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Background: Observational studies have suggested a potential link between cathepsins and major 
salivary gland neoplasms (MSGNs), but the causality of this relationship remains uncertain. Mendelian 
randomization (MR) is a significant genetic method that employs single nucleotide polymorphisms (SNPs) 
as instrumental variables (IVs). This approach reduces confounding effects, enabling the analysis of causal 
relationships between exposure traits and outcome diseases. This study aimed to explore the causal links 
between cathepsins and MSGNs by utilizing MR analysis.
Methods: In this research, we collected IVs associated with 11 different types of cathepsins (including 
cathepsins D, L1, B, E, F, G, H, O, S, L2, and Z) from the Medical Research Council (MRC) integrative 
epidemiology unit (IEU) open genome-wide association studies (GWAS) database. Data for cathepsins D 
and L1 were sourced from the SCALLOP consortium, which included 21,758 Europeans identified via the 
Olink proximity extension assay (PEA). Cathepsins B, E, F, G, H, O, S, L2, and Z were obtained from the 
INTERVAL study involving 3,301 European participants using the SOMAscan assay. We also collected data 
on benign major salivary gland neoplasms (BMSGNs) from the FinnGen database, consisting of 3,353 cases 
and 450,380 controls, and information on major salivary gland carcinomas (MSGCs) from the UK Biobank, 
which included 105 cases and 456,243 controls. Diagnostic criteria for both BMSGNs and MSGCs followed 
the international statistical classification of diseases and related health problems 10th revision (ICD-10) 
classification. A comprehensive bidirectional MR study was executed employing diverse methodologies, 
including inverse variance weighted (IVW), MR-Egger regression, weighted median, and weighted mode. 
Additionally, sensitivity analyses were conducted to emphasize the solidity of the study.
Results: Increased levels of cathepsin F (CTSF), cathepsin O (CTSO), and cathepsin L2 (CTSL2) were 
associated with a higher risk of BMSGNs (CTSF: IVW: P=0.01, odds ratio (OR) =1.12, CTSO: IVW: 
P=0.02, OR =1.14; CTSL2: IVW: P=0.01, OR =1.17). Additionally, no causal association was found between 
cathepsins and MSGCs. Reverse MR analyses did not establish a causal relationship between BMSGNs and 
various cathepsins. However, it did reveal that a higher risk of MSGCs was associated with lower levels of 
CTSL2 (IVW: P=0.01, beta =−0.046).
Conclusions: The study presents compelling evidence of a correlation between elevated CTSF, CTSO, 
and CTSL2 levels and an increased risk of BMSGNs. Elevated CTSF, CTSO, and CTSL2 levels may serve 
as significant biomarkers for diagnosing BMSGNs definitively. Conversely, reduced levels of CTSL2 provide 
a novel foundation for diagnosing MSGCs and differentiating them from BMSGNs. Moreover, CTSF, 
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Introduction

Salivary gland tumors are relatively uncommon, comprising 
only 3–10% of head and neck tumors (1,2). They are 
primarily of epithelial origin and tend to develop in the 
major salivary glands, such as the parotid, submandibular, 
and sublingual glands (3). Specifically, 64–80% of 
these tumors occur in the parotid glands, 7–11% in the 
submandibular glands, and less than 1% in the sublingual 
glands (1). Based on clinical and pathological features, 
salivary gland epithelial tumors can be categorized as 
benign or malignant. Benign tumors commonly include 

pleomorphic adenoma, myoepithelioma, basal cell adenoma, 
and Warthin’s tumor. Malignant tumors typically include 
acinic cell carcinoma, mucoepidermoid carcinoma, and 
adenoid cystic carcinoma (4). While approximately 80% of 
salivary gland neoplasms are benign, they still pose a risk 
of recurrence and potential malignant transformation due 
to their localized invasive characteristics. Pathology data 
from the Netherlands between 1992 and 2012 indicated a 
4.6% first-recurrence rate after at least five years of follow-
up and a 6.7% recurrence rate at 20 years of follow-up 
for salivary gland pleomorphic adenoma. Notably, 3.2% 
of all recurrences progressed into malignant tumors (5). 
A recent analysis of treatment efficacy and prognostic 
factors for carcinoma ex pleomorphic adenoma (CXPA) 
of the major salivary glands revealed an overall treatment 
failure rate ranging from 33.3% to 53.0%. Furthermore, 
the 5-year overall survival rate is only between 30% 
and 76%. These results highlight the significant need 
for treatment effectiveness and patient prognosis  
improvement (6). Salivary gland carcinomas (SGCs) 
constitute a highly diverse group of tumors, comprising 
5–7% of all head and neck cancers (3). Initial symptoms of 
salivary gland neoplasms (SGNs) may not be immediately 
noticeable and often manifest as painless swelling in the 
gland. As the disease progresses, the tumor continues to 
grow, and malignant tumors in various parts of the salivary 
glands can result in symptoms such as facial paralysis and 
pain. In some cases, the cancer can even spread to other 
parts of the body, significantly impacting the prognosis (7).  
Many studies have explored the prediction of overall and 
tumor-specific survival in patients with major salivary 
gland carcinomas (MSGCs) through nomograms, which 
have proven effective in estimating patient outcomes. 
However, a notable scarcity of research on early diagnosis 
and treatment for these conditions remains (8). The timely 
identification and subsequent management of SGNs are of 
utmost significance. It is imperative to expeditiously explore 
novel diagnostic biomarkers and therapeutic targets in this 
context. Hence, our study focused on major salivary gland 

CTSO, and CTSL2 represent potential new targets for therapeutic intervention in BMSGNs and MSGCs.
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Highlight box

Key findings
•	 This study explored the relationship between cathepsins and major 

salivary gland neoplasms (MSGNs) from genetic insights by using 
Mendelian randomization (MR) analysis.

•	 Elevated serum levels of cathepsin F (CTSF), cathepsin O (CTSO), 
and cathepsin L2 (CTSL2) were connected with an increased risk 
of benign major salivary gland neoplasms (BMSGNs). 

•	 The development of major salivary gland carcinomas (MSGCs) 
was associated with lower levels of CTSL2. 

What is known and what is new? 
•	 An increasing number of genome-wide association studies (GWAS) 

have yielded numerous genetic variants associated with complex 
diseases and traits. MR is a robust approach that utilizes single 
nucleotide polymorphisms (SNPs) as genetic instrumental variables 
(IVs) to examine the causal relationship between a specific trait 
exposure and a disease outcome.

•	 Our manuscript provided a comprehensive summary of the MR 
analysis, utilizing genetic data from the FinnGen Biobank, UK 
Biobank, and GWASs. This analysis aimed to investigate, for the 
first time, the potential causal relationship between 11 different 
cathepsins and MSGNs.

What is the implication, and what should change now? 
•	 The research findings have established a direct genetic causal 

relationship between specific cathepsins and MSGNs. These results 
underscore the potential of cathepsins as targets for therapy and 
as diagnostic biomarkers for managing salivary gland neoplasms, 
offering new research directions for early diagnosis and treatment.
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neoplasms (MSGNs), which happened most frequently, to 
identify diagnostic markers and new treatment targets for 
the early detection and treatment of both benign major 
salivary gland neoplasms (BMSGNs) and MSGCs.

Proteases are crucial for both physiological and 
pathological processes. They are categorized into seven 
main families: metalloproteinases, serine proteases, 
threonine proteases, asparagine proteases, aspartate 
proteases, glutamate proteases, and cysteine proteases (9). 
Cysteine proteases encompass cathepsin L (L1), B, H, O, 
S, T, K, L2 (V), and F. Cathepsins, extensively studied in 
mammals, play a pivotal role in maintaining intracellular and 
extracellular balance and are linked to tissue differentiation, 
intracellular protein degradation, hormone maturation, 
antigen processing, immune responses, and the malignant 
metastasis of tumors (10,11). Prior research has established 
a strong link between heightened cathepsin K (CTSK) 
expression and numerous malignancy indicators in SGCs, 
including tumor infiltration, lymph node metastasis, distant 
metastasis, advanced tumor node metastasis (TNM) clinical 
stage, increased risk of recurrence, and reduced survival 
rates (12). Furthermore, cathepsin D (CTSD) expression 
was notably elevated in malignant salivary gland tumors 
compared to benign tumors. Its increased expression in 
highly malignant tumors, such as adenoid cystic carcinoma 
and high-grade mucoepidermoid carcinoma, is regarded 
as a significant marker of tumor invasiveness, potentially 
contributing to the perineural invasion of salivary adenoid 
cystic carcinoma (13-15). These findings emphasized the 
potential causal relationship between cathepsins and SGNs.

Randomized controlled trials (RCTs) may not always be 
feasible when investigating the causal relationship between 
diseases due to trial conditions or ethical considerations. In 
such instances, using genetic variation as an instrumental 
variable (IV) in Mendelian randomization (MR) can yield 
more reliable results that closely resemble those of RCTs 
than observational or retrospective studies. MR is a robust 
approach that utilizes single nucleotide polymorphisms 
(SNPs) as genetic instrumental variables (IVs) to investigate 
the causal relationship between a specific trait and a disease 
outcome. The theory behind MR analysis suggests that 
if these genetic variants are associated with the disease 
outcome through their impact on the exposure, individuals 
carrying these variants are more likely to develop the  
disease (16). Compared to observational studies, MR 
reduces confounding by using genetic variants consistent 
from conception and mitigates biases from environmental or 
lifestyle factors commonly observed in observational studies. 

Various cathepsin-targeting inhibitors have been developed 
and utilized in treating clinical diseases in recent decades, 
showing promising therapeutic effects (17). As a result, 
exploring the relationship between cathepsins and MSGNs 
presents a significant opportunity for enhancing treatment 
strategies for these tumors. Current research on cathepsins 
in relation to MSGNs is limited, predominantly consisting 
of retrospective studies that examine the direct association 
between cathepsin expression levels in tissue samples and 
SGNs. A primary challenge in this field is that diagnosing 
salivary gland tumors largely relies on histopathological 
methods. Additionally, the assessment of cathepsin diversity 
and the measurement of circulating cathepsin levels are 
time-consuming and labor-intensive processes, further 
complicated by the small sample sizes often encountered 
in studies of salivary gland tumors. This challenge may be 
addressed through the MR method, which employs genetic 
IVs to investigate the causal relationship between cathepsins 
and MSGNs from a genetic standpoint. This approach 
can potentially provide valuable insights for future basic 
and clinical research while reducing the time and effort 
required for subsequent studies. Additionally, genome-wide 
association studies (GWASs) have significantly improved 
the methodology by identifying numerous genetic variants 
associated with complex diseases and traits, expanding 
the pool of instrumental SNPs for more reliable MR 
analyses. In this specific context, we conducted two-sample 
bidirectional MR analyses to investigate the potential causal 
relationships of different cathepsin types on the risk of 
MSGNs. This manuscript is written in accordance with 
the STROBE-MR reporting checklist (available at https://
gs.amegroups.com/article/view/10.21037/gs-24-374/rc). 

Methods

Study design

In this study, a bidirectional two-sample Mendelian 
randomization was conducted to systematically evaluate the 
genetic associations between 11 cathepsins (D, L1, B, E, F, 
G, H, O, S, L2, and Z) and both BMSGNs and MSGCs. 
To ensure the study design’s credibility, a series of statistical 
methods were used to validate the results, with the primary 
approach being inverse variance weighted (IVW) (18,19). 
The instrumental variables (IVs) chosen for this study were 
based on relevance, independence, and exclusion restriction, 
which are three fundamental Mendelian assumptions: 
(I) genetic variables must significantly correlate with the 

https://gs.amegroups.com/article/view/10.21037/gs-24-374/rc
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Figure 1 MR design for causal analysis of cathepsins and MSGNs on genetic predisposition. MSGNs, major salivary gland neoplasms; 
MR, Mendelian randomization; SNPs, single nucleotide polymorphisms; IVW, inverse variance weighted; MR-PRESSO, MR Pleiotropy 
Residual Sum and Outlier. Created with BioRender.com.
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exposure, (II) genetic variables must be independent of 
confounders, (III) genetic variables can only influence the 
outcome by affecting the exposure and are not directly 
associated with the outcome (20,21). The study design is 
shown in Figure 1.

Data source

The summary data for various cathepsins, including D, 
L1, B, E, F, G, H, O, S, L2, and Z, utilized in this study 
were sourced from two primary datasets: the Systematic 
and Combined Analysis of Olink Proteins (SCALLOP) 
consortium and the INTERVAL study. These datasets 
are accessible online through the Medical Research 
Council (MRC) integrative epidemiology unit (IEU) 
open GWAS database [IEU OpenGWAS project (mrcieu.
ac.uk)]. Data for cathepsin D and L1 were obtained from 
the SCALLOP consortium, which comprised a European 
population of 21,758 individuals, measured using the 
Olink proximity extension assay (PEA) technique. In 
contrast, cathepsins B, E, F, G, H, O, S, L2, and Z were 
drawn from the INTERVAL study, which included a 
sample of 3,301 individuals from the European population 
and employed an expanded version of an aptamer-based 
multiplex protein assay known as SOMAscan (22,23). All 
participants provided informed consent, and the National 
Research Ethics Service granted approval for the original 

studies from which the summary data were derived. In the 
context of our study, neither written informed consent nor 
ethical approval was required. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). Meanwhile, the data on BMSGNs were obtained 
from the FinnGen database R11 version, which consisted 
of 3,031 cases and 409,150 controls, with 20,094,122 SNPs. 
Additionally, MSGCs data were acquired from the UK 
Biobank, which included 105 cases and 456,243 controls, 
totaling 11,831,932 SNPs (24). The diagnostic criteria 
for BMSGNs and MSGCs adhered to the international 
statistical classification of diseases and related health 
problems, 10th revision (ICD-10), which encompasses both 
benign and malignant tumors of the parotid, submandibular, 
and sublingual salivary glands. The phenotypes utilized 
were accessible online on the FinnGen (FinnGen: an 
expedition into genomics and medicine | FinnGen) and 
GWAS Catalog websites [GWAS Catalog (ebi.ac.uk)]  
(Table S1). 

Selection of Ivs

In this study, we chose to apply a more lenient threshold 
of P<5e−6 to ensure an adequate number of SNPs linked 
to cathepsins for further analysis (25). In addition, we 
implemented a clump distance of less than 10,000 kb 
with r2<0.001 to mitigate potential linkage disequilibrium 

https://cdn.amegroups.cn/static/public/GS-24-374-Supplementary.pdf
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(LD) and excluded palindromic SNPs to minimize bias 
(26,27). Furthermore, in adherence to the independence 
assumption of MR, we carefully examined and excluded 
SNPs strongly associated with the outcome (P<5e−8) to 
ensure the accuracy of our analysis. We determined the 
strength of each selected SNP by calculating the F-statistic 
using the formula F=(beta/se)2 (28,29). An F-statistic of 
10 or higher provides substantial evidence against weak 
instrument bias. Conversely, SNPs with an F-statistic below 
10 are considered weak and are recommended for exclusion 
(30-32). In reverse MR analysis, where cathepsins were the 
outcome and BMSGN and MSGCs were the exposures, 
genetic variants instrumental in BMSGN and MSGCs were 
selected using the same criteria mentioned previously (the 
supplementary tables are avalable at https://cdn.amegroups.
cn/static/public/gs-24-374-1.xlsx; https://cdn.amegroups.
cn/static/public/gs-24-374-2.xlsx; https://cdn.amegroups.
cn/static/public/gs-24-374-3.xlsx; https://cdn.amegroups.
cn/static/public/gs-24-374-4.xlsx). 

Mendelian randomization analysis

We employed a range of methods, such as IVW, MR-Egger, 
weighted median, and weighted mode with the Two-Sample 
MR package (version 0.5.6) and MR Pleiotropy Residual 
Sum and Outlier (MR-PRESSO) in R 4.3.3, to conduct 
a bidirectional MR analysis to investigate the potential 
causal relationship between cathepsins and BMSGN and 
MSGCs. The IVW method demonstrated the highest 
statistical power and was selected as the primary analytical 
approach for estimating the overall causal effects (18). 
Although the results from MR-Egger, weighted median, 
and weighted mode analyses were comparatively less 
efficient, they remained valuable by providing significant 
insights and contributing to a comprehensive assessment 
of the consistency and reliability of the study results  
(33-35). Statistically, a p value less than 0.05 was considered 
significant. Moreover, a comprehensive sequence of 
sensitivity analyses was performed, including Cochran’s Q 
test, MR-Egger intercept test, and MR-PRESSO test. The 
Cochrane’s Q test was used to evaluate the heterogeneity 
of SNP estimates, with statistical significance set at  
P<0.05 (19). The MR-Egger intercept test assessed horizontal 
pleiotropy (P<0.05) (33). In addition, MR-PRESSO analysis 
was conducted to identify and address potential horizontal 
pleiotropic outliers (36). Sensitivity analysis is a crucial test 
that must be conducted on the resulting data to affirm the 
reliability and precision of the findings.

Results

MR main analysis results

A forward MR analysis investigated the effects of 11 
cathepsins (cathepsins D, L1, B, E, F, G, H, O, S, L2, and 
Z) of MSGNs. The study found that elevated levels of 
cathepsin F (CTSF), cathepsin O (CTSO), and cathepsin 
L2 (CTSL2) are associated with a higher risk of BMSGNs 
(CTSF: IVW: P=0.01, odds ratio (OR) =1.12, 95% 
confidence interval (CI): 1.02–1.22; CTSO: IVW: P=0.02, 
OR =1.14, 95% CI: 1.02–1.28; CTSL2: IVW: P=0.01, 
OR =1.17, 95% CI: 1.03–1.33). Although the methods 
other than IVW did not show statistical differences, all 
four methods had a consistent direction of effect, ensuring 
the credibility of the results (Figure 2). No evidence of 
heterogeneity or horizontal pleiotropy was observed in the 
sensitivity analysis. The values obtained for Cochran’s Q 
(CTSF: MR-Egger P=0.33, CTSO: MR-Egger P=0.62; 
CTSL2: MR-Egger P=0.62) and MR-Egger intercept 
(CTSF:P=0.97, CTSO: P=0.39; CTSL2: P=0.54) tests all 
exceeded a P value of 0.05, verifying the credibility and 
reliability of the results. In MR-PRESSO tests, CTSF 
(P=0.43), CTSO (P=0.66), and CTSL2 (P=0.72) all had 
P values more than 0.05, further indicating no horizontal 
pleiotropy (Figure 3). However, no causal association was 
found between cathepsins and MSGCs (Figure 4). 

Reverse MR analysis results

Reverse MR analyses were conducted to thoroughly 
investigate the potential for reverse causality, in which 
cathepsins were the outcomes and BMSGN and MSGCs 
were the exposures. Our analyses did not establish a causal 
relationship between BMSGNs and various cathepsins 
(Figure 5). However, our findings revealed an association 
between the development of MSGCs and reduced levels 
of CTSL2 (IVW: P=0.01, beta=−0.046, 95% CI: −0.089 to 
−0.003). Similarly, the weighted median method yielded 
comparable results (P=0.007, beta=−0.042, 95% CI: −0.073 
to −0.012) (Figure 2). The reverse analyses showed no 
heterogeneity or horizontal pleiotropy in Cochran’s Q 
(MR-Egger P=0.45) and MR-Egger intercept (P=0.46) tests. 
Additionally, the MR-PRESSO (P=0.56) analysis revealed 
no outliers. Notably, the analysis of MSGCs with cathepsin 
S (CTSS) produced a negative IVW result (P=0.95). 
However, Cochran’s Q test yielded a P value of 0.006, 
indicating the presence of heterogeneity. The MR-PRESSO 
assay identified an outlier, rs141662525, which was removed 

https://cdn.amegroups.cn/static/public/gs-24-374-1.xlsx
https://cdn.amegroups.cn/static/public/gs-24-374-1.xlsx
https://cdn.amegroups.cn/static/public/gs-24-374-2.xlsx
https://cdn.amegroups.cn/static/public/gs-24-374-2.xlsx
https://cdn.amegroups.cn/static/public/gs-24-374-3.xlsx
https://cdn.amegroups.cn/static/public/gs-24-374-3.xlsx
https://cdn.amegroups.cn/static/public/gs-24-374-4.xlsx
https://cdn.amegroups.cn/static/public/gs-24-374-4.xlsx
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Figure 2 The MR results between cathepsins and MSGNs. (A) Scatter plot showing the causal effect of cathepsin F on BMSGNs. (B) 
Scatter plot showing the causal effect of cathepsin O on BMSGNs. (C) Scatter plot showing the causal effect of cathepsin L2 on BMSGNs. (D) 
Scatter plot showing the causal effect of MSGCs on cathepsin L2. MR, Mendelian randomization; BMSGNs, benign major salivary gland 
neoplasms; MSGCs, major salivary gland carcinomas; SNPs, single nucleotide polymorphisms.
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for reanalysis. After removing the outlier, the MR-PRESSO 
test did not detect any outliers. The MR-PRESSO test 
(P=0.14) and the MR-Egger intercept (P=0.78) indicated 
the absence of horizontal pleiotropy. Although Cochran’s 
Q test (P=0.049) still suggested potential heterogeneity, it 
enhanced the reliability of the negative IVW result (P=0.25), 
indicating the absence of a potential causal relationship 
between MSGCs and CTSS. All IVW results were negative 
for the other cathepsins, and sensitivity analysis did not 

indicate heterogeneity and horizontal pleiotropy (Figure 6).

Discussion

SGNs display a wide range of cytomorphological features, 
and it is challenging to distinguish between benign 
and malignant neoplasms due to their diversity and 
heterogeneity (37). With the increasing occurrence of 
SGNs and the potential of distant metastasis in malignant 
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Figure 3 The forest plot of the causal effect of cathepsins on BMSGNs. BMSGNs, benign major salivary gland neoplasms; MR, Mendelian 
randomization; SNP, single nucleotide polymorphism; IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval; MR-
PRESSO, MR Pleiotropy Residual Sum and Outlier.

neoplasms, there is a mounting need to uncover new 
early diagnostic biomarkers and develop innovative 
treatments. These efforts are critical for the effective 
prognosis and treatment of the disease (4). In MR studies 
conducted previously, a substantial body of evidence has 
supported a causal relationship between cathepsins and a 

range of diseases, including cardiovascular diseases (38), 
Parkinson’s disease (39), knee and hip osteoarthritis (25), 
skin cancers (40), and gastrointestinal tumors (41) from a 
genetic perspective. Hence, we performed a two-sample 
bidirectional Mendelian randomization analysis using 
genetic data from the FinnGen Biobank, UK Biobank, 
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Figure 4 The forest plot of the causal effect of cathepsins on MSGCs. MSGCs, major salivary gland carcinomas; MR, Mendelian 
randomization; SNP, single nucleotide polymorphism; IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval; MR-
PRESSO, MR Pleiotropy Residual Sum and Outlier.

and IEU Open GWAS database to thoroughly investigate 
potential causal relationships between 11 different 
cathepsins and MSGNs for the first time to elucidate 
these relationships systematically. Our findings revealed 
that elevated CTSF, CTSO, and CTSL2 levels were risk 
factors for BMSGNs. Additionally, in the reverse MR 

analysis, MSGCs were found to decrease CTSL2 levels. 
While CTSD and CTSK have previously been shown to be 
strongly associated with the malignancy of SGNs (12,14,42), 
our study did not find a direct causal relationship between 
SGNs and CTSD levels. This lack of association may 
be due to complex genetic-environmental interactions. 
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Figure 5 The forest plot of the reverse causal effect of BMSGNs on cathepsins. BMSGNs, benign major salivary gland neoplasms; MR, 
Mendelian randomization; SNP, single nucleotide polymorphism; IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval; 
MR-PRESSO, MR Pleiotropy Residual Sum and Outlier.

Limitations in genetic data have impeded further validation 
of CTSK with salivary gland malignancies using MR.

Strengths and limitations: our study has provided 
valuable genetic insights into the causal relationships 
between cathepsins and MSGNs. However, it is essential 
to acknowledge the study’s limitations: (I) the threshold 
for obtaining sufficient SNPs was P<5e−6 rather than 

the more stringent P<5e−8. (II) The study focused solely 
on a European population, highlighting the necessity of 
including more diverse populations to enhance the study’s 
validity. (III) MSGNs encompass a wide range of diseases, 
each with distinct manifestations, indicating the need 
for the study to be further tailored to specific diseases. 
Additionally, the sample size of MSGCs is relatively small, 
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Figure 6 The forest plot of the reverse causal effect of MSGCs on cathepsins. MSGCs, major salivary gland carcinomas; MR, Mendelian 
randomization; SNPs, single nucleotide polymorphisms; IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval; MR-
PRESSO, MR Pleiotropy Residual Sum and Outlier.

and more cases need to be validated. (IV) Cathepsin levels 
and the prevalence of MSGNs may be influenced by 
gender and age. However, the lack of individual genotypic 
expression data precludes further statistical analyses. (V) 
The current study only explored the genetic perspective. 
Further research is necessary to provide specific guidance 
for clinical application.

CTSF is a critical lysosomal protein degradation system 

component derived from a skeletal muscle cDNA library. 
Its expression is prominent in the heart, skeletal muscle, 
brain, testis, and ovary but not in peripheral leukocytes and 
the thymus (43-45). While research on CTSF and SGNs 
is currently lacking, it has been implicated in regulating 
apoptosis in various cancers and utilized as a prognostic and 
diagnostic marker for numerous diseases. Elevated levels 
of CTSF and fibulin-1 have been identified as potential 
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innovative diagnostic biomarkers for brain metastases in 
non-small cell lung cancer (NSCLC) (46). Conversely, 
an alternative study has indicated that CTSF may exert 
an anti-tumor effect by modulating immune responses in 
NSCLC (47). Additionally, diminished CTSF expression 
predicted a poor prognosis in patients with clear-cell renal 
cell carcinoma and gastric cancer cells (48,49). Although 
CTSF has received less attention in benign tumors, our 
study identified it as a risk factor for BMSGNs. This 
might be connected to its role in protein degradation and 
modification of the extracellular matrix, which requires 
further investigation into the specific mechanisms involved.

CTSO was initially identified in the human breast 
cancer cDNA library in 1994. It is classified as a cysteine 
protease due to its ability to degrade synthetic cysteine 
protease peptide substrates. This enzyme is widely 
distributed in human tissues, with significant levels found 
in the ovary, kidney, liver, and placenta and lower levels in 
the thymus and skeletal muscle. It plays a crucial role in 
protein degradation (50). There are no direct studies on 
the correlation between CTSO and SGNs. However, it has 
been reported that human SGNs exhibit some similarities 
to breast tumors in terms of histology and steroid hormone 
receptor status (51). CTSO degrades the extracellular 
matrix and plays a significant role in the development of 
breast cancer (52). It is thought to influence hormones such 
as estrogen (ER), progesterone (Pg), and their receptors 
(53,54). Tamoxifen is commonly used to treat ERα-positive 
breast cancer. Increased CTSO expression reduces the 
BRCA1 transcription factor protein level through cysteine 
proteinase-mediated degradation, leading to tamoxifen 
resistance in ERα-positive breast cancer patients (55). 
Additionally, research has shown that the growth of salivary 
gland tumor cells can be inhibited by introducing Pg 
receptors and Pg treatment. It is important to note that the 
study referenced utilized a human adenoid cystic carcinoma 
cell line (56). Hence, the reason for CTSO being identified 
as a risk factor for BMSGNs in this MR analysis leads us to 
speculate that it may be linked to hormone receptors and 
hormones. This, in turn, affects tumor development and 
requires further exploration in future studies. 

In murine pleomorphic adenomas, CD44 high tumor 
cells were discovered as tumor-initiating cells, with only 500 
CD44 high tumor cells sufficient to induce pleomorphic 
adenomas in one-third of wild-type mice (57). The 
interaction of HA with CD44 triggers Na+-H+ exchange 
activity, leading to intracellular acidification and creating an 
acidic extracellular matrix environment. This environment 

facilitates hyaluronidase-2-mediated HA breakdown, 
HA modification, and cathepsin B activation, ultimately 
promoting invasion by breast tumor cells (58). In colorectal 
cancer, increased CD44 levels were associated with higher 
cathepsin D expression (59). In contrast, reducing CD44 
inhibited cell proliferation, migration, and invasion in 
osteosarcoma and lowered cathepsin S expression (60). 
Thus, CD44 is closely related to cathepsins. Further studies 
are needed to demonstrate whether cathepsin expression 
affects tumor development by influencing CD44 expression. 
The demonstration of elevated levels of CTSF, CTSO, and 
CTSL2 as a risk factor for BMSGNs raises the question 
of whether this is related to the promotion of an increased 
number of CD44 high tumor cells. Further investigation 
and research are warranted to explore this potential 
correlation.

CTSL2, or cathepsin V (CTSV), was a cysteine protease 
identified and cloned from the human brain cDNA library. 
It was called cathepsin L2 due to its high similarity (78%) 
with cathepsin L. CTSL2 was mainly expressed in the 
thymus and testis, and it was also found in colorectal and 
breast cancer cell lines. Additionally, it was expressed in 
various tumors, including ovarian and renal cancers, and 
was involved in tumor progression (61). High expression 
of CTSL2 was strongly associated with the development 
of cone cornea, myasthenia gravis, cardiovascular disease, 
lung disease, and various malignant tumors, including 
colorectal carcinoma, kidney, ovary, endometrium, liver, 
and breast cancer (61-67). In CTSL2-deficient mice 
with squamous cell carcinoma, there was a significant 
increase in tumor progression and metastasis (68). In our 
study, elevated levels of CTSL2 might be a risk factor for 
BMSGNs due to enhanced extracellular matrix degradation 
in benign tumors. It is worth noting that reverse MR 
analysis revealed an association between the occurrence 
of MSGCs and decreased CTSL2 levels. The differing 
roles of CTSL2 in benign and malignant tumors of the 
major salivary glands may be attributed to its diverse 
functions in these environments. In malignant tumors, 
uncontrolled proliferation and apoptosis of tumor cells 
lead to rapid growth. The aberrant regulation of the pRB/
E2F1 pathway is commonly associated with inappropriate 
proliferation and apoptosis in human cancers. CTSL2 was 
a novel E2F1 target involved in E2F1-dependent apoptosis. 
E2F1 was directly bound to the CTSL2 promoter, 
causing changes in lysosomal membrane permeability 
(LMP) and mitochondrial membrane depolarization to 
promote apoptosis. Therefore, CTSL2, as a target of 
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E2F1, plays a critical role in regulating apoptosis (69). In 
MSGCs, reducing CTSL2 levels might be closely linked to 
decreased tumor cell proliferation and apoptosis. CTSL2 
can confidently be considered an oncogene, providing a 
potential target for future MSGCs treatment, pending 
further confirmation through additional studies.

The recent study produced encouraging results using 
various MR methods, and subsequent sensitivity analyses 
confirmed the reliability of the findings. Elevated CTSF, 
CTSO, and CTSL2 levels were identified as risk factors 
for BMSGNs. However, reverse analyses demonstrated 
that BMSGNs did not cause abnormalities in cathepsin 
levels. Therefore, elevated CTSF, CTSO, and CTSL2 
levels could serve as early diagnostic biomarkers for 
BMSGNs. Inhibiting these cathepsins might reduce the 
incidence of BMSGNs, making them a potential new 
therapeutic target. Similarly, reduced CTSL2 levels could 
be a diagnostic biomarker for MSGCs. Medications 
designed to increase CTSL2 levels could promote apoptosis 
of MSGCs cells for therapeutic purposes. The differing 
levels of CTSL2 in benign and malignant SGNs suggested 
that further investigation is needed to understand the 
regulatory mechanism of CTSL2. The aforementioned 
findings have been derived from genetic analyses and 
should be considered for integration into clinical practice. 
Nevertheless, additional studies are imperative to investigate 
further and validate these findings.

Conclusions

In summary, CTSF, CTSO, and CTSL2 show promise as 
diagnostic biomarkers and potential therapeutic targets 
for the early detection, management, and treatment of 
MSGNs Notably, further basic and clinical research is 
needed to validate our findings for translation into clinical 
practice and to ultimately improve tumor diagnosis, define 
better prognostic categories, and develop new therapeutic 
regimens, especially for aggressive tumors.
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