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ABSTRACT: Schizophrenia (SCZ) is a multifactorial mental illness with limited knowledge concerning pathogenesis, contributing
to the lack of effective therapies. More recently, the use of a nitric oxide donor named sodium nitroprusside (sNP) was suggested as
a potential therapeutic drug for the treatment of SCZ. Despite the mixed results regarding the effectiveness of the sNP in reducing
SCZ symptoms, successful trials on sNP in treatment-resistant SCZ were published. We have also demonstrated the power of
evaluating the lipidic profiles of human clinical and animal model samples to identify the biomarkers of the pharmacological response
to the diagnosis of mental disorders. Aim of this work is to evaluate the sNP effects in an animal model for SCZ studies through
lipidomic profiles assessed by magnetic resonance spectroscopy (NMR). Lipidic profiling of serum from these animals indicated a
more pronounced effect of sNP on lipids in the 0.50−6.00 ppm spectral region. Chemometric analysis also indicated an
approximation of the lipidic profiling of SCZ animal model rats treated with sNP compared to that of the control group. In addition,
we have compared the sNP treatment with other antipsychotics classically used in the clinic, such as haloperidol and clozapine, and
the sNP treatment evaluated herein confirms the potential of sNP for the treatment of SCZ.

1. INTRODUCTION
The use of nitric oxide (NO) donor sodium nitroprusside
(sNP) has been largely discussed in the literature as a potential
therapeutic agent for the treatment of schizophrenia (SCZ).1−4

SCZ is a multifactorial illness, in which the blocking of
glutamatergic N-methyl-D-aspartate (NMDA) receptors and
consequent decrease in NO production may contribute to the
pathogenesis of this psychiatric condition.2,5 NMDA receptors
and NO also perform an important role in brain development
and synaptic plasticity.6 The sNP can modulate the therapeutic
target NMDA receptor with anxiolytic activity, and it was also
identified as a promising adjunct treatment to reduce working
memory impairment.7 Interestingly, NO released from sNP
can cross the blood−brain barrier (BBB), and therefore, even
peripheral intravenous infusion of sNP induces the release of
dopamine in addition to activating NMDA receptors in the
brain.5,8,9

While sNP has been used to treat acute hypertension since
1974,10 sNP is not a conventional medication for SCZ, and
only more recently, it has been recognized as a promising
alternative pharmacotherapy for treatment-resistant SCZ.1,11,12

Although still controversial,13−16 discrepancies in the reported
experimental results could be due to the differences in the
illness stage, disease duration, lifestyle, and age of the patients,
among other factors.8,12,17 In addition, more recently, we have
also demonstrated that the diagnosis biomarker for SCZ and
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other psychiatric conditions, named Ndel1 oligopeptidase,
whose activity was demonstrated to be modulated by the
pharmacological response to the treatment, was also
modulated by the use of sNP as an adjunctive in the treatment
of SCZ, with an interesting association with several aspects of
clinical improvements in patients with SCZ.12,18

Different antipsychotics, such as clozapine,19,20 haloper-
idol,19,21 risperidone,22,23 and aripiprazole,24,25 among others,
have also been used in animal models and also in patients to
prevent or reverse SCZ-like behavior or symptoms, respec-
tively. An animal model suggested as a reliable model for SCZ
studies is spontaneously hypertensive rat (SHR) due to the
presence of prominent features to study emotions and
disturbances associated with SCZ, such as the deficit in
contextual fear conditioning and duration of freezing responses
against the aversive stimulus.26 In addition, SHR exhibits
hyperlocomotion and reduced social behaviors, which could be
reversed through the administration of antipsychotics.27 sNP
was also tested in a dosage range varying between 0.3 and 6.0
mg kg−1 and evaluated SCZ-like animal behaviors.18 Herein,
the effects of sNP were evaluated by a lipid profile study of
serum samples from this SCZ animal model (SHR) and
control normotensive Wistar rats (NWR) by nuclear magnetic
resonance spectroscopy (NMR) analysis. Furthermore, the
antipsychotic effects of sNP were also compared with those
observed from clozapine and haloperidol treatment based on
the lipid profiles. The present results bring new insights into
the psychiatric field providing shreds of evidence pointing out
the effective contribution of sNP in the treatment of SCZ.

2. EXPERIMENTAL SECTION
2.1. Animals. Male drug-naiv̈e normotensive Wistar rats

(NWRs) and spontaneously hypertensive rats (SHRs), aged
between 4 and 5 months and weighing 250−300 g, were
obtained from the in-house breeding colony at Escola Paulista
de Medicina (EPM) from Universidade Federal de Sa ̃o Paulo
(UNIFESP). The animals were accommodated in groups of
four rats within each Plexiglas cage measuring 41 cm × 34 cm
× 16.5 cm, which ensured a controlled environment with a
temperature kept at 22−23 °C and a 12/12 h light/dark cycle
(lights on at 07:00 AM), and with ad libitum access to standard
rodent chow and water. All animal procedures adhered strictly
to the guidelines outlined by the Committee on Care and Use
of Laboratory Animal Resources (National Research Council,
USA). Ethical approval for this study was obtained from the
ethics committee of EPM/UNIFESP under CEUA certificate
no. 7290170315.
2.2. Animal Treatment and Serum Collection. The

administration of sNP to animals followed previously
established protocols. Briefly, sNP (NITROPRUS�Cristaĺia,
SP, Brazil) diluted in 0.9% NaCl saline solution (vehicle) (1.0
mL kg−1) was injected by intraperitoneal (IP) route into adult
(4 months old) NWR or SHR animals, with each group
comprising of 4−6 animals, where SHR had been the animal
model of schizophrenia. Blood samples were collected from the
animals 4 h after the IP administration of either vehicle or sNP
(2.5 or 5.0 mg kg−1). Clozapine and haloperidol were
intraperitoneally administered in doses of 2.5 and 0.5 mg
kg−1, respectively. Serum samples were obtained through blood
centrifugation at 1000−2000g for 10 min at 4 °C.

Figure 1. Results of the PLS-DA of the six groups. (A) Scores graph − 4 samples of the SHR untreated control group (dark blue color, group 1) +
5 samples of SHR + sNP 2.5 mg kg−1 (yellow color, group 2) + 4 samples of SHR + sNP 5.0 mg kg−1 (red color, group 3) + 4 samples of the Wistar
untreated control group (cyan color, group 4) + 5 samples of Wistar + sNP 2.5 mg kg−1 (green color, group 5) + 5 samples of Wistar + sNP 5.0 mg
kg−1 (black color, group 6) using a spectral range between 0.50 and 6.00 ppm with exclusion of 1.50−1.68 ppm and 4.63−4.81 ppm. (B) VIP
scores. (C) The PLS-DA cross-validation with the accuracy of 59.3%; Q2 = 0.86 and R2 = 0.89 using 5 components. Abbreviations: FFA − free fatty
acids; UFA − unsaturated fatty acids. P.S.: The image of the rat is available at the link smart.servier.com (free medical images).
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Subsequently, aliquots of serum were stored at −20 °C until
further analysis, following previously described procedures.19

2.3. Sample Preparation and NMR Spectra Acquis-
ition. NMR samples totalized 6 sample groups: 1) 4 samples
from the SHR control group, 2) 5 samples from SHR + sNP
(2.5 mg kg−1), 3) 4 samples of SHR + sNP (5.0 mg kg−1), 4) 4
samples from the Wistar control group, 5) 5 samples of Wistar
+ sNP (2.5 mg kg−1), and 6) 5 samples of Wistar + sNP (5.0
mg kg−1). Furthermore, for comparison of sNP with other
antipsychotics (haloperidol and clozapine), 4 samples of
Wistar + haloperidol, 5 samples of Wistar + clozapine, 5
samples of SHR + haloperidol, and 5 samples of SHR +
clozapine were analyzed here.
The procedure for the extraction process and parameters

used for NMR spectra acquisition and processing are according
to the methodology previously reported.19 In detail, animal
serum (0.5 mL) was mixed with 2.4 mL of the solvent mixture
composed of methanol:chloroform:sodium chloride solution
(0.15 mol L−1) in a ratio of 1:2:2 (v/v/v) for 1 min using a
vortex. Then, the mixture was centrifuged for 20 min at 2200 g,
at 10 °C, and the chloroform phase containing the serum lipids
was carefully separated from the hydro-alcoholic phase.
Chloroform was evaporated and stored at −20 °C until
analysis by NMR.
Lipids (10 mg) were dissolved in 600 μL of 99.8%

deuterated chloroform (CDCl3, Cambridge Isotope Laborato-
ries Inc., Tewksbury, MA, USA), transferred into NMR tubes
(5 mm), and kept at 4 °C to avoid chloroform evaporation
and/or lipid oxidation.
All 1H NMR spectra were acquired in a Bruker Avance III

NMR 600 MHz spectrometer equipped with a Triple
Resonance BroadBand NMR probe (Bruker Corp., Billerica,
MA, USA). 1H NMR spectra were recorded at 25 °C with an
acquisition time of 1.32 s, a spectral window width of 12.335
Hz, a prescan delay of 12 μs, and 128 scans. Partial least-
squares discriminant analysis (PLS-DA) was performed at the
MetaboAnalyst platform28 using the spectral region between
0.50 and 6.00 ppm, excluding 1.50−1.68 ppm and 4.63−4.81
ppm for all spectra, to evaluate the effects of the different sNP
dosages. For comparison of the sNP effects with those induced
by clozapine or haloperidol, we performed chemometrics
analysis using a spectral range between 1.30 and 2.60 ppm,
excluding 1.50−1.68 ppm for all spectra. All analyses were
done by using spectral bins with no processing mode. The
NMR peak assignments were based on the literature.19,29

3. RESULTS AND DISCUSSION
3.1. Evaluation of Sodium Nitroprusside (sNP) in

Different Dosages. Dosages of sNP of 2.5 mg kg−1 and 5.0
mg kg−1 were selected in this study to mimic conditions used
with clinical inpatients reported in previous studies.2 The
effects of sNP on lipid metabolism were evaluated by an NMR
approach using different combinations of classes in chemo-
metrics analysis − SHR control vs SHR + sNP (Figures 1 and
S1−S4) and Wistar control vs Wistar + sNP (Figures 1 and
S5−S8). The results of the PLS-DA indicated that a dose of 5.0
mg kg−1 of sNP caused more significant effects on lipids from
serum than a lower (half) dose of sNP (2.5 mg kg−1) in the
SHR (Figures 1, S4 and S9), while the effects in normotensive
Wistar rats (NWR) were more pronounced for the lower dose
of sNP (Figures 1, S8−S10). The higher dose of sNP needed
to observe the effects in SHR may be related to the reported
higher levels of blood nitric oxide of SHR.30

Results related to the SHR and Wistar (NWR) presented in
the VIP scores of 6 groups (Figure 1c), and in the VIP scores
shown Figures S1−S10, show that these chemometrics
analyses corroborate and complement the discussion done
herein. Chemometrics analyses were also performed using the
total spectral region and other spectral ranges; however, δ of
0.50−6.00 was found more suitable because of the model
fitting (Q2) and predictability (R2) values.
3.2. Normotensive Wistar Rats. Metabolites that

indicated higher levels in NWR in comparison with SHR
were FFAs and omega-6 fatty acids, where the highest FFA
levels occurred in Wistar + sNP (2.5 mg kg−1) and the Wistar
control, respectively. Results that indicated significant
statistical differentiation were polyunsaturated fatty acids
(PUFAs, δ = 2.70−2.84), glycerol, unsaturated FA chains,
choline glycerophospholipids (ChoGPL, δ = 3.60−3.80),
cholesterol (δ = 0.58−0.70), among others (Figures S6 and
S7).
In the NWR model, a closer approximation was observed

between the lipid profiles of the sNP-treated animals and the
control group when 2.5 mg kg−1 of sNP was administered,
indicative of the dose-dependent adjustments of the FFA
levels. Furthermore, reduced cholesterol levels were observed,
which contrasts with other antipsychotics’ effects that tend to
increase cholesterol levels and provoke weight gain in long-
term use.31

Glycerophospholipids (ChoGPL) perform different bio-
logical functions for the development of neural membranes
such as stability, fluidity, permeability, and vital biochemical
processes.32,33 However, disturbance in glycerophospholipids
pathways has been associated with a dysfunction of mental
illnesses such as schizophrenia and bipolar disorder34 and with
neurodegenerative diseases.33 In our analysis, ChoGPL was
significantly increased in Wistar + sNP (5.0 mg kg−1), which
was a less effective dose in the treatment of NWR animals.
3.3. Spontaneously Hypertensive Rats. According to

the VIP scores (Figures 1 and S9), we observed increases in
the levels of unsaturated fatty acids (UFAs, δ = 1.60−1.70),
omega-3 fatty acids (δ = 0.93−1.02), free fatty acids (FFAs, δ
= 1.20−1.40), galactose (δ = 4.90−5.00), and amine protons
(−HN(CH3)2) (δ = 5.20−5.40) in SHR + sNP (2.5 mg kg−1)
and SHR + sNP (5.0 mg kg−1), while omega-6 fatty acids (δ =
0.75−1.00) were higher in the SHR control. In this sense,
results that indicated a significant statistical differentiation (p-
value < 0.05) were fatty acids, amino compounds, unsaturated
fatty acid chains (−CH2−CH�CH−, protons in the α
position; δ = 1.95−2.10), galactose, and glycerol (δ = 5.25−
5.50) (Figures S2 and S3). The NMR peak assignments are
shown in Figure S12 and Table S1.
Omega-3 and -6 are essential fatty acids obtained in the diet.

A decrease in omega-6 levels in SHR administered with sNP
may be related to the different biochemical roles such as
cellular mediators, biochemical signaling, and precursors in the
biosynthesis of other fatty acids.35 It is reported in the
literature that omega-3 and unsaturated fatty acids show
cardioprotective properties and enhance vasodilation.36,37

Glycerol was significantly increased after the administration
of sNP, which corroborates with results related to the
administration of other antipsychotics that were previously
reported.19 Through the not very well-understood role of
glycerol during the sNP treatment, it is suggested that glycerol
and FFAs are produced due to the lipolysis process.38
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Elevated amino compound levels in SHR + sNP in the blood
could be due to the release of catecholamines and neuro-
transmitters in locus coeruleus, which posteriorly would be
transferred to blood circulation and contribute to increased
blood pressure,39 once amino compounds were detected in
lower concentrations in NWR (Figure 1c).
3.4. Effectiveness of sNP Compared with Clozapine

and Haloperidol. Haloperidol is a typical antipsychotic drug

also widely prescribed in many countries for patients with
SCZ,40 delirium,41 Huntington’s disease,42 and other illnesses.
Among the side effects associated with the use of haloperidol
are extrapyramidal symptoms (EPS), sedation, orthostatic
hypotension, and weight gain.43 Some studies reported
clozapine as more effective drug than haloperidol in reducing
hostility and aggressive behaviors for the treatment of
psychoses44,45 and in controlling episodes of SCZ.19

Figure 2. The results of the PLS-DA of SHR treated with sNP, haloperidol, and clozapine. (A) Scores graph (2D) − 4 samples of the untreated
SHR control group (dark blue color, group 1) + 5 samples of SHR + sNP 2.5 mg kg−1 (yellow color, group 2) + 4 samples of SHR + sNP 5.0 mg
kg−1 (red color, group 3) + 5 samples of SHR + haloperidol (pink color, group 4) + 5 samples of SHR + clozapine (purple color, group 5) using a
spectral range between 1.30 and 2.60 ppm with exclusion of 1.50−1.68 ppm. (B) VIP scores. (C) The PLS-DA cross-validation with the accuracy of
63.8%; Q2 = 0.78 and R2 = 0.80 using 5 components. (D) Box plots of the original concentration of variables δ = 1.36 and 1.49, which were
assigned to FFA. Abbreviation: FFA − free fatty acids.
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Clozapine is an atypical antipsychotic drug used in different
brain disorders and neurological diseases, including SCZ,
major depressive disorder (MDD), and Parkinson’s disease.46

It was developed in the late 1950s and became known
principally due to the production of minimal or total absence
of EPS, which is associated with muscular and movement
dysfunctions.47 In the 1980s, the efficacy of clozapine in
patients with SCZ and with resistance to other treatments was
reported, leading to its approval by the Food and Drug
Administration (FDA, United States of America) in 1990 and
worldwide dissemination.46,48,49 Although clozapine is licensed
in many countries, there are a variety of risks and side effects
associated with this antipsychotic, which has led to the
establishment of different regulations by many countries.49 In
this sense, agranulocytosis induced by clozapine is the most
known risk reported in the literature, which also led to its
withdrawal from the market in the 1970s in Finland.46,50

Furthermore, clozapine is associated with cardiotoxicity,51,52

seizures,53 pneumonia,54 obsessive-compulsive symptoms,54,55

and even suicide and an increased risk of death.46,51,56

Despite the side effects related to the administration of sNP,
such as bradycardia, dizziness, and hypotension, among others,
besides a couple of specific contraindications,10 previous
studies have reported a mode of action faster for the sNP in
treatment-resistant SCZ than other antipsychotics, mainly in
younger patients.1,11 Titulaer et al.11 suggested the admin-
istration of sNP in low doses as an adjunct for therapy with
other antipsychotics, since high dose and prolonged admin-
istration could cause proarrhythmia.11,57

Chemometric analysis of our NMR data indicated a higher
similarity in the metabolic profiles of SHR (Figure 2) and
NWR (Figure S11) control animals with those treated with
sNP concerning those treated with clozapine or haloperidol.
Considerable increases in free fatty acid (FFA, δ = 1.20−

1.40) levels were observed after the treatment with clozapine
and haloperidol (Figures 2e and S11e, respectively) in
comparison with animals treated with sNP. Alterations in
fatty acid metabolism were reported by Canfrań-Duque et al.58

in an in vitro study of antipsychotics of the first and second
generations.58 Furthermore, clinical studies have shown that
treatment with certain antipsychotics (risperidone, olanzapine,
and haloperidol, among others) favors PUFA (n − 3 and n −
6) biosynthesis through upregulation of related genes. So,
these medications increase cardiac risks such as arrhythmias,
since these PUFAs harm the signaling of different vital
pathways�synaptic, immune, and inflammatory.59
Another study reported elevated serum FFA levels in

patients with SCZ treated in the long term with chronic
antipsychotics such as clozapine, which could be harmful,
causing blood glucose metabolism disturbances and insulin
resistance.60

3.5. sNP for the Treatment of SCZ Patients. Previously,
the effects of typical and atypical antipsychotics such as
haloperidol and clozapine were investigated to estimate
biochemical responses as metabolic consequences of the
administration of these drugs in animal models and also
studied SCZ-like animal behaviors after sNP administra-
tion.18,19 Herein, we report for the first time alterations in
lipid profiles after sNP administration and a comparative study
of sNP with haloperidol and clozapine in the animal SCZ-
model using lipidomics by NMR to evaluate how lipidic
changes are reflected in the control animal and SHR (a reliable
animal model for SCZ). These biochemical responses could

provide insights into drug effects, which are necessary to a
previous understanding of sNP administration in humans,
since there is an issue about the resistance of patients to the
use of traditional antipsychotics.61,62

An increase in FFA was observed after sNP administration
(Figures 1, S1, and S2). However, this increase was even more
pronounced when clozapine and haloperidol were adminis-
tered (Figure 2). Cellular membranes of SCZ patients exhibit a
deficit in phospholipids, which release FFA from the hydrolysis
of these phospholipids.63 Therefore, the sNP treatment
appears to be more suitable and less aggressive than other
antipsychotics since it indicates a lower extent of cellular
membrane damage. In a similar reasoning, dysregulation in
PUFA levels could be related to the degradation of erythrocyte
membranes, which has been reported in SCZ patients.64

Glycerol is another metabolite with increased levels after
sNP (2.5 mg kg−1) treatment (Figure S2). In studies of
schizophrenia and other diseases, the increased levels of
glycerol are associated with lipolysis of triglycerides, which
generate FFA and glycerol.65,66 In sNP (5.0 mg kg−1)
treatment, this significant increase in glycerol levels was not
observed, which indicates that sNP in a specific dosage could
contribute to reducing triglyceride degradation.
Herein, we used a reliable animal model of schizophrenia

(SHR animals)26,27 to study sodium nitroprusside effects as a
potential antipsychotic drug in comparison to haloperidol and
clozapine using an NMR-based lipidomics approach. In this
sense, the spectral region (δ = 0.50−6.00) used in the PLS-DA
led us to the assignment of NMR peaks to a set of metabolites,
while VIP scores and box plots helped select which metabolites
(FFA, PUFA, and glycerol) were important in this
discrimination of groups.

4. CONCLUSIONS
Our studies using NMR-based lipidomics indicate a higher
effectiveness of 5.0 mg kg−1 of sNP for the treatment of an
animal model of SCZ compared with clozapine or haloperidol
as presented in the results of chemometric analysis (Figures 1
and 2). The animal model for SCZ studies employed here was
considered a reliable model for the psychiatric field of research
due to the demonstrated predictive and constructed validity
and with special strong predictive validity for pharmacological
interventions. The spectral range that had higher contributions
to the discrimination of different groups in PLS-DA was
between δ of 0.50 and 6.00, which mainly reflects changes in
FA, PUFAs, and glycerol as shown in VIP scores and box plots
(Figures 1b, 2b,d, and S6). Therefore, based on the lipidic
profiles observed in rats treated with sNP, we suggest the use
of sNP for the treatment of patients with treatment-resistant
SCZ, considering factors such as (adequate) dose and age of
patients (20 to 30 years) and excluding contraindicated cases,
is advantageous, since sNP proved to be more effective than
clozapine or haloperidol, as evaluated by NMR-based
lipidomics performed here.
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