
Diclofenac Removal by Alkylammonium Clay Minerals Prepared
over Microwave Heating
Denise B. França, Alice P. N. Silva, Josy A. Osajima, Edson C. Silva-Filho, Santiago Medina-Carrasco,
Maria del Mar Orta, Maguy Jaber, and Maria G. Fonseca*

Cite This: ACS Omega 2024, 9, 48256−48272 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Diclofenac is an emerging contaminant widely
detected in water and has had adverse effects on the biota. In
this study, the adsorbents were prepared by reacting tetradecyl-
(C14), hexadecyl-(C16), and octadecyltrimethylammonium (C18)
bromides with sodium vermiculite (Na-Ver) and used for the
removal of the first time for diclofenac sodium from aqueous
solution. Synthesis was carried out in a microwave-assisted reactor
operating at 50 °C for 5 min, using proportions of organic salts in
100 and 200% of the phyllosilicate cation exchange capacity. The
stability of loaded alkylammonium solids was evaluated under drug
adsorption conditions. Adsorption was mainly influenced by the
amount of surfactant incorporated into the clay mineral according
to the thermogravimetric and CHN elemental analysis data.
Samples prepared with 200% CEC presented lower stability at pH 6.0 and 8.0. Drug adsorption was more effective for C14-Ver-
200%, C16-Ver-200%, and C18-Ver-200% samples, with a maximum retention of 97.8, 110.1, and 108.0 mg g−1, respectively. The
adsorptive capacities of C14-Ver-200%, C16-Ver-200%, C18-Ver-200%, C14-Ver-100%, C16-Ver-100%, and C18-Ver-100% were
reduced to 29.0, 36.8, 41.0, 61.0, 50.4, and 58.0%, respectively, compared with their initial value after three adsorption cycles. X-ray
diffraction (XRD) patterns revealed that diclofenac was adsorbed into the interlayer region of organovermiculites. Fourier transform
infrared spectroscopy (FTIR), Zeta potential results, and the pH study of adsorption indicated that van der Waals interactions are
dominant in the adsorption mechanism.

■ INTRODUCTION
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the
groups of pharmaceuticals that threaten the ecosystem and
human health due to their presence in water.1,2 Sodium
diclofenac (sodium 2-[2-(2-dichloroanilino) phenyl]acetate) is
an NSAID highly consumed by hundreds of tons annually
around the world for both human and veterinary medical care.3,4

The drug is among the most frequently detected in aquatic
environments and has been involved in the European Union’s
top 10 priority list for detection.1,3,4 The average concentrations
of the drug in aquatic environments were higher than 0.1 μg L−1

in surface waters in Europe,5 while the concentration in Brazilian
waters was 759.06 μg L−1.6

Diclofenac can lead to adverse effects on aquatic organisms,7,8

and the byproducts formed through biotic and abiotic
transformations can pose even greater toxicity than the original
molecule.9,10 Therefore, it is imperative to remove diclofenac
from aquatic ecosystems. Adsorption is an interesting water
treatment method due to its simplicity, cost-effectiveness, and
high removal efficiency of pollutants, in addition to the absence
of byproduct generation.1

Clay minerals are versatile, cheap, and highly available
materials that can be used as adsorbents for drugs, among
which montmorillonite (Mt) has been widely used for this
proposal.11,12 More recently described in the literature,
vermiculite is a clay mineral that also acts as an adsorbent for
drugs.13−19 Vermiculite is a 2:1 phyllosilicate that exhibits an
idealized negative layer charge per formula unit (ca. 0.6−0.9)
and exchange cations in the interlayer region, normally Mg2+.20

The clay mineral is characterized by having tetrahedral silicate
sheets that can be substituted by aluminum or other elements of
lower valency, while the octahedral sites are generally occupied
by Al3+, Mg2+, and Fe3+.20 Furthermore, vermiculite is a two-
dimensional (2D) material21 that can be modified through the
intercalation of organic compounds,13,14 acid activation,22
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silylation,23 among others, to obtain materials with desired
properties.

The adsorption of anionic drugs is significantly restricted in
untreated clay mineral.15,16 However, drug adsorption perform-
ance of clay minerals can be further significantly improved by
reacting with surfactants.11,13−15 Organovermiculites prepared
with 1,3-2(hexadecamide propyl dimethylammonium chloride)
n-butane, 1,3-2(hexadecamide propyl dimethylammonium
chloride)-2-hydroxypropane dichloride, and 1,3-2-
(hexadecamide propyl dimethylammonium chloride)-p-xylene
exhibited ibuprofen adsorption capacities of 322.6, 404.7, and
489.9 mg g−1, respectively, while drug adsorption by sodium
vermiculite was negligible.14

Organoclays based on bentonite24−27 or montmorillon-
ite,28−31 kaolinite,27,32 halloysite,33 Illite,31 and sepiolite34

were investigated as adsorbents for diclofenac sodium. In
addition to clay minerals, other materials such as hydroxyapa-
tite@chitosan hybrids,35 carbons,36,37 zeolites,38 carbon
sphere@polyaniline@layered double hydroxides composites,39

and metal−organic frameworks40,41 were also studied.

For organoclays performance, the effects of experimental
parameters such as pH, adsorbent dosage, time, temperature,
drug concentration, and ionic strength on the diclofenac
adsorption were evaluated.24,26,28,42 Although the drug has
been detected in the environment at concentrations in the μg
L−1 range, studies have been carried out at higher concentrations
(10−2000mg L−1) to understand themechanisms of adsorption
and factors that alter the performance of adsorbents.27,28,32 The
effect of the type and amount of surfactant loading in the clay
mineral matrix on the diclofenac adsorption performance was
also evaluated.24,28−31 In summary, the increase in surfactant
loading in the clay mineral improved the diclofenac
adsorption.24,25,29−31,43

Despite extensive research in organoclays, the stability of the
matrixes under drug adsorption conditions has been neglected
and very few studies investigated the regeneration of these
adsorbents.25,33 Since surfactant leaching is one of the factors
that control organoclay-induced ecotoxicity,44 its stability must
be known. The influence of pH on the stability of organo-
vermiculites prepared with hexadecyltrimethylammonium and
hexadecylpyridinium at 100% CEC for the adsorption of

Figure 1. XRD patterns of (i): (a) Ca,Mg-Ver and (b) Na-Ver (Ver = vermiculite, Hb = hydrobiotite, Q = quartz, *unidentified phase); (ii): (a) Na-
Ver, (b) C14-Ver-100%, and (c) C14-Ver-200%; (iii): (a) Na-Ver, (b) C16-Ver-100%, and (c) C16-Ver-200%; and (iv): (a) Na-Ver, (b) C18-Ver-100%,
and (c) C18-Ver-200%.
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naphthalene was reported.45,46 Results showed that both
samples were stable in the pH range of 4−10.45 However, the
effect of the chain size and the amount of loaded surfactant on
the stability of the organophilic clay mineral was not evaluated.

In the current investigation, a Brazilian vermiculite sample
was modified with alkyl trimethylammonium salts with different
chain lengths (C14, C16, and C18) by microwave heating (MW)
and used for the first time as adsorbents for sodium diclofenac, a
predominantly anionic drug at pH 6.0 (pKa = 4.15). Reactions
over MW heating have been shown to be an effective route for
the modification of clay minerals.47,48 Brazil has abundant
reserves of vermiculite,49 as well as a demand for sodium
diclofenac, which has been detected in Brazilian surface
waters,6,50,51 due to the inefficiency of conventional water
treatment methods used.6 No studies regarding the use of
organophilic vermiculites for the adsorption of diclofenac have
been verified until this point. The evaluation of diclofenac
adsorption by the resulting materials was carried out under
varying experimental conditions that included pH levels,
adsorbent dosage, contact time, and diclofenac concentrations.
The stability of organophilic vermiculites under adsorption
conditions was also verified. Therefore, the impacts of the
composition and size of the alkyl chain of surfactants on the
stability of organovermiculites and diclofenac adsorption
performance of diclofenac were evaluated, and the potential
for reusing organoclay was also explored.

■ RESULTS AND DISCUSSION
Characterizations. X-ray Diffractometry. The X-ray

diffractometry (XRD) patterns of Ca,Mg-Ver, Na-Ver, and
organovermiculites are presented in Figure 1. The results
suggested that the Ca,Mg-Ver sample (Figure 1i-a) is composed
of vermiculite (ICDD 00-034-0166), with impurities of
hydrobiotite (ICDD 00-049-1057) and quartz (ICDD 00-046-
1045). Hydrobiotite (Hb) is a regular interstratified biotite/
vermiculite phase in a 1:1 proportion as a result of the
weathering of micas,20 and its presence is frequently reported in
vermiculite samples.52,53 The principal reflection of vermiculite
occurred at 2θ = 6.13° (002 plane) and resulted in a basal
spacing of 1.46 nm.54,55 The reflection at 2θ = 60.13° (d = 0.154
nm, 060 plane) was assigned to the trioctahedral clay mineral.56

For the Hb phase, reflections occurred at 2θ = 3.45° (d ∼ 2.56
nm, 001 plane) and 7.00° (d = 1.26 nm, 002 plane).57

After the Na+ exchange reaction, basal space changed to 1.21
nm (Figure 1i-b), as a result of the substitution of the interlayer
cations in the raw sample (normally Mg2+) and the reduction of
the water molecules in a monolayer arrangement in the
interlayer region.58 In the Hb phase, the changes in d001 and
d002, measuring 2.38 and 1.14 nm, respectively, align with the
saturation of the samples with sodium following the exchange
process.59

In organophilic samples, two reflections were observed at 2θ <
4.0° (Figures 1ii−iv) corresponding to basal distances ranging
between 2.70−3.40 nm and exceeding 4.00 nm which could be
due to intercalation of alkylammonium cations in vermiculite
and hydrobiotite, respectively.60,61 The basal distances increased
with the chain size of surfactants C14 (2.27 nm), C16 (2.53 nm),
and C18 (2.79 nm).62 Considering that the 2:1 layer thickness is
about 0.96 nm20 and based on the basal spacings and the
surfactant size, the intercalation of organic cations in paraffin-
like monolayer arrangements is proposed for all organophilic
samples, for both Ver and Hb phases.60 An illustration of this
conformation is presented in Figure S1. For the Ver phase,
second-order reflections were also observed at 1.33−1.36, 1.39−
1.45, and 1.45−1.66 nm for C14-Ver, C16-Ver, and C18-Ver,
respectively.63

Thermogravimetry (TG/DTG). TG/DTG was used for the
quantification of the organic content in the organophilic
vermiculites. Results are shown in Figure 2 and summarized in
Table 1. For the Na-Ver sample, the curve exhibited two thermal
decomposition events, resulting in 9.4% total mass losses in the
30−800 °C range, while the organophilic samples presented
23.6 to 38.6% total mass losses in the same temperature range.
The initial mass loss event for Na-Ver (30−125 °C)
corresponded to the loss of the physically adsorbed Na-Ver on
the clay mineral surface. The subsequent mass loss (366−800
°C) is associated with the condensation of silanol groups of the
Ver and Hb phases.64,65

For organophilic samples, the decrease in mass loss during the
initial event suggests an enhancement in hydrophobicity.63,66

The mass loss events in the range of about 120−537 °C were
assigned to the decomposition of organic cations incorporated
in the clay mineral and were used to estimate the percentage of
organic content in the organophilic samples (see Table 1).
Higher percentages of organic content (24.8−32.8%) were
observed for organovermiculites prepared with surfactant
amounts of 200% CEC. The final thermal decomposition

Figure 2. (i) TG and (ii) DTG curves for (a) Na-Ver, (b) C14-Ver-100%, (c) C16-Ver-100%, (d) C18-Ver-100%, (e) C14-Ver-200%, (f) C16-Ver-200%,
and (g) C18-Ver-200%.
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event was related to structural hydroxyl condensation, and
organophilic samples did not show significant differences
compared to Na-Ver.63,67

CHN Elemental Analysis. The quantification of surfactants
incorporated in organophilic samples was also performed by
using CHN elemental analysis (Table 2). The total percentage
of the values of organic content was close to those obtained by
the TG/DTG analysis. The amounts of surfactants in the C14-
Ver-100%, C16-Ver-100%, and C18-Ver-100% samples were
close to the initial values used in their preparation (0.67 mmol/
g), and high organic incorporations were obtained for the
surfactant proportions at 200% CEC.

FTIR Spectroscopy. Infrared spectroscopy is widely used to
obtain qualitative information about the organophilization of
clay minerals with surfactants, as well as the conformation of
ammonium cations in the interlayer region.68 The FT-IR spectra
of Na-Ver and organophilic vermiculites are shown in Figure 3.

Table 1. Summary of Mass Losses and Temperature Intervals
Based on DTG Curves for Na+-Ver and Organovermiculites

sample event T (°C)

mass
loss
(%)

total mass
loss (%)

total organic
contenta (%)

Na-Ver I 30−125 7.2 9.4
II 366−800 2.2

C14-Ver-100% I 30−126 5.0 23.6 16.2
II 126−232 3.9
III 235−335 7.4
IV 335−433 3.7
V 433−522 1.3
VI 522−800 2.3

C14-Ver-200% I 30−120 5.5 32.5 24.8
II 120−221 6.9
III 221−262 5.6
IV 262−337 6.5
V 337−436 4.0
VI 436−532 1.8
VII 532−800 2.1

C16-Ver-100% I 30−130 5.6 24.5 16.8
II 126−223 3.2
III 223−340 8.9
IV 340−435 3.5
V 435−504 1.1
V 570−800 2.1

C16-Ver-200% I 30−128 5.2 36.0 28.8
II 128−210 4.6
III 210−267 9.8
IV 267−343 8.2
V 343−440 4.1
VI 440−519 2.1
VII 573−800 2.0

C18-Ver-100% I 30−126 4.4 24.5 17.0
II 126−229 4.5
III 229−363 10.4
IV 363−459 1.4
V 459−517 0.7
VI 517−779 3.0

C18-Ver-200% I 30−138 4.0 38.6 32.8
II 138−275 19.4
III 275−348 7.6
IV 348−442 4.1
V 442−537 1.6
VI 507−800 1.9

aValues were obtained considering the sum of mass losses in the
events, excluding dehydration and dehydroxylation.

Table 2. Results of CHN Elemental Analysis of Organophilic Vermiculites

C H N αa Qb

sample (%) (mmol/g) (%) (%) (mmol/g) (%) (mmol/g)

C14-Ver-100% 11.6 9.7 3.2 0.9 0.6 15.7 0.6
C16-Ver-100% 13.0 10.8 3.3 0.9 0.7 17.2 0.7
C18-Ver-100% 14.1 11.8 3.6 0.8 0.6 18.5 0.6
C14-Ver-200% 18.2 15.2 4.3 1.4 1.0 23.9 1.0
C16-Ver-200% 21.3 17.8 4.8 1.4 1.0 27.5 1.0
C18-Ver-200% 23.8 19.8 5.2 1.4 1.0 30.3 1.0

aTotal organic content determined from CHN elemental analysis. bAmount of surfactant in the samples.

Figure 3. FTIR spectra of (a) Na-Ver, (b) C14-Ver-100%, (c) C14-Ver-
200%, (d) C16-Ver-100%, (e) C16-Ver-200%, (f) C18-Ver-100%, and (g)
C18-Ver-200%.
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The spectrum of the Na-Ver sample (Figure 3a) shows a
shoulder at 3669 cm−1, attributed to the OH stretching of the
structural groups of clay minerals, and a broad band at 3393
cm−1, assigned to the OH stretching vibrations of water
molecules.54 The band at 1645 cm−1 is associated with the
deformation vibrations of water molecules.57 Bands at 973 and
815 cm−1 were assigned to Si−O stretchings, while bands at 731
and 683 cm−1 are linked to the in-plane deformation vibration of
Al−O−Si bonds.54

The presence of new bands in the infrared spectra assigned to
the surfactants was observed in all organophilic vermiculites
(Figure 3b,g). Bands at 2917 and 2851 cm−1 were attributed to
antisymmetric and symmetric stretchings in the CH2 groups,
respectively.14 These bands are very close to the free surfactant
frequency, observed at 2916 and 2849 cm−1, indicating that the

organic chains adopt an ordered conformation (all-trans
conformation) in organovermiculites.68 The band at 1488
cm−1 was related to CH3 deformation, while the bands in 1471−
1469 and 719 cm−1 were assigned to CH2 deformation.68

Electron Microscopy. Morphology of the Na-Ver and
organophilic vermiculites was followed by scanning electron
microscopy (SEM) and transmission electron microscopy
(TEM) analysis. SEM images of the Na-Ver and organophilic
vermiculites are shown in Figure 4. Na-Ver exhibited a plate-like
morphology characteristic of the clay mineral,69 which was
maintained after modification with surfactants.

TEM images are presented in Figures 5 and S2. The
interplanar distances for Na-Ver were measured at 1.0 and 1.1
nm, lower than the XRD basal space, potentially attributed to
sample dehydration under vacuum.70 In organophilic samples,

Figure 4. SEM images of (a) Na-Ver, (b) C14-Ver-100%, (c) C14-Ver-200%, (d) C16-Ver-100%, (e) C16-Ver-200%, (f) C18-Ver-100%, and (g) C18-Ver-
200%.
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the basal spaces were larger than those observed for Na-Ver,
indicating the intercalation of surfactants (Table S1). The values
were close to those obtained by XRD; nevertheless, the d values
≥4.00 nm of the Hb phase were only evident in the TEM images
for the C16-Ver-100% and C18-Ver-100% samples. In certain
regions, organophilic samples displayed basal distances ranging
from 1.0 to 1.2 nm, closely resembling those of the Na-Ver and
hydrobiotite phase. This suggests that not all interlayers�clay
mineral are intercalated by organic cations.71

Textural Properties. The N2 adsorption−desorption iso-
therms and textural parameters (specific surface area, pore
volume, and pore diameter) of Na-Ver and organovermiculites
(C14 and C16) prepared at 100% CEC are shown in Figure S3a−
c and Table 3. For C18-Ver-100%, Kr adsorption was performed
Figure S3d and the N2 isotherm was not obtained possibly due
to the nature of the sample. The samples presented a type H3
loop in the IUPAC classification with no plateau at high P/P0
and this type indicates that the adsorption branch resembles a
Type II isotherm and that the lower limit of the desorption
branch is normally located at the cavitation-induced P/P0.

72 H3
loops are given by nonrigid aggregates of plate-like particles like

clay minerals.72 The specific surface area of Na-Ver is within the
range reported for Santa Luzia vermiculite samples reported in
the literature (16 to 34 m2 g−1),57,69 whose values depend on the
size of the particle.73 The presence of surfactant in the samples
decreased the specific surface area and the volume of the pores of
the clay mineral, while the diameter of the pores increased. This
behavior has also been reported for other organophilic
vermiculites prepared with C14,

16 C16
16,74 and other surfac-

tants,66,75,76 and occurs due to blockage of the structural pores of
the clay mineral by incorporation of organic cations.16,66

Figure 5. TEM images of (a) Na-Ver, (b) C14-Ver-100%, (c) C14-Ver-200%, (d) C16-Ver-100%, (e) C16-Ver-200%, (f) C18-Ver-100%, and (g) C18-
Ver-200%.

Table 3. Textural Parameters of Na-Ver and
Organovermiculites Prepared with 100% CEC

sample
SBET

(m2 g−1)
pore volume
(cm3 g−1)

pore diameter
(nm)

Na-Ver 29 0.064 13
C14-Ver-100% 4 0.031 35
C16-Ver-100% 3 0.027 34
C18-Ver-100% 3
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Adsorption. pH Effect. The test results illustrating the
influence of pH on sodium diclofenac adsorption by organo-
philic vermiculite are shown in Figure 6a. No adsorption
experiments were carried out at pH < 6 to avoid precipitation of
diclofenac due to the presence of the neutral form under this
condition, as shown in the speciation diagram as a function of
pH (Figure 6b), which is even less soluble than salt.37 The
results demonstrate that adsorption was slightly higher at pH 8
for C14-Ver-100%, C14-Ver-200%, C16-Ver-100%, and C18-Ver-
100%, producing values of 6.9, 9.0, 3.9, and 2.9 mg g−1,
respectively. In the case of C16-Ver-200% and C18-Ver-200%,
adsorption was independent of the pH range (6 to 10). Na-Ver
did not exhibit diclofenac adsorption within the pH range;
therefore, alkyl trimethylammonium salts provided sites for
diclofenac adsorption on organophilic vermiculites.

The results of the Zeta potential measurements of Na-Ver and
organophilic vermiculites are shown in Figure 6c. Na-Ver
exhibits negative charge throughout the entire pH range due to
isomorphic substitutions in the lattice, which generates a
permanent negative charge on the surface,77−79 while the
decrease in charge with increasing pH results from dissociation
of the hydroxyl groups of the edge surfaces.77 On the other hand,
diclofenac (pKa 4.15) is predominately anionic at pH 6.0
(98.61%), 8.0 (99.98%), and 10.0 (99.99%), Figure 6b, which
complicates adsorption on clay mineral due to repulsion
between charges.

Organophilic vermiculites showed Zeta potential values
higher than those of Na-Ver at the pH of adsorption, which
reduces the repulsion by anionic species. The increase in surface
charge occurs due to the adsorption of cationic surfactants on

the negatively charged surface of the clay mineral.80,81 The
results show that there was no relationship between the amount
of diclofenac adsorbed and the surface charge of organophilic
vermiculites (Figure S4), which suggests that van der Waals
interactions between diclofenac and the alkyl chain of the
surfactant played a role in the adsorption mechanism.24

Adsorbent Dosage. The influence of the dosage of the
adsorbent on the removal of diclofenac by organophilic
vermiculites (Figure 7) was studied under the optimal pH
conditions obtained for each adsorbent. The findings revealed
that the highest percentage of drug removal (96−99%) was
observed for C14-Ver-200%, C16-Ver-200%, and C18-Ver-200%
samples, achieved with 25 mg of each adsorbent. However, for
C14-Ver-100%, C16-Ver-100%, and C18-Ver-100%, higher doses
of 125, 50, and 75 mg were required, resulting in removal
percentages of 89, 85, and 88%, respectively. This indicates that
larger amounts of adsorbents were necessary for samples with
lower surfactant contents, directly influencing the availability of
adsorption sites.82,83

Adsorption Kinetics.The results obtained in the kinetic study
(Figure 8) demonstrated that the drug was rapidly adsorbed on
organophilic vermiculites at an equilibrium time of only 5 min
for all hybrids. The result obtained was very close to that
observed for diclofenac adsorption bymodified C16Br kaolinites,
∼6 min,43 and was shorter than those obtained with other
organophilic clay minerals, such as modified C16Br Mt (60
min),25 commercial organoclay Spectrogel Type C (500 min),84

and alkypyridinium bentonites (10 and 60 min).24

The fitting of experimental data to the adsorption kinetic
models was not performed, because of rapid adsorption. The use

Figure 6. (a) Influence of pH on drug adsorption by organophilic vermiculites (conditions: 24 h, 25 °C, 25 mg mass adsorbent and Ci = 10 mg L−1),
(b) diclofenac speciation as a function of pH and (c) zeta potential (ζ) measurements of Na-Ver and organophilic vermiculites.
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of data at or very close to, equilibrium, is likely to lead to
erroneous conclusions regarding adsorption kinetics.85,86

Adsorption Isotherms. The adsorption isotherms are present
in Figure 9 and the data were evaluated for adjustment to the
Langmuir, Freundlich, and Temkin models; the parameters
obtained are shown in Table S2. Taking into account R2 and SD,
the experimental data were fitted to the Langmuir model for all
investigated solids.

The adsorption isotherms illustrated a greater adsorption of
diclofenac by organophilic vermiculites with an increasing initial
concentration of the pollutant. The maximum adsorption
capacities observed for the hybrids C14-Ver-200%, C16-Ver-
200%, and C18-Ver-200% were 97.75, 110.6, and 107.97 mg g−1,
respectively, while the adsorption values were 36.30, 52.90, and
17.88 mg g−1 for C14-Ver-100%, C16-Ver-100%, and C18-Ver-
100%.

Drug adsorption increased with the amount of surfactant in
the C14-Ver, C16-Ver, and C18-Ver samples (Figure S5). These
results are in agreement with data found for diclofenac
adsorption in benzyldimethyltetradecylammonium-modified
Mt,29 Mt and kaolinite modified by C16Br,

25,31,43 and dodecy
and hexadecylpyridinium-bentonites.24 Samples with a higher
amount of surfactant incorporated have more available active
sites for diclofenac interaction, improving the adsorption of
pollutant.27

The number of carbons in the alkyl chain of the surfactants
influenced the adsorption of the drug only for samples prepared
with 100% CEC and the performance followed the order C16-
Ver-100% > C14-Ver-100% > C18-Ver-100%. The difference in
the adsorption of the C14-Ver-100%, C16-Ver-100%, and C18-
Ver-100% samples can occur due to the contribution of a series
of interrelated factors, such as the length of the alkyl chain, the
packing density of the surfactants and the organic content of the
samples in concordance with other organophilic clay miner-
als.24,87

The adsorption performance of the C14-Ver-200%, C16-Ver-
200%, and C18-Ver-200% samples was better than that obtained
by other organoclays prepared with higher amounts of
surfactants (≥200% CEC),24,28 including pristine clay mineral
with CEC close to sample used in the present study (Table S3).
The CEC influences the amount of loaded surfactant into the
clay mineral,88,89 and consequently the availability of drug
adsorption sites.

Organovermiculites Stability. The stability of organophilic
vermiculites after treatment at pH 6.0 and 8.0 was monitored by
TG/DTG (Figure S6 and Table S4) and CHN elemental
analysis (Table S5). Results indicated a small reduction in the
total organic content of the samples after the stability test
(Figure 10). The lower leaching of organic cations and the
highest stability were observed for samples prepared with 100%
CEC. Previous studies also showed that vermiculites modified

Figure 7. Effect of the dosage of the adsorbent on the adsorption of the drug by organovermiculites (a) C14-Ver, (b)C16-Ver, and (c) C18-Ver (24 h, pH
6.0 or 8.0, 25 °C and Ci = 10 mg L−1).
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with C16 and hexadecylpyridinium cations at 100% CEC were
stable in the pH range of 4−10, and a lower leaching of organic
cations was observed.45

Characterizations of the Diclofenac-Loaded Samples.
XRD and FTIR analysis after adsorption were useful to
understand the mechanism of drug/clay minerals interactions.
The XRD patterns are shown in Figure 11i. After they interacted
with diclofenac, all samples showed an increased basal spacing,
suggesting that the drug can be intercalated to access the active
adsorption sites. XRD data were also compared with the
molecular dimensions of diclofenac, which are 1.0 nm in length,
0.5 nm in width, and 0.4 nm in height,31 and are in line with the
possible intercalation of the drug or an interlayer rearrangement
of surfactant chains after the entrance of diclofenac in both Ver
and Hb phases. Similar behavior was observed in the adsorption
of naphthalene by organovermiculites.46

The FTIR data also provided information about the groups of
organophilic vermiculites and diclofenac involved in the
adsorption. In the infrared spectra for diclofenac-loaded samples
(Figure 11ii), the shift in the νas(CH2) band of organophilic
samples (initially at 2917 cm−1) to higher frequencies (2922
cm−1) indicated that the interaction with the drug caused a
disorganization or rearrangement of the alkyl chains of the
intercalated surfactants,14,68 supporting the XRD results. The
changes in the CH2 stretching frequencies indicate the
interaction between long hydrophobic tails of surfactants and

the nonpolar moiety of diclofenac.90,91 In addition, several bands
characteristic of the organic structure of sodium diclofenac were
observed (Table S6). Variation in the position of the νs(COO−)
band, initially at 1398 cm−1 for the free drug, to frequencies
around 1376−1380 cm−1 in loaded diclofenac samples also
suggested electrostatic interactions with the carboxylate group
during adsorption.24,26

Mechanism of Interaction. Drawing from the results, a
comprehensive schematic of the mechanisms governing
diclofenac adsorption on organophilic vermiculites was devised
(Figure 12), highlighting the primary involvement of hydro-
phobic interactions, according to FTIR, Zeta potential results,
and study of the effect of pH on adsorption. FTIR data also show
that electrostatic interactions can also contribute to the
adsorption mechanism. However, considering the negative
surface charge of most adsorbents at the adsorption pH,
electrostatic interactions should play a less important role in the
adsorption mechanism. Furthermore, XRD results showed that
drug intercalation occurred in the interlayer space of all
organophilic vermiculites. The presence of surfactant on the
surface was considered on PCZ results. In this scheme,
diclofenac molecules undergo intercalation and interact with
(1) alkyl tails of the organic chain through van der Waals
interactions and (2) −N+−(CH3)3 surfactant groups through
electrostatic interactions. However, mechanism (1) predom-
inates in the adsorption of diclofenac.

Figure 8. Kinetic adsorption isotherms for adsorption of diclofenac sodium by the organovermiculites (a) C14-Ver, (b) C16-Ver, and (c) C18-Ver (25
°C, pH 6.0 or 8,0 and Ci = 10 mg L−1).
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Reuse Tests. Several factors influence the selection of an
adsorbent, including its production, affinity for the adsorbate,
and reusability, among other parameters.44,92 Therefore, the
regeneration capacity of drug-loaded organophilic vermiculites
using ethanol as a desorption agent was evaluated over three
adsorption−desorption cycles (Figure 13).

A reduction in adsorption capacity was observed with an
increasing number of cycles, which could be attributed to
adsorbent losses during the adsorption/desorption and washing

processes, as well as the potential reduction or blocking of
adsorption sites during regeneration steps.25,33 It is worth noting
that ethanol molecules may also be adsorbed on organophilic
vermiculites during the regeneration process.33 In the last cycle,
maximum adsorption capacities were maintained at 61.0, 50.4,
and 58.0% for C14-Ver-100%, C16-Ver-100%, and C18-Ver-100%,
and 29.0, 36.8, and 41.0% for C14-200%-Ver, C16-Ver-200%, and
C18-Ver-200%, respectively. The reduction in diclofenac
adsorption capacity was higher for organophilic vermiculites

Figure 9. Equilibrium isotherms and their fit to the Langmuir, Freundlich, and Temkin models for the adsorption of diclofenac sodium by
organovermiculites (a) C14-Ver, (b) C16-Ver, and (c) C18-Ver at 25 °C (pH 6.0 or 8.0, 25 °C and Ci = 1−500 mg L−1).

Figure 10. Total organic content of (a) C14-Ver-100%, (b) C16-Ver-100%, (c) C18-Ver-100%, (d) C14-Ver-200%, (e) C16-Ver-200%, and (f) C18-Ver-
200% before and after stability test at pH 6.0 and 8.0 determined by (i) CHN and (ii) TG/DTG.
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prepared with 200% CEC probably due to the lower stability of
these samples, in agreement with the stability test results.
Additionally, the ethanol used in the washing can also leach
surfactants.93

■ CONCLUSIONS
The adsorption of diclofenac on organophilic vermiculites was
predominantly influenced by the level of organofunctionaliza-
tion of the adsorbents. Optimal performance was observed in

hybrids prepared with 200%CEC that exhibited a higher organic
content compared to those with 100% CEC. However, during
reuse tests, these samples did not show enhanced performance.
The stability of the samples prepared at 200%CEC was lower
compared to that of organosurfactants prepared with 100%
CEC. The leaching of surfactants during the adsorption of
diclofenac and regeneration with ethanol decreased the
performance of the adsorbents in subsequent cycles. Diclofenac
was effectively adsorbed into the interlayer region of organo-
philic vermiculites, and hydrophobic interactions between the

Figure 11. (i) XRD patterns and (ii) FTIR spectra of (a) C14-Ver-100%, (b) C14-Ver-200%, (c) C16-Ver-100%, (d) C16-Ver-200%, (e) C18-Ver-100%,
and (f) C18-Ver-200% after diclofenac adsorption (25 °C, pH 6.0 or 8.0 and Ci = 500 mg L−1) and (g) free diclofenac sodium.

Figure 12. Proposed mechanism for diclofenac adsorption by the organophilic vermiculites through (1) van der Waals forces and (2) electrostatic
interactions.
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tail group of surfactants intercalated into the clay mineral and
the nonpolar moiety of the drug played an important role in the
adsorption process. However, FT-IR results showed that
electrostatic interaction can also occur between the carboxylate
group (COO−) of diclofenac and the −N+−(CH3)3 surfactants
groups.

■ EXPERIMENTAL SECTION
Materials and Chemicals. A Brazilian vermiculite sample

(Ca,Mg-Ver) originating from Santa Luzia (Paraiba, Brazil) was
used as the starting material. The chemical composition of
Ca,Mg-Ver in mass percentage was previously evaluated by
chemical analysis: SiO2 (40.08), Al2O3 (12.35), Fe2O3 (6.83),
TiO2 (1.43), CaO (2.32), MgO (18.74), Na2O (3.37), K2O
(2.86) and a mass loss of 11.85% after heating at 950 °C.94 Its
cation exchange capacity (CEC) was 67 cmol(+) kg−1,

measured by the ammonium exchange method.95,96 All
chemicals were used without prior treatment. Sodium chloride
(99% purity), ammonium salts tetradecyltrimethylammonium
(C14Br), hexadecyltrimethylammonium (C16Br), and octadecyl-
trimethylammonium (C18Br) bromides (99% purity) were
supplied from Sigma-Aldrich. Sodium hydroxide (99% Loba
Chemie), nitric acid (75% Vetec), and ethanol (95%, Anidrol)
were used. The sodium diclofenac (CAS no. 15307-79-6, MM =
318.13 g mol−1) was purchased from Sigma-Aldrich.
Preparation of Na-Vermiculite (Na-Ver). The Na-Ver

sample was prepared from the Ca,Mg-Ver sample by repeated
reactions with a 1.0mol L−1 NaCl solution stirred at 25 °C for 72
h, following a previous procedure64 and was carried out in
triplicate to ensure complete saturation. The resulting Na-Ver
was washed with distilled water until the AgNO3 test for chloride
anions showed negative results in the supernatant solution and

Figure 13.Results of reuse tests performed for (a) C14-Ver-100%, (b) C14-Ver-200%, (c) C16-Ver-100%, (d) C16-Ver-200%, (e) C18-Ver-100%, and (f)
C18-Ver-200%.
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dried at 70 °C for 48 h. Na-Ver was ground and classified by
sieving in Tyler sieves (Granutest, Brazil) to obtain a particle size
of less than 0.074 mm.
Preparation of Organovermiculites. Organovermiculites

were prepared by reacting between Na-Ver and each
alkylammonium salt (C14Br, C16Br, and C18Br) based on a
previous procedure.24,83 The reaction was carried out as follows:
In a Teflon vessel reactor, 4.0 g of Na-Ver was dispersed in 100.0
mL of solution of ammonium salts at 100 and 200% CEC of clay
mineral and heated in amicrowave reactor (IS-TECMW reactor
model RMW-1, Brazil, with a power of 1100 W 2.45 GHz) for 5
min at 50 °C. Samples were repeatedly washed with distilled
water until the AgNO3 test for bromide anions showed negative
results. The washed organovermiculites were dried at 50 °C at
24 h on a stove under air atmosphere.
Adsorption Studies. Adsorption tests were performed

according to a previous method,24,48,83 whose methodology
consisted of evaluating the influence of experimental parameters
such as pH, adsorbent dosage, contact time, and diclofenac
concentration in adsorption.

In a typical procedure, organovermiculite samples were
dispersed in 20 mL of diclofenac solution with stirring at 25
°C. The evaluation conditions (pH, adsorbent dosage, drug
concentration, and reaction time) were systematically varied
according to each test, as listed in Table S7. Adsorption at
different pH values was also performed for Na-Ver under the
same conditions as used for organophilic vermiculites as a
control.

After each test, the adsorbents were separated by
centrifugation, and the final drug concentration was determined
by UV−vis absorption spectroscopy at 276 nm. The amount of
drug adsorbed (q) and the drug removal efficiency (R%) by
organovermiculites was determined by eqs 1 and 2, respectively:
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where Ci and Ce are the initial and equilibrium drug
concentrations (mg L−1), respectively, m refers to the mass of
the adsorbent (g), and V (mL) is the volume of solution.
Adsorption Models. Adsorption models of Langmuir,97

Freundlich,98 and Temkin99 were applied to adjust and analyze
the experimental adsorption data employing the nonlinear
method (see Table S8).

The models were also evaluated by standard deviation (SD
root-mean-square error),100 described in eq 3,
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where qi,exp, and qi,model are the amount of experimental adsorbed
drug predicted by the fitted model, np is the number of
experiments performed, and p is the number of parameters of the
fitted model.
Reuse Studies of Adsorbents. Regeneration of the

adsorbents was carried out according to a previous procedure25

by dispersing the loaded organophilic diclofenac vermiculites in
50 mL of ethanol stirred for 6 h at 30 °C. After each desorption
cycle, the solids were recovered by centrifugation at 7500 rpm,
washed with distilled water, and dried at 50 °C to be used for the

next adsorption cycle. The readsorption tests were performed
under the same conditions as the adsorption experiments.

Drug adsorption/desorption from organovermiculites was
calculated as a percentage (%), where the initial adsorption
amount was taken as 100%. For instance, the % desorption was
calculated by eq 4
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where qeda
and qedd

are the quantities of adsorbed and desorbed
drugs per unit mass of the adsorbent (mg g−1), respectively.
Evaluation of the Organovermiculites Stability. The

stability of organovermiculites was carried out under the same
conditions used in the adsorption isotherms, without the
presence of diclofenac, to follow changes by the adsorption
process, according to themethod previously reported.45 For this,
organovermiculites were suspended in 20 mL of water using the
optimal adsorbent dosage. The pH values were adjusted to 6.0
and 8.0 with HCl (0.1 mol L−1) and NaOH (0.1 mol L−1).
Finally, the solids were recovered by centrifugation at 7500 rpm
for 10 min and dried at 50 °C for 24 h.
Characterizations. X-ray diffraction (XRD) data were

recorded using an X-ray diffractometer (D8 Advance Bruker-
AXS), with the 2θ ranging from 1 to 10° at the scanning, using
Cu Kα radiation (λ = 1.5406 nm) at 30 kV and 30 mA.
Elemental analysis of C and N was performed using a
PerkinElmer PE-2400 microelemental analyzer. Thermogravi-
metric analyses of organovermiculites were performed using a
Discovery TGA instrument under an argon atmosphere with a
100 mL min−1 flux from 30 to 800 °C with a heating rate of 10
°C min−1. The samples obtained after the stability test were
analyzed in TGA Q500 equipment under a N2 atmosphere with
a 100 mL min−1 flux from 30 to 800 °C with a heating rate of 10
°C min−1. Fourier transform infrared (FT-IR) spectra were
obtained using an IR Prestige-21 spectrometer (Shimadzu)
equipped with an ATR accessory, from 4000 to 600 cm−1 with a
resolution of 4.0 cm−1 and 32 scans. The Zeta potentials (ζ)
were measured at different pH levels by using a Zetasizer Nano
ZS90 (Malvern Instrument). TEM was performed by using a
Talos S200 FEI instrument. A voltage acceleration of 200 kV and
a current of 4 mA in STEM were used to obtain the HAADF
images. SEM was performed by using an FEI Quanta FEG 250
microscope, operating at an accelerating voltage of 15 kV. The
nitrogen adsorption isotherms were measured in an ASAP 2420
Micromeritics analyzer. Before measurement, the samples were
degassed at 100 °C, and the N2 isotherms of adsorption were
measured at −196 °C in a P/P0 range of 0.0−1.0. SBET value for
the C18-Ver-100% sample was obtained from the Kr adsorption
isotherm in a P/P0 range of 0.0−0.27. The specific surface area
(SBET) of the samples was calculated by Brunauer, Emmet, and
Teller (BET) method, while the pore volume and pore diameter
were estimated by the Barrett−Joyner−Halenda (BJH)method.
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