium minerals was
analyzed using an electron probe (EPMA) at the State Key
Laboratory of Nuclear Resources and Environment, East China
University of Technology. The equipment used was a JXA-
8530F electron probe coupled with an Inca Energy
spectrometer. The testing conditions were as follows: an
acceleration voltage of 15.0 kV, a probe current of 20.0 nA, and
a beam spot diameter of <2 um. All testing processes strictly
adhered to the national standard GB/T 15617-2002.%3

3.3. Geochemical Analysis of Whole Rock Elements.
The major and trace element compositions were determined
by X-ray fluorescence (XRF-1800; SHIMADZU) on fused
glasses and inductively coupled plasma mass spectrometry
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Figure 3. Photomicrographs showing the typical sandstone samples from Shawan Formation in Chepaizi Uplift. (a) Medium to coarse-grained
sandstone of the Shawan Formation. (b) Plagioclase single crystal with illitization on the surface. (c) Quartz crystal displaying undulatory
extinction. (d) Perthite crystal. (e) Microcline with well-developed grid twinning. (f) Fine-grained granite lithic fragment. (g) Rhyolite rock
fragment with flow structure. (h) Granite breccia with a cataclastic texture. (i) Granite lithic fragment with calcite dissolution along the edges and
interior. Q: Quartz; Mc: Microcline; Kfs: K-feldspar.; Pl: Plagioclase; Pth: perthite; Cal: Calcite; Lit: lithic fragments.

(PlasmaQuant MS; Analytikjena) after acid digestion of
samples in Teflon bombs, at Createch Testing Tianjin
Technology Co., Ltd. Loss on ignition was measured after
heating to 1000 °C for 3 h in a muffle furnace. The precision of
the XRF analyses is within +2% for the oxides greater than 0.5
wt % and within +5% for the oxides greater than 0.1 wt %.
Sample powders (about 50 mg) were dissolved in Teflon
bombs using a HF + HNO; mixture for 48 h at about 190 °C.
The solution was evaporated to incipient dryness, dissolved by
concentrated HNO; and evaporated at 150 °C to dispel the
fluorides. The samples were diluted to about 100 g for analysis
after redissolved in 30% HNO; overnight. An internal standard
solution containing the element Rh was used to monitor signal
drift during analysis. Analytical results for USGS standards
indicated that the uncertainties for most elements were within
5%.

4. RESULTS

4.1. Petrography and Mineralogy. The sandstones of
the Shawan Formation can be divided into fine sandstones,
medium sandstones, and gritstone based on grain size. The
sandstones exhibit moderate sorting, poor roundness, and are
commonly cemented by calcite. The composition mainly
includes quartz, feldspar, lithic fragments, biotite, muscovite,
and pyrite (Figure 3a). The quartz grains in the Shawan
Formation have relatively smooth surfaces, with embayed
edges caused by dissolution (Figure 3b) and exhibit undulatory

extinction (Figure 3c). Feldspar primarily consists of
plagioclase (Figure 3d) and microcline (Figure 3e). The lithic
fragments are mainly derived from fine-grained granite (Figure
3f) and rhyolite (Figure 3g), with rhyolitic fragments
developing flow structures and a few granitic breccias showing
graphic textures (Figure 3h). Some lithic fragments have edges
or interiors that have become indistinct due to calcite
dissolution (Figure 3i).

4.2. XRD Analysis Results. X-ray diffraction analysis was
performed on selected samples from different layers of the
Shawan Formation, including oil-immersion sandstones (YCS,
YC6), uranium-bearing sandstones (YC12, YCI1S, YC16),
nonmineralized sandstones (YC21, YC24, YC2S5), and
oxidized conglomerates (YC34). The main minerals in the
Shawan Formation of the Chepaizi Uplift are K-feldspar,
microcline, quartz, muscovite, calcite, and some clay minerals.
In the lower reduced zone, the quartz content in the oil-
immersion sandstones range from 55.39% to 59.44%, with an
average of 57.42%. Muscovite content ranges from 2.66% to
6.10%, with an average of 4.38%, and there are trace amounts
of calcite and K-feldspar. In uranium-bearing sandstones, the
quartz content ranges from 50.23% to 59.47%, with an average
of 54.55%. These sandstones are generally cemented by calcite,
with calcite content ranging from 16.86% to 21.87%, averaging
19.73%. The K-feldspar content ranges from 13.32% to
20.18%, with an average of 16.16%. There is also a small
amount of Illite present, ranging from 2.73% to 4.3%, with an
average of 2.73%. In nonmineralized sandstones, the quartz
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content is relatively lower, ranging from 36.04% to 43.11%,
with an average of 39.18%. The K-feldspar content is also
lower than in mineralized sandstones, ranging from 4.73% to
12.14%, with an average of 8.81%. Illite content ranges from
491% to 8.09%, with an average of 6.38%, and kaolinite
content ranges from 6.41% to 11.9%, with an average of 8.98%.
In the upper oxidized zone, the quartz content in the
conglomerate is only 6.46%, but the gypsum content is high
at 83.93%. The XRD analysis results indicate that as depth
decreases from deep to shallow, the degree of weathering in
the Shawan Formation increases. The content of weathering-
resistant minerals such as K-feldspar and microcline gradually
decreases, while the amount of clay minerals increases. The
dominant clay mineral type shifts from Illite to kaolinite
(Figure 4).

4.3. Major Element Characteristics. The SiO, content in
the Shawan Formation samples from the Chepaizi Uplift
ranges from 43.89% to 89.76%, with an average of 58.74%. The
CaO content ranges from 0.47% to 23.02%, with an average of
13.95%. The Al,O; content varies between 4.03% and 17.28%,
with an average of 7.66%. K,O content ranges from 1.44% to
2.78%, with an average of 1.9%. Na,O content ranges from
0.87% to 2.33%, with an average of 1.3%. MgO content ranges
from 0.14% to 3.58%, with an average of 0.14%. TiO, content
varies between 0.1% and 0.88%, with an average of 0.29%.
Fe,0; content ranges from 0.07% to 5.77%, with an average of
1.75%. FeO content ranges from 0.1% to 2.4%, with an average
of 0.64%. P,O; content ranges from 0.02% to 0.21%, with an
average of 0.06%. MnO content ranges from 0.01% to 0.15%,
with an average of 0.05%. The combined Na,O + K,O content
ranges from 2.32% to 4.74%, with an average of 3.2%. The
K,0/Na,O ratio ranges from 1.03% to 1.7%, with an average
of 1.49% (Table 1).

4.4. Trace Element and Rare Earth Element Charac-
teristics. The trace element concentrations of 14 samples
from different zones of the Chepaizi Uplift are shown in Table
2. The large ion lithophile elements (LILEs) Rb, Sr, and Ba in
the Shawan Formation show a slight depletion relative to the
upper continental crust.*® In contrast, the high field strength
elements (HFSEs) Y, Nb, Zr, and Th exhibit similar

distribution characteristics, with average contents close to
those of the upper continental crust (Figure Sa).

The total rare earth element (XREE) content in the Shawan
Formation sandstones ranges from 16.5 to 170.45 ppm, with
an average of 61.61 ppm. The light rare earth elements
(LREEs) range from 13.99 to 154.97 ppm, with an average of
54.08 ppm, while the heavy rare earth elements (HREEs)
range from 2.3 to 18.25 ppm, with an average of 7.53 ppm,
showing a clear enrichment in REEs. The LREE/HREE ratio
varies between 4.31 and 10.1 ppm, with an average of 6.69
ppm, indicating significant LREE enrichment, HREE deple-
tion, and a high degree of differentiation between LREEs and
HREEs. The LREE fractionation coefficient (La/Sm)y ranges
from 2.1 to 5.08 ppm, with an average of 3.57 ppm. In
comparison, the HREE fractionation coefficient (Gd/Yb)y
ranges from 0.86 to 1.75 ppm, with an average of 1.33 ppm,
indicating that LREE fractionation is higher than that of
HREEs. The chondrite-normalized REE distribution curves
show a slightly right-leaning “V” shape with moderate negative
Eu anomalies (Figure Sb). The parallel distribution patterns of
the REE curves across different samples suggest a similar and
relatively stable source of material.

4.5. Chemical Compositions of Uranium Minerals. In
the uranium-bearing sandstones of the Shawan Formation
within the Chepaizi Uplift, the primary uranium mineral is
coffinite, followed by smaller amounts of pitchblende and
titanijum—uranium oxides (Table 3). The UO, content in
coffinite ranges from 55.23% to 65.27%, averaging 61.81%. The
SiO, content ranges between 6.18% and 12.58%, with an
average of 8.88%. The CaO content varies from 1.91% to
7.67%, averaging 4.6%. The MoOj; content ranges from 1.11%
to 3.48%, with an average of 2.33%. Compared to pitchblende,
coffinite generally exhibits a lower UO, content, higher SiO,
content, and relatively stable CaO content. In pitchblende, the
UO, content ranges from 80.62% to 85.49%, averaging
83.03%. The SiO, content is between 0.61% and 1.61%,
averaging 1.09%. The CaO content ranges from 0.03% to
4.92%, with an average of 2.21%. Overall, pitchblende shows
higher UO, content and lower SiO, and CaO content.
Titanium—uranium oxides have UQO, content ranging from
43.44% to 58.72%, with an average of 53.03%. Their SiO,
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Table 2. continued

light gray uranium mineralized zone light brown zone

black oil zone

grayish-green zone

YC3

samples

YCS YC6 YC9 YC10 YCI12 YC13 YC15 YC16 YC17 YCI19 YC27 YC32
154.9

YC23
142.8

25.31 29.17 20.67 14.20 35.28 13.99 116.4 96.3

17.03
3.5

26.30

20.76
2.

43.85

LREE

16.08 14.76

2.70
5.19
5.34
2.4

2.09

0.3

5.27
6.70
6.18
191
2.81
0.54
0.99
0.58
5.25
1.58
81.64

U/(0.5%(Th/3 + U)).*®

2.30
6.16
6.00
2.06
1.92
0.19
0.99
1.30
341
091
65.15

4.00
5.16
5.09
1.63
2.84
12

0.98
1.31
3.16
1.45

84.0

6.76
4.31
3.95
3.67
3.84
0.7

0.99
1.65
222
0.86

109.7

4.66
5.43
4.87
3.66
2.08
1.00
0.98
1.64
0.9

1.38

59.35

15.48

10.01
10.89

2.99
8.80
9.49
8.02
3.82

0.3

52

18.25

6.15
7.13
7.83
3.15
S.12

0.7

HREE

6.52
7.58
2.10
3.79
1.36
0.6

0.9

1.68
0.37
9.55

7.24
891

2.1

4.86
3.93
2.20
2.10
0.62
0.99
0.99
4.25
1.17

177.1

Gd + Tb + Dy + Ho + Er + Tm + Yb + Lu. 6U

8.25
8.63
8.22
3.30

0.3

7.82
8.77
1.74
2.56
1.57
0.78
1.24
2.48
0.58
6.03

LREE/HREE
(La/Yb)N
La/Sc

1.71
3.38

3.7

3.24
1.30
0.55
1.49

3.1

La/Th

Co/Th
ouU

0.98
0.3
17.9

0.99
1.70
2.51
3.02
28.10

0.71
13§
4.14
0.32
61.85

0.71
1.0

4.12
0.31

61.14
La + Ce + Pr + Nd + Sm + Eu, HREE

0.98
1.80
4.40
1.41

135.6

V/Cr

Ni/Co
Sr/Ba

0.46
7.

1.39
85.87

Sr/Cu
“N is standard for chondrite. LREE

content ranges between 1.86% and 3.51%, with an average of
2.74%. The CaO content varies from 3.32% to 9.08%, with an
average of 6.08%, and the TiO, content ranges from 19.02% to
27.23%, with an average of 23.38%.

Based on the morphology, distribution, and associated
mineral assemblages, uranium minerals in the Shawan
Formation exhibit the following three modes of occurrence:

(1) Uranium minerals are primarily found between clastic
particles, mainly as pitchblende and coffinite. Pitch-
blende grains are smaller, around 5 um, appearing as
irregular granular particles located within quartz fissures
(Figure 6a) or apatite pits (Figure 6b), and are
commonly associated with zircon (Figure 6c). Coffinite
grains range from 5 to 60 ym in size, forming irregular
clumps or granular aggregates that dissolve albite
(Figure 6d), and are distributed along the edges, cracks,
or pits of clastic albite (Figure 6Ge).

(2) Uranium minerals, predominantly coffinite, coexist with
pyrite. Coflinite appears as colloidal around framboidal
pyrite (Figure 6f) or as irregular masses at the edges of
framboidal pyrite (Figure 6g).

(3) Uranium minerals, mainly coffinite, are found within
calcite cements. Coffinite occurs as banded, dispersed
grains (Figure 6h), or microgranular aggregates filling
calcite dissolution pits (Figure 6i). Titanium—uranium
oxides are irregularly distributed between sparry calcite

(Figure 6j).

5. DISCUSSION

5.1. Rock Types and Provenance. The composition of
sandstone is directly influenced by the properties of the source
rock, which undergoes a series of processes including erosion,
weathering, transportation, deposition, and diagenesis, all of
which can significantly affect the sandstone’s composition. The
Chemical Index of Alteration (CIA) is an effective metric for
reflecting the degree of weathering of the source rock.”” A
higher CIA value indicates a higher degree of chemical
weathering, with values between 50%—70% representing weak
weathering, 70%—80% indicating intermediate weathering, and
values greater than 80% suggesting strong weathering. The A-
CN-K triangulation which can represent the CIA value.’**
The three end elements are Al,O;, CaO* + Na,O and K,O.
The CIA index ranges from 54% to 73.35% (with an average of
60.68%), which is significantly higher than the upper crust
average of 49.21%, indicating weak weathering (Figure 7a).
Additionally, the index of compositional variability (ICV) is
often used to evaluate the degree of change in the original
composition of clastic rocks, helping to determine whether the
clastic rocks represent first-cycle sediments or are derived from
recycled sediments or those that have undergone strong
weathering.”> The ICV value ranges from 0.59 to 5.88 with an
average of 3.3. Except for some black oil-immersed sandstone
and grayish-green mudstone, the ICV values of mineralized
sandstone and oxidized sandstone are all greater than 1. It
shows that the composition of sandstone is low, and it is the
first deposit in the tectonic belt, and it has not experienced the
process of sedimentary recycling.

Major elements can be used to determine the classification
and compositional maturity of sedimentary rocks. The
sandstone types in the Shawan Formation include lithic
sandstone, subarkose and greywacke (Figure 7b). The
discrimination diagrams (F1—F2, F3—F4) for source rock

https://doi.org/10.1021/acsomega.4c07825
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Figure S. Chondrite and primitive mantle normalized spider diagrams for sandstone and mudstone of the Shawan Formation. (a) Primitive mantle-
normalized trace element distribution curves. (b) Chondrite-normalized rare earth element distribution curves. Chondrite and primitive mantle-
normalized data are taken from Sun and McDonough.37

Table 3. EPMA Results of Uranium Minerals in Sandstone of Shawan Formation (Composition in %; bdl, Below Detection

Limit)
no. Si0, ALO; MgO CaO NaO TiO, FeO Y,0; P,O;
1 7.65 1.65 0.40 3.29 1.00 2.92 0.82 0.15 1.09
2 6.72 1.90 0.34 3.09 1.13 3.11 0.60 bdl 1.22
3 6.33 1.77 0.24 3.51 0.63 2.47 0.70 0.05 0.99
4 11.48 1.69 0.27 2.81 0.65 242 0.68 0.10 1.01
S 9.45 3.37 0.37 5.72 0.72 3.10 0.67 bdl 0.79
6 11.78 441 0.35 3.26 0.54 3.32 0.78 0.08 1.14
7 10.88 1.95 0.28 422 1.03 2.37 0.81 0.02 1.09
8 8.50 2.68 0.55 4.81 1.16 2.32 0.98 bdl 1.11
9 6.96 1.96 0.39 6.51 091 2.82 1.00 0.02 1.14
10 6.18 1.84 0.36 5.86 0.96 2.18 0.94 0.04 0.82
11 7.47 2.31 0.42 191 0.78 2.30 0.77 0.13 0.90
12 10.00 2.75 0.20 2.88 2.51 3.36 045 bdl 0.87
13 12.59 3.99 0.50 5.86 0.71 2.54 0.79 bdl 0.68
14 9.28 1.80 0.39 7.64 1.02 2.31 1.30 bdl 0.85
15 8.00 2.18 0.31 7.68 0.98 2.24 0.50 0.11 0.86
16 0.92 0.02 0.03 3.74 0.05 bdl 0.54 0.08 2.82
17 1.31 0.06 0.03 4.92 0.05 bdl 0.60 0.22 5.48
18 0.61 bdl bdl bdl 0.25 bdl bdl 2.27 0.01
19 1.61 bdl bdl 0.03 0.13 bdl bdl 1.47 0.05
20 1.01 bdl bdl 0.14 0.17 bdl 0.01 1.17 0.10
21 3.32 1.63 0.31 3.32 1.05 27.23 3.12 bdl 1.04
22 2.50 0.84 0.21 5.28 0.85 26.07 0.65 bdl 1.00
23 3.51 1.29 0.19 6.45 1.05 19.02 1.76 0.04 0.94
24 1.86 0.34 0.13 9.08 0.80 21.73 041 bdl 1.22
25 2.51 0.79 0.16 6.29 0.97 22.86 0.48 0.12 1.22

U0, PbO ThO, MoO; MnO  total type

62.44 bdl bdl 1.92 0.49 83.82 coffinite

65.11 bdl bdl 2.68 0.43 86.33 coffinite

64.99 bdl bdl 2.42 0.43 84.53 coffinite

62.50 bdl bdl 2.63 0.22 86.46 coffinite

62.57 bdl bdl 2.78 0.51 90.05 coffinite

57.18 bdl bdl 3.27 0.35 86.46 coffinite

62.35 bdl bdl 291 0.48 88.39 coffinite

59.51 bdl bdl 1.49 0.55 83.66 coffinite

64.15 bdl bdl 2.56 0.51 88.93 coffinite

65.14 bdl bdl 1.11 0.74 86.17 coffinite

61.42 bdl bdl 1.24 0.26 7991 coffinite

59.62 bdl bdl 1.73 0.35 84.72 coffinite

55.23 bdl bdl 2.75 0.57 86.21 coffinite

65.27 bdl bdl 2.08 1.11 93.05 coffinite

59.71 bdl bdl 3.48 0.83 86.88 coffinite

85.29 1.94 1.28 0.09 0.57 97.37 pitchblende

82.90 1.84 091 0.01 0.67 99.00 pitchblende

80.62 2.47 2.86 bdl bdl 89.09 pitchblende

80.88 243 3.76 bdl bdl 90.36 pitchblende

85.49 1.50 1.88 bdl 0.03 91.5 pitchblende

43.44 bdl bdl 6.18 0.64 91.28 titanium—uranium oxide
56.20 bdl bdl 2.18 0.52 96.3 titanium—uranium oxide
51.52 bdl bdl 7.70 0.75 94.22 titanium—uranium oxide
55.27 0.01 bdl 1.06 0.67 92.58 titanium—uranium oxide
58.72 bdl bdl 1.07 0.58 95.77 titanium—uranium oxide

types can effectively differentiate provenance areas.”* Most
samples fall within the fields of felsic igneous rock sources and
near the intersection with intermediate igneous rock sources,
with a few samples falling within the quartzose sedimentary
provenance region (Figure 7c,d). Trace elements (such as Th,
Sc, La, and Co) and their ratios also provide valuable
indicators of the provenance of clastic rocks. The La/Th—Hf
diagram shows that the samples are located within the felsic
island arc source region (Figure 7e)."' The Co/Th—La/Sc
diagram indicates that the source rocks for the Shawan
Formation are primarily felsic volcanic rocks, with some
samples falling near the granitic and andesitic fields (Figure
7£).** Combined with the geological context, the sandstones of
the Shawan Formation are primarily composed of felsic
material with a minor intermediate component.

48689

5.2. Tectonic Environment. Inert trace elements such as
La, Th, Zr, and Sc are minimally affected by weathering and
diagenetic processes, making them useful indicators of the
tectonic background and evolutionary patterns of the source
area.’®*® The samples are primarily located in the continental
island arc region (Figure 8), indicating that the tectonic setting
of the Shawan Formation is primarily dominated by a
continental island arc environment.

Located in the southern part of the Paleo-Asian Ocean
tectonic domain, the Junggar Basin is an essential component
of the Central Asian Orogenic Belt. The Carboniferous-
Permian period was the main orogenic and basin-forming
stages of the basin.*** Since the Jurassic, the Zaire Mountain
in the northern Chepaizi Uplift has gradually risen, forming a
belt of Carboniferous to Permian intermediate-acidic volcanic
clastic rocks. South of the Chepaizi Uplift, the North Tianshan

https://doi.org/10.1021/acsomega.4c07825
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Figure 6. Back scattering image of uranium minerals in Shawan Formation. (a) Short columnar pitchblende. (b) Pitchblende in apatite pits. (c)
Pitchblende in contact with zircon, distributed in quartz fractures. (d) Collophane coffinite encapsulating framboidal pyrite. (e) Coffinite aggregates
distributed along the edges of framboidal pyrite. (f) Banded coffinite in calcite fractures. (g) Coffinite aggregates corroding albite. (h) Massive
coffinite in calcite dissolution cavities. (i) Coffinite corroding albite. (j) Titanium—uranium oxides in calcite dissolution cavities. (k) Disseminated
titanium—uranium oxides in calcite microfractures. (1) Massive titanium—uranium oxides corroding quartz. Pit: Pitchblende; Cof: Coffinite; Ti—U
oxide: Titanijum—uranium oxide; Py: Pyrite; Cal: Calcite; Q: Quartz; Zr: Zircon; Rt: Rutile; Ap. Apatite; Ab: Albite; Kfs: K-feldspar.

has experienced intense thrusting since the Mesozoic, leading
to the development of an ophiolitic mélange belt."*

Previous studies have determined the age of the granodiorite
porphyry in the Baogutu area on the southern margin of Zaire
Mountain to be 310—319 Ma.’”>" The age of the alkaline
granite exposed in the Miaoergou pluton is 309 + 1.4 Ma.””™>*
The age of the alkaline granite in the Akebasitao pluton is 303
+ 3 Ma, while the age of the Karamay pluton alkaline granite is
3132 + 2.5 Ma.” In the Sikeshu Depression, located in the
southern part of the Chepaizi Uplift, a large number of
Carboniferous-Permian intrusive rocks are exposed.”® The
lithology and formation ages are as follows: quartz diorite
(324.1 + 4.3 Ma), monzogranite (3149 + 4.1 Ma), and
potassic granite (311.5 + 3.9 Ma).”” Combining this with the
zircon age of approximately 344 + 3.4 Ma from the Bayingou
diabase, it is preliminarily concluded that the formation age of
the North Tianshan suture zone is about 311.5—344 Ma,"’
with the main collisional orogeny occurring between 311 and
324 Ma’® The detrital zircon U—Pb age peaks in the
sandstone of the first member of the Shawan Formation
(N;s;') in the Chepaizi Uplift are 312 and 336 Ma.”” This

corresponds to the major magmatic activity in the Zaire
Mountain on the northwest margin of the Chepaizi Uplift,
indicating that the source supply direction was primarily from
the northwest, ie., the Zaire mountain. The U—Pb ages of
detrital zircons in the sandstone of the second member of the
Shawan Formation (Ns;*) exhibit multiple peaks, with the
primary peak at 374 Ma and secondary peaks at 293 and 403
Ma.>” The zircon ages of the second member of the Shawan
Formation (Ns,®) also show multiple peaks, reflecting a
source superposition area with contributions primarily from
the northwest Zaire Mountain and the southern North
Tianshan. Due to the remote impact of the collision between
the Indian Plate and the Eurasian Plate, the Tianshan
experienced intense compression and uplift, leading to the
formation of a strongly asymmetrical sedimentary pattern
within the Junggar Basin, which provided abundant clastic
sediments to the Chepaizi Uplift. The observation of numerous
granite fragments (Figure 3f) and rhyolite fragments (Figure
3g) under the microscope further provides necessary
supporting evidence for the above viewpoint.
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Figure 8. Discrimination diagram of trace elements for tectonic background of the Shawan Formation (Revised from Bhatia and Crook®®). ACM:
active continental margin. OIA: oceanic island arc. CIA: continental island arc. PM: passive continental margin. Adapted from ref 58 Copyright:

[Contributions to Mineralogy and Petrology, 1986].

5.3. Reconstruction of Sedimentary Environment.
The trace element properties in clastic sedimentary rocks are
influenced by the nature of the source area’s parent rocks and
the tectonic setting.sg_é3 Ratios of environmentally sensitive
trace elements can reflect changes in depositional environ-
ments, such as paleo-oxidation—reduction conditions, paleo-
salinity, and paleoclimate (Table 4). The V/(V + Ni) ratio in
the sandstone of the Shawan Formation ranges from 0.42 to
091, with an average of 0.71, indicating moderate water
stratification, smooth circulation, and a suboxic aquatic
environment. The V/Cr ratio ranges from 0.3 to 1.8, with an
average of 1.24, suggesting oxidizing environment. The 6U
ratio ranges from 0.55 to 0.99, with an average of 0.87, also
indicating oxidizing environment. The Sr/Ba ratio ranges from

0.31 to 3.02, with an average of 1.08, indicating a continental
brackish water environment with relatively high salinity. The
Sr/Cu ratio ranges from 6.03 to 177.1, with an average of
69.47, suggesting a dry and hot paleoclimate.®*

The CIA and ICV indices reveal a distinct vertical trend:
CIA values initially decrease before rising, while ICV values
increase, followed by a sudden drop. This pattern reflects
fluctuations in the weathering intensity of source rocks, shifting
from strong to weak and back to strong, suggesting the
influence of thermal events in the source area since the
Neogene. Basin evaporation was significant, and water salinity
was relatively high. The paleoenvironment likely featured an
arid, continental, semisaline water setting with paleoredox
conditions indicative of a weakly oxidizing, hot, and dry
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Table 4. Geochemical Paleoclimate Environment Reconstruction Discriminant Index

palaeoredox condition

Discrimination sample data/average values in this oxidizing
parameters study anoxic environment environment reference
anaerobic hypoxic
environment environment
V/(V + Ni) 0.42—0.91/0.71 0.4—0.6 0.6—0.84 >0.84 Hatch and Leventhal®
V/Cr 0.3—1.8/1.24 >4.25 2-425 <20 Tribovillard et al.®®
o5U 0.55-0.99/0.87 >1.0 <1.0 Lecomte et al.*®

paleosalinty condition

discrimination parameters sample data/average values in this study marine seawater terrestrial freshwater

reference

brackish water environment

>1.0

0.6—1.0

microhaline environment

<0.6

Sr/Ba

0.31-3.02/1.08

Wang et al”’

paleoclimatic condition

discrimination parameters sample data/average values in this study arid and hot climate tropical and humid climate reference
Sr/Cu 6.03—177.1/69.47 >5.0 <5.0 Lerman®®
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Figure 9. Sedimentary environment evolution of the Shawan Formation.
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Figure 10. Uranium mineralization model of the Shawan Formation in the Chepaizi Uplift, Junggar Basin. (Revised from Liu et al.”*). Adapted with

permission from ref 75. Copyright: [Minerals, 2022].

climate (Figure 9). While such an environment is conducive to
the migration of uranium, it is not favorable for the
preservation of uranium deposits. However, current findings
reveal that the uranium-bearing layers are all located in the
upper parts of the oil-bearing strata, where oil stains and traces
are visible in the mineralized sandstone bodies. Under the
microscope, sparry calcite also shows signs of hydrocarbon
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fluorescence. It is preliminarily speculated that hydrocarbon
leakage provided an external reducing agent for the uranium
mineralization in the Shawan Formation.

5.4. Discussion on Uranium Mineralization. The
Carboniferous magmatic rocks in the eroded margin area of
the northwestern Chepaizi Uplift, particularly in the Zaire
Mountain region, are highly developed and mainly consist of
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intermediate to acidic magmatic rocks.”” Notably, the biotite
potassium granite in the Miaoergou area of Zaire Mountain
contains uranium concentrations ranging from 0.64 X 107° to
328 X 1075 with an average of 1.7 X 1075 thorium
concentrations range from 3.65 X 107 to 12.04 X 10_6,
with an average of 8.25 X 1075 The Th/U ratio is between
2.24 and 10.0, with an average of 5.15.%° The leaching rate of
active uranium is 1.64% to 3.59%, with an average of 2.62%,
the highest among the periphery of the Junggar Basin.”””" This
indicates that these plutons have provided a uranium source to
the interior of the Chepaizi Uplift after diagenesis. The
porosity of the sandstone in the Shawan Formation ranges
from 22.9% to 39.7%, with an average of 33.66%, and
permeability ranges from (54.1—9490) X 107 ym?, with an
average of 3436.8 x 107> um>.”* This reflects the high porosity
and good permeability of the sandstone, which can serve as
effective conduits for the migration of uranium-bearing fluids.
Influenced by the regional Darbut Fault in the northwest, the
uranium-rich granites in Zaire Mountain have undergone
intense destruction, leading to well-developed structural fissure
water systems. Atmospheric precipitation and glacier meltwater
favor the recharge of the Neogene aquifer groundwater, while
uranium- and oxygen-bearing water flows or is artesian along
the slope of the Shawan Formation, facilitating the infiltration
and migration of oxygenated groundwater carrying active
uranium through the sandstone bodies of the Shawan
Formation. During the early Neogene, the climate was
humid, shifting to semiarid conditions in the Pliocene, and
becoming arid in the Pleistocene and Holocene, characterized
by alternating wet and dry periods.”” The uplift of the crust
during the Quaternary Himalayan orogeny led to a drop in
groundwater levels and intensified groundwater circulation.
The oxidation zone extends deeply along sandstone layers,
promoting the activation and migration of uranium, increasing
its concentration in water, and resulting in pre-enriched within
the redox transition zone (Figure 10a).

Additionally, the Chepaizi Uplift is located adjacent to
hydrocarbon-generating depressions. In the Shawan depression
to the east, high-maturity, organic-rich lacustrine source rocks
of the Middle Permian Wuerhe Formation have developed.”
To the south, the Sikeshu depression features a coal-bearing
lacustrine and swamp facies sequence from the Lower Jurassic
Badaowan Formation, which has reached the hydrocarbon
generation threshold.”* Tectonic movements have induced the
formation of intralayer fractures, enabling deep-seated cracked
gas from oil and associated gases to migrate upward along
faults and fractures into the more porous sandstone layers of
the Shawan Formation, making the Chepaizi Uplift a favorable
reception area for long-term hydrocarbon migration. The
hydrocarbons and their derivative reducing agents, such as H,S
and CH,, reduce Fe** in the sandstone to Fe?*. This reduction
transforms the originally yellow sandstone, formed under
oxidizing conditions, into grayish-green sandstone under
weakly reducing conditions, creating potential ore-hosting
strata. The highly reducing hydrocarbon fluids reduce activated
US uranyl compounds to stable U** coffinite, leading to the
precipitation and enrichment of uranium at the interface
between the gray and grayish-green sandstone bodies (Figure
10b). Moreover, the hydrocarbon fluids can establish a strong
reductive geochemical barrier, which is conducive to the
preservation of uranium deposits in later stages.
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6. CONCLUSION

(1) The main types of uranium minerals in the Shawan
Formation are coffinite, followed by titanjum—uranium
oxides and minor amounts of pitchblende. Coffinite, is
found in three distinct forms: as colloidal inclusions
enveloping framboidal pyrite, as short prismatic
aggregates eroding albite, and as banded or irregular
masses distributed among calcite cement.

The elemental ratios such as U, V/Cr, V/(V + Ni), Sr/
Ba, and Sr/Cu indicate that the Shawan Formation was
influenced by Neogene thermal events, with significant
evaporative processes in the basin. The water salinity
was relatively high, and the ancient water medium was
characterized as an arid continental semisaline environ-
ment. The overall paleoredox conditions were indicative
of a weakly oxidizing dry and hot environment.

()

(3) Uranium mineralization occurs in two stages. In the
early stage, uranium-containing oxygenated water
migrated laterally along slope zones, where uranium
became pre-enriched in the redox transition zone. In the
later stage, hydrocarbons ascended along unconformities
and fault structures, leading to the secondary reduction
of the interlayer oxidation zone in the Shawan
Formation, resulting in uranium mineralization and
enrichment at the interface between gray and grayish-
green sandstone bodies.
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