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and Alberto Naldoni*

Cite This: ACS Omega 2024, 9, 48205−48212 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Controlling the overall geometry of plasmonic materials allows for
tailoring their optical response and the effects that can be exploited to enhance the
performance of a wide range of devices. This study demonstrates a simple method
to control the size and distribution of gold (Au) nanoparticles grown on the
surface of spaced titanium dioxide (TiO2) nanotubes by varying the deposition
time of magnetron sputtering. While shorter depositions led to small and well-
separated Au nanoparticles, longer depositions promoted the formation of quasi-
continuous layers with small interparticle gaps. The optical spectra of Au/TiO2
nanotubes showed a region of strong absorption (200−550 nm) for all samples
and a region of decreasing absorption with an increase of effective Au thickness
(550−1100 nm). This behavior led to distinct trends in the Raman signal enhancement of the underlying TiO2 nanotubes
depending on the excitation laser wavelength. Furthermore, the quasi-continuous layers formed at higher effective Au thicknesses
promoted an amplification of the signal and an improvement in the detection limit of target molecules in surface-enhanced Raman
scattering (SERS) experiments. These findings suggest a simple method for designing efficient devices with tailored light absorption
and potential applications in detectors and other optical devices.

■ INTRODUCTION
Over the last decades, plasmonic materials have held great
importance across various fields due to their unique ability to
manipulate and confine light at subwavelength levels and to
transform photon energy into heat.1 The resonance wavelength
of these materials and consequently their optical absorption
can be adjusted through the manipulation of size, morphology,
and overall geometry of their nanostructures as well as the
permittivity of the surrounding medium.2−4 In addition,
another intriguing characteristic of plasmonic resonances is
their ability to interact with and couple with each other. The
interaction between localized surface plasmon resonances
(LSPRs) among multiple close-by nanoparticles (NPs) leads
to spectral shift and intensification of such resonances, forming
the so-called electromagnetic hot-spots.5,6 The strength of this
coupling and the resulting electric field depend crucially on the
gap between the NPs and increase exponentially with a
decrease in the gap.6,7 Tailoring these properties is critical to
enhance the performance of plasmonic devices in a wide range
of applications, such as SERS,8−10 photothermal therapy,11−13

solar-thermal conversion,14,15 and photocatalysis.16,17

To optimize the wavelength and intensity of plasmonic
resonances, sophisticated template-based procedures such as
electron-beam lithography and nanoimprinting offer precise
control over the shape, size, and interunit gap or distance of
plasmonic nanostructures. However, these methods can be
time-consuming and costly, and their resolution hardly allows

the realization of arrays of very small (∼10 nm) close-packed
NPs.18−20 Therefore, it is necessary to develop simple and
scalable fabrication methods to realize plasmonic devices with
tailored optical properties for a wider range of applications. For
example, template-assisted self-assembly of plasmonic metals
demonstrated significant potential to achieve ultrahigh optical
absorption.15,21−23 In this strategy, plasmonic NPs are
deposited by a physical vapor deposition process into 3D
porous structures (such as anodic alumina nanoporous and
natural wood), leading to the fabrication of size-distributed
NPs with different shapes. Morphological features of the
underlying material, therefore, such as the degree of disorder
and the pore diameters, have a strong impact on the optical
properties of the so-obtained plasmonic nanostructures.15,24 In
this context, utilizing anodic TiO2 nanotubes (NTs) as a
template emerges as a compelling choice, not only due to the
ability to precisely control the structure and pore morphology
of TiO2 NT arrays through manipulating anodization
parameters,25,26 but also due to their photocatalytic properties
that provide an intriguing structure for a broader range of
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applications. For instance, TiO2 NTs can be designed as
spaced NTs, which enable the reduction of light reflection,
leading to higher light absorption relative to their close-packed
counterparts,26−28 and coating of both the inner and outer
surfaces of tubes. While research on template-assisted self-
assembly of plasmonic metals has primarily focused on their
photothermal applications,15,23,29 the exploration of their SERS
performance remains relatively unexplored.
In this work, we designed a series of spaced TiO2 NTs/Au

films with different optical absorption profiles and investigated
them as SERS substrates for the detection of organic
molecules. Specifically, TiO2 NTs were fabricated through
electrochemical anodization, and then, Au NPs were deposited
using magnetron sputtering. This approach allowed tailoring
the average NP size and interparticle gap distance by
controlling the sputter deposition thickness (time), leading
to tailored optical properties with two distinct spectral regions
of light absorption. Raman spectroscopy experiments with a
green laser excitation wavelength revealed a significant
decrease in the intensity of underlying TiO2 signals with

increasing Au effective thickness. On the contrary, Raman
spectra excited with red laser light demonstrated stronger TiO2
signals for samples with lower absorption and higher thickness
of Au. This suggested a higher density of electromagnetic hot-
spots on the TiO2 NTs coated with quasi-continuous Au
layers. This conclusion was further supported by SERS
measurements, which revealed higher activity of these samples
for detecting Rhodamine 6G (Rh6G) compared to TiO2/Au
samples featuring small and dispersed NPs. Therefore, this
work provides a simple and feasible method for fabricating
diverse plasmonic nanostructures and tailoring their overall
properties for diverse applications.

■ RESULTS AND DISCUSSION
The fabrication of a range of TiO2 NTs/Au substrates
featuring tailored absorption profiles and different densities
of Au NPs was initiated by the anodization of Ti foil in a two-
electrode electrochemical cell for 3 h at a constant applied
voltage of 60 V between the electrodes (Figure 1a) to obtain
TiO2 NTs as a template. The fabricated NTs exhibited well-

Figure 1. Fabrication and characterization of spaced TiO2 NT arrays. (a) Schematic illustration of the anodization setup employed for the
fabrication of TiO2 NTs. (b−d) SEM cross-sectional (b), top-view (c), and TEM (d) images of NT arrays anodized at 60 V for 3 h. (e) X-ray
diffraction patterns of as-prepared (blue) and air-annealed (red) TiO2 NT arrays.

Figure 2.Morphology of TiO2 NTs/Au substrates with different effective thicknesses of Au. (a−j) SEM (first row) and TEM (second row) images
of the uppermost portion of NTs deposited with (a, b) 25 nm, (c, d) 50 nm, (e, f) 75 nm, (g, h) 100 nm, and (i, j) 125 nm of Au. Scale bars in (a,
b) are applicable to all SEM (first row) and TEM (second row) images, respectively.
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aligned and distinct structures with a mean length of 5 μm,
mean outer and inner diameters of ≈275 and ≈245 nm,
respectively, and an average center-to-center distance of 480
nm (Figure 1b−d). Furthermore, the as-prepared NTs
exhibited a relatively short-range order. Such features are in
agreement with previous works reporting spaced TiO2
NTs.26,28 X-ray diffraction (XRD) analysis (Figure 1e) of as-
prepared TiO2 NTs detected only the characteristic peaks of
metallic Ti substrate, implying the amorphous structure of the
as-prepared NTs, as typical of anodized TiO2.

25,30 Crystal-
lization into the anatase phase was promoted by air annealing
at 450 °C for 2 h. A minor rutile fraction was also revealed by a
small diffraction peak at 2θ ≈ 32°.
TiO2 NTs/Au substrates were achieved by coating the

annealed NTs with different amounts of Au NPs by magnetron
sputtering. The effective thickness of Au, specifically ∼25, 50,
75, 100, and 125 nm, was varied to control the NPs’
distribution and morphology on the surface of the NTs and,
further, to decrease the diameter of the NTs themselves, as
revealed by SEM and TEM imaging (Figure 2). At the 25 nm
thick Au deposition, the average diameter of NTs diminished
to ≈240 nm (Figure 2a), and well-dispersed irregularly shaped
NPs with a random size distribution, averaging ≈2 nm in
diameter, appeared on the uppermost portion of the surface of
NTs (Figure 2b). As the thickness of the deposited Au
increased to 50 nm (Figure 2c,d), a further decline in the
diameter of NTs (≈220 nm) was observed and the small NPs
partially coalesced into slightly bigger ones (ranging from 1 to
10 nm and with a mean size of ≈5 nm) with higher density
(i.e., smaller interparticle gaps) and random size distribution
on the surface. A similar trend was observed by further
increasing the effective thickness of the Au deposition to 75
and 100 nm (Figure 2e−2h), where a decrease in the diameter
of TiO2 NTs and a coalescence of NPs into bigger particles
with higher density and reduced interparticle spacing persisted.

Finally, the highest thickness of Au (125 nm) led to a further
decrease of the mean diameter of NTs (≈160 nm) and to the
formation of a quasi-continuous layer of Au (NPs spaced by a
distance of ≈1 nm; Figure 2i,2j).
Au coating on TiO2 NTs by sputtering led to a gradient of

NP spatial density, size distributions, and morphology along
the tube length (Figure 3). Figure 3a provides a schematic
representation of such a deposition of Au NPs on both the
interior and exterior surfaces of NTs coated with different
thicknesses. NTs coated with lower thicknesses of Au (25−75
nm) exhibited a gradual decrease in the spatial density and
mean diameter of the Au NPs by moving from the upper to
lower portion of the NTs. For example, in the case of NTs
coated with 50 nm of Au (Figure 3b), the mean diameter of Au
NPs decreased from ≈5 nm (Figure 3c) to ≈1 nm, moving
from the tube mouth region to the middle one (Figure 3d−3f).
A similar effect was observed in NTs with higher thickness of
Au (100 and 125 nm). For instance, in the case of NTs coated
with 125 nm of Au (Figure 3g), a quasi-continuous Au layer
appeared in correspondence with the tube mouth (Figure 3h),
while the areas closer to the lower portions of the tube
exhibited a progressively lower density of Au coating and the
appearance of well-spaced isolated NPs (Figure 3i−3k).
Therefore, not only the effective Au thickness but also the
distance from the tube mouth influenced the morphology of
Au NPs grown on the NT surface. This is expected for a highly
directional process such as magnetron sputtering, where the
deposited species mostly travel in straight lines from the target
to the substrate.31 Therefore, the upper portions of the NTs
could act as physical barriers, thus hampering the arrival of Au
to the tube’s lower portions. Nevertheless, despite the length of
the NTs (5 μm; Figure 1), the tube-to-tube spacing allowed
Au coating even in the lower portions of the tubes.32,33 As a
consequence, hierarchical functionalization of nearly all of the

Figure 3. Transformation of the spatial density and morphology of NPs with varying effective thicknesses of deposited Au. (a) The schematic of the
nonuniform self-assembly of Au NPs with different Au effective thicknesses on a single NT. (b−k) Low- and high-magnification TEM images of
different portions of NT coated with (b−f) 50 nm and (g−k) 125 nm of Au. Scales for panels (d−f) and (i−k) are identical to those shown in
panels (c) and (h), respectively.
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TiO2 surface with Au was achieved, which was desired in light
of the SERS application (see below).
The varying amounts of sputtered Au and consequently

different densities and morphological alterations of the
hierarchical structure in each sample significantly impacted
the optical properties of NTs (Figure 4a). Specifically, the
annealed TiO2 sample without Au demonstrated a blue color
(Figure S1a) with a distinct absorption edge at ∼390 nm and a
broad-band absorption peak in the visible region. These
spectral features were attributed to the band-gap energy of
anatase TiO2 (3.24 eV) and the specific morphology of
NTs.28,34 In contrast, the sample with 25 nm thick Au
displayed a black color (Figure S1b) and a broad-band
absorption surpassing 97% in the wavelength region of 300−
1100 nm. Such a high and broad-band absorption may
originate from the synergistic interplay of two key elements.
The high fraction of air trapped in the trough area inside and
between NT arrays and the gradual increase of the thickness of
NTs (Figure 3b) from the top (≈25 nm) to the bottom (≈80
nm) could minimize the optical index or impedance difference
at the interface between air and substrate, resulting in an
antireflection effect.15,35,36 On the other hand, the randomly
arranged Au NPs with different sizes on the surface of NTs
with an uneven tube-to-tube distance may lead to the
superposition of multiple LSPR modes, in turn leading to
broad-band absorption spectra.15,29,37,38 By increasing the
effective thickness of Au further, the appearance of samples

changed from black to brown (Figure S1) and, indeed, the
optical absorption in the wavelength region >550 nm
monotonically decreased, showing a broad minimum at
∼850 nm (Figure 4a). Conversely, no significant change in
absorption spectra was found at wavelengths <550 nm. Such a
trend can be ascribed to the gradual coalescence of well-
dispersed NPs with different shapes into slightly bigger NPs
with lower interparticle distance and, ultimately, into a
semicontinuous film (Figure 2), therefore resembling a
reflecting metallic Au film. These results suggest the potential
of such hybrid TiO2/Au structures with tailored optical
properties for different desired applications. For example,
TiO2 NTs coated with smaller Au NPs and displaying higher
optical absorption may be well-suited for photothermal and
catalytic applications,15,39−41 while those featuring partially
coalesced Au NPs or quasi-continuous coatings could be ideal
for SERS applications.5,8

Since the TiO2/Au NTs exhibited two distinct regimes of
constant and monotonically decreasing optical absorption with
respect to the effective Au thickness, two different laser lines
(i.e., 514.5 and 788 nm, marked by dotted lines in Figure 4a)
were employed to perform Raman spectroscopy experiments.
Raman spectra exhibited the characteristic peaks of anatase
TiO2 at 144, 197, 399, 516, and 639 cm−1, which, respectively,
correspond to the Eg, Eg, B1g, A1g+B1g, and Eg vibrational modes
(Figures 4b and S2).42,43 Specifically, Raman spectra acquired
under a 514.5 nm laser excitation on the TiO2 NTs with 25 nm

Figure 4. Impact of different effective Au thicknesses on the optical properties and Raman spectra of TiO2/Au NTs. (a) Optical absorption and (b)
Raman spectra under a 514 nm laser light excitation of bare and coated TiO2 NTs. The inset in panel (b) presents an enlarged view of the main
anatase Raman peak.

Figure 5. SERS application of TiO2 NTs/Au substrates. SERS spectra of (a) 10−6 M Rh6G deposited on TiO2 NTs with different effective
thicknesses of Au and Rh6G powder on Si (b) Rh6G at varied concentrations deposited on the TiO2 NTs with 125 nm thick Au. SERS spectra for
TiO2/Au NTs are normalized to the intensity of the Eg mode of the TiO2 peak at 144 cm−1 to allow direct comparison of relative peak intensities.
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of Au exhibited a significant decrease in intensity compared to
that of uncoated TiO2 NTs (see the main anatase peak at 144
cm−1; inset in Figure 4b). This effect could be attributed to the
significant absorption of light with Au NPs. Further increasing
the effective thickness of Au, with a nearly constant and high
optical absorption, led to further limiting the penetration and
interaction of light with the underlying TiO2, resulting in lower
Raman intensities. In contrast, Raman spectra acquired under a
788 nm laser excitation revealed the opposite trend; i.e., the
intensity increased by increasing the Au effective thickness
(Figure S2). Particularly, the NTs with a 125 nm thick Au
overlayer exhibited the highest Raman intensity, even more
than pure TiO2 NTs. This observation is in line with previous
studies44−46 and can be explained by a SERS effect on the
anatase peaks. In this regime, the lower absorption by the Au
quasi-continuous films may allow sufficient light penetration to
the underlying TiO2 and intensification of Raman scattering by
electromagnetic hot-spots in Au. On the other hand, the same
did not occur under a 514.5 nm excitation, which could
suggest a nearly complete light absorption by the Au overlayer
due to its high absorption at this wavelength.
The results of Raman spectroscopy on TiO2/Au NPs

suggest that a 514.5 nm laser excitation may be suitable for
confining the optical absorption in the Au NP layer and
consequently generating strong plasmonic resonances to probe
SERS spectra of molecules adsorbed to the Au surface. For this
purpose, the SERS activity of these samples was evaluated for
the detection of Rh6G molecules (Figure 5). Figure 5a shows
the Raman spectra of Rh6G in its powder form deposited on a
Si substrate and its 10−6 M solution drop-coated on TiO2 and
TiO2/Au NTs. The Raman spectrum of bare Rh6G powder
consists of peaks at around 611 (C−C−C ring in-plane
bending vibration), 775 (C−H out-of-plane bending vibra-
tion), and 1306, 1360, 1541, 1573, 1600, and 1648 cm−1

(aromatic stretching vibrations). For the sake of comparison,
we coated 10−6 M Rh6G on a Si substrate and Ti foil (not
shown), and no apparent peaks of Rh6G were observed on
either. Moreover, no Rh6G peaks were observed from the bare
TiO2 NTs and TiO2 NTs with 25 nm of Au. When the Au
effective thickness increased from 50 to 125 nm on the TiO2
NTs, the Raman signal was found to be enhanced. Specifically,
a very weak Raman intensity was observed from 50 nm Au-
coated TiO2 NTs, and the most intense signals were observed
from 125 nm Au-coated ones. In order to quantify the
enhancement effect, we estimated the intensity ratio,
considering the maximum heights of the most intense Rh6G
peak (1648 cm−1) and TiO2 anatase peak (144 cm−1). The
intensity ratio I1648/I144 of TiO2/Au NTs was found to be 0.21,
0.93, 1.64, and 6.45 for the NTs with 50, 75, 100, and 125 nm
effective thicknesses of Au, respectively. Such a trend
emphasizes the paramount importance of bigger and partially
coalesced particles leading to electric field hot-spots between
the interparticle gaps, which in turn may explain the higher
SERS performance. To support this conclusion and elucidate
the influence of NTs in enhancing Raman intensity, a 125 nm
Au film was deposited onto Ti foil, which led to the growth of
a continuous metal layer (Figure S3a). Afterward, the SERS
activity of this sample was compared to that observed on the
TiO2 NTs with 125 nm thick Au (Figure S3b). The SERS
spectrum obtained from Ti/Au exhibited only a few peaks at
1360, 1541, 1573, and 1648 cm−1, while other vibrations were
hardly detected. Moreover, the intensity of the observed SERS
peaks with the Ti/Au sample was comparatively lower than

that measured in the presence of spaced TiO2 NTs as a
platform for the growth of Au NPs. The intensity ratio of the
1648 cm−1 peak for TiO2/Au NTs to Ti/Au (i.e., I1648(TiO2/
Au)/I1648(Ti/Au)) was found to be around 1.65. These
observations suggest that the morphology of the Au layer (i.e.,
partially coalesced NPs vs continuous film) can have a
significant impact on not only the entire spectral fingerprint
but also the intensity of SERS peaks. Further measurements of
the SERS effect of Rh6G molecules with lower concentrations
(10−7−10−12 M) indicated that the 125 nm Au-coated NTs
could be effective in determining the lower amount of these
molecules (Figure 5b). At this point, it is worth pointing out
that although the presented spaced TiO2/Au structures
represented a scalable option for the realization of SERS
substrates and their flexible plasmonic tunability may be
further explored in other kinds of detection or solar energy
conversion devices, it did not reach the detection limit of other
substrates reported in the literature.47,48 Nevertheless, further
optimization could lead to enhancing the overall performance.
For instance, manipulating anodization parameters allows us to
achieve lower space between and inside the NTs, making the
Au NPs closer to others leading to a higher concentration of
the hot-spots and subsequently higher SERS enhancement, or
air annealing after Au deposition to modify the shape and size
distribution of the Au NPs.49,50

■ CONCLUSIONS
In summary, this study demonstrated a promising strategy for
tailoring the optical properties of plasmonic Au NPs grown on
anodic TiO2 NTs by simply controlling the sputter deposition
effective thickness. A controlled transition from small and well-
separated Au NPs to quasi-continuous layers on the TiO2
surface was achieved, which in turn affected the optical
properties of the composite TiO2/Au NTs. The sample with
the lowest effective thickness of Au exhibited broad-band light
absorption, which was attributed to a superposition of multiple
LSPRs. On the other hand, the optical absorption monotoni-
cally decreased at wavelengths longer than 550 nm by
increasing the effective Au thickness. Raman spectra revealed
the role of morphology and optical absorption in detecting the
underlying TiO2. A significantly lower intensity of anatase
TiO2 signals in TiO2/Au compared to that of uncoated TiO2
NTs was found using a green (514.5 nm) excitation laser
wavelength, thus corresponding to the high absorption region
(514 nm). An opposite trend was observed under a red (788
nm) laser excitation. Furthermore, the TiO2 NTs with 125 nm
thick Au showed the highest SERS enhancement for the Rh6G
molecule, which was explained by a higher density of
electromagnetic hot-spots within the narrow interparticle
gaps. These findings highlight a straightforward strategy to
systematically tune the optical properties of plasmonic NPs
grown on a nanostructured substrate, which is relevant not
only for SERS devices but also for solar energy conversion
devices.

■ METHODS
Sample Preparation. The fabrication of spaced TiO2 NTs

involved the anodization of a titanium (Ti) foil in a two-
electrode electrochemical cell, using the Ti foil (0.25 mm
thick) as the working electrode and a Pt sheet as the counter
electrode. Before anodization, the process was initiated
through a three-step ultrasonic cleaning of a commercial Ti
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foil in acetone, ethanol, and distilled water for about 15 min,
followed by drying under a nitrogen stream to eliminate
surface impurities. Subsequently, anodization of the foil was
carried out in diethylene glycol (DEG) electrolyte containing
0.5 wt % NH4HF2 and 3.6 wt % H2O at a constant voltage of
60 V for 3 h at 40 °C. Following anodization, the obtained
TiO2 NTs were thoroughly washed with ethanol and water
followed by drying under a nitrogen flow to ensure the removal
of the residual electrolyte. Subsequently, crystalline TiO2 was
achieved through annealing of the sample for 2 h in an air
atmosphere at 450 °C by heating and cooling ramp of 2 °C/
min. Finally, to obtain a TiO2 NTs\Au substrate, a Quorum
sputtering machine (Q150T ES plus) was employed to
decorate the NTs with various effective thicknesses of 25,
50, 75, 100, and 125 nm Au. The effective thickness was
determined by sputtering the Au layer onto a Si substrate for a
distinct time and then measuring the thickness of the deposited
layer using cross-sectional SEM.
Characterization. Scanning electron microscopy (SEM,

Hitachi FE-SEM 4800) and transmission electron microscopy
(TEM JEOL 2010) were employed to investigate the
morphology of the prepared samples. An X-ray diffractometer
(XRD, PANalytical, Almelo, The Netherlands) with Co−Kα
radiation (λ = 0.179 nm) operated in the Bragg−Brentano
geometry was used to determine the crystal structure. The
optical property measurements were carried out using a
Specord-250 Plus spectrometer attached to an integrating
sphere (Analytik Jena GmbH, Germany) for reflectance (R)
measurement in the 300−1100 nm range. The absorptance
(A) was then calculated by A = 1-R, and the opaque nature of
Ti substrates across the entire investigated spectral range
permits the exclusion of the transmittance (T). Raman
measurements were recorded employing a DXR Raman
spectrometer (Thermo Scientific) using lasers operating at
514.5 and 788 nm at a power of 0.1 mW to minimize any
potential sample damage during measurement. To ensure the
precision and accuracy of the obtained data, five spots on the
surface of each sample were measured, and the averaged
outcome was presented. To evaluate the SERS activity of the
samples, an InVia Raman spectrometer (Renishaw) equipped
with a 514.5 nm laser source with 1800 gratings and a 20×
objective lens was used. For each measurement, a 10 μL
aqueous solution of Rh6G of desired concentrations (10−6−
10−12 M) was drop-casted onto the samples and dried under a
table lamp for 1 h before SERS measurements. Then, SERS
spectra were collected at a laser power of 0.4 mW with an
integration time of 10 s and 50 accumulations per spectrum.
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