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Defects in cell death pathways, particularly in apoptosis signaling, can lead to poor treatment response
in patients with B-cell precursor (BCP)–acute lymphoblastic leukemia (ALL). Induction of apoptosis by
B-cell lymphoma 2 homology 3 (BH3) mimetics targeting antiapoptotic B-cell lymphoma 2 (BCL-2)
family proteins is a promising treatment approach for hematological malignancies. The BCL-2 selective
inhibitor venetoclax shows heterogeneous efficacy in BCP-ALL, and mitochondrial BCL-2 dependency
is a marker of response.1,2 However, regulation of BCL-2 dependence and the role of other anti-
apoptotic regulators mediating resistance to BCL-2 inhibition is not entirely understood. Certain can-
cers are characterized by B-cell lymphoma-extra large (BCL-XL) dependency,3,4 suggesting that
concomitant BCL-XL inhibition is more effective than targeting BCL-2 alone. Despite this, BCL-XL plays
a role in healthy tissues, particularly in platelet survival, and the BCL-2/BCL-XL inhibitor navitoclax is
limited by thrombocytopenia.5,6 Given the side effects are manageable, combined targeting of different
antiapoptotic BCL-2 family proteins could improve therapeutic efficacy compared with selective agents.
In addition to BCL-XL, myeloid cell leukemia 1 (MCL-1) plays a role in mediating resistance to BCL-2
inhibition, making it a valuable target.2,6-13

AZD4320, a dual inhibitor of BCL-2 and BCL-XL, has shown anticancer activity in preclinical hema-
tological cancer models, achieving tumor growth inhibition with once-weekly dosing that allowed for
platelet recovery despite transient thrombocytopenia.14 Despite its activity and manageable thrombo-
cytopenia, AZD4320 was not further progressed into clinical development because of dose-limiting
cardiovascular toxicity. However, its dendrimer-conjugate AZD0466 has optimized drug release and
reduced cardiovascular side effects.15 In this study, we investigated susceptibilities of BCP-ALL to
inhibitors of BCL-2 family proteins, searched for markers of response, elucidated mechanisms of action,
and evaluated combinatorial activities.

First, we studied the antileukemia activities of inhibitors targeting different BCL-2 family proteins in
BCP-ALL cell lines (n = 7) and patient-derived xenograft (PDX) samples (n = 27). Because we analyzed
exclusively in vitro and ex vivo effects of the inhibitors in this study, we used the nonconjugated dual
BCL-2/BCL-XL inhibitor AZD4320. The efficacy of AZD4320 was compared with the sensitivities of
navitoclax (BCL-2/BCL-XLi) and AZD5991 (MCL-1i), as well as with the sensitivities of venetoclax
(BCL-2i), A-1331852 (BCL-XLi), and S63845 (MCL-1i), which we have previously published.7

Analyzing half maximal effective concentration (EC50) values based on the cell death rates upon
drug exposure, we identified sensitivity toward dual BCL-2/BCL-XL inhibition (AZD4320) in all PDX
samples (median EC50, 7.60 nM; Figure 1A). Comparing the activities of inhibitors revealed that dual
BCL-2/BCL-XL inhibition with AZD4320 is more potent in PDX samples than using navitoclax
(supplemental Figure 2A-B) and more effective than antagonizing BCL-2 (venetoclax) or BCL-XL
(A-1331852) alone (Figure 1B). In this study, we focused primarily on AZD4320 due to its higher
efficacy than navitoclax. However, it is important to evaluate a broader range of dual BCL-2/BCL-XL
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Figure 1. Heterogeneous activities of inhibitors of antiapoptotic molecules in BCP-ALL PDX samples. (A) BCP-ALL PDX samples were cultured for 24 hours and

exposed to 11 increasing concentrations (0.1, 1, 2.5, 5, 10, 25, 50, 100, 500, 1000, and 5000 nM) of the BCL-2/BCL-XL inhibitor AZD4320. Relative cell death rates were

assessed by propidium iodide (PI) staining and normalized to dimethyl sulfoxide controls. EC50 values were calculated, showing a range from 0.47 to 100.30 nM and a median

EC50 value of 7.60 nM. (B) Comparison of the sensitivities of inhibitors of BCL-2 and BCL-XL (AZD4320), BCL-2 (venetoclax), or BCL-XL (A-1331852). The scatterplot shows

EC50 values of the inhibitors, with each data point representing the EC50 value of 1 PDX sample. The medians are shown as solid lines. Mann-Whitney U test; P values represent
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inhibitors in future studies to fully understand their potential and
optimize therapeutic strategies in BCP-ALL. In cell lines, hetero-
geneous responses were observed for the inhibitors used, with no
significant differences when comparing their median sensitivities
(supplemental Figure 1A-B). Importantly, we found a clear associ-
ation of the activities of AZD4320 and venetoclax in PDX samples
(Figure 1C) and a trend in cell lines (supplemental Figure 1C).
Moreover, we found an association between the activities of
AZD4320 and A-1331852 in PDX samples (Figure 1D) but not in
cell lines (supplemental Figure 1D). In addition, we found a trend
between the sensitivity of navitoclax and those of AZD4320, ven-
etoclax, and A-1331852 (supplemental Figure 2C-E). For MCL-1
inhibition using AZD5991, we found heterogeneous sensitivities
(Figure 1E; supplemental Figure 1E). When comparing the effects
of 2 MCL-1 inhibitors, AZD5991 showed slightly lower EC50 values
than S63845 in PDX samples, but the opposite was seen in cell
lines (Figure 1F; supplemental Figure 1F). Importantly, we observed
a robust correlation of the sensitivities of both MCL-1 inhibitors
(Figure 1G; supplemental Figure 1G), substantiating their on-target
activities. Moreover, we found a correlation between the sensitiv-
ities of AZD4320 and AZD5991 in PDX samples (Figure 1H).
Although a positive correlation coefficient was observed also in cell
lines, the correlation was not statistically significant (supplemental
Figure 1H).

With the aim to identify markers of response for the inhibitors, we
evaluated whether their sensitivities were related to leukemia
characteristics, but no clear associations were found
(supplemental Figure 3A-B). Studies have shown that venetoclax
sensitivity is associated with high BCL-2 and low MCL-1 levels.1,16

Additionally, the "mediators of apoptosis combinatorial score,"
reflecting the ratio of BCL-2, BCL-XL, and MCL-1 in leukemic stem
cells, predicts the response to venetoclax combined with azaciti-
dine in patients with acute myeloid leukemia.17 Here, we analyzed
the basal expression levels and ratios of the target proteins of the
inhibitors by western blot and complex formation or release of
proapoptotic BCL-2-interacting mediator of cell death (BIM), an
important downstream activator of BCL-2-associated X protein,18

by BIM coimmunoprecipitation analyses. Importantly, we found
varying levels of the antiapoptotic target proteins, their ratios, and
their binding to BIM among different leukemias in cell lines
(supplemental Figure 4A) and PDX samples (supplemental
Figure 4C). However, we did not find a clear association
between these parameters and inhibitor sensitivities in cell lines
(supplemental Figure 4A-B) or PDX samples (supplemental
Figure 4C-D). Notably, our study found no significant differences
in EC50 values between samples from patients with or without
relapse, although this analysis does not fully capture the complexity
of relapsed ALL. In acute myeloid leukemia, acquired multidrug
resistance has recently been linked to low apoptotic priming.19

Additionally, our recent findings in ALL show that cells with
acquired venetoclax resistance show decreased BCL-2
Figure 1 (continued) significance. (C) Association of venetoclax and AZD4320 sensitivi

samples were cultured for 24 hours and exposed to 11 increasing concentrations (0.1, 1,

Relative cell death rates (PI) were assessed, and EC50 values were calculated, resulting in

EC50 values of both MCL-1 inhibitors. Mann-Whitney U test; P values, significance. (G) As

the MCL-1 inhibitor AZD5991 and the BCL-2/BCL-XL inhibitor AZD4320. EC50 values of

correlation; r represents correlation coefficient; P value, significance.
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dependence, higher MCL-1 dependence, and increased mito-
chondrial metabolic activity, indicating that leukemia cells can
adapt their antiapoptotic dependencies and metabolic pathways to
survive therapeutic pressure.13 In this study, the intrinsic sensitivity
of leukemia samples to BH3 mimetics could not be fully explained
by leukemia characteristics, such as cytogenetic alterations, or by
levels or ratios of the target proteins or their complexes with BIM,
suggesting additional contributing factors. However, further studies
with larger cohorts are needed to conclusively determine whether
these or other parameters within the apoptotic regulatory network
could serve as predictive biomarkers for the response of ALL
toward BH3 mimetics. Integrating results from both cell lines and
PDX models provides crucial insights into drug efficacy, resistance
mechanisms, and toxicity, guiding effective therapeutic strategies
for ALL.

Next, we sought to analyze the molecular mechanisms by which
AZD4320 and AZD5991 mediate cell death in ALL cells. Recent
studies have shown that BH3 mimetics can induce apoptosis
signaling by releasing proapoptotic proteins from their anti-
apoptotic binding partners.7,20 After BCL-2/BCL-XL (AZD4320)
inhibition, we found substantially reduced binding of BIM to both
BCL-2 and BCL-XL in RCH-ACV (Figure 2A; supplemental
Figure 5A) and NALM-6 (Figure 2B; supplemental Figure 5B)
cells. Additionally, on-target activity was observed by selective
MCL-1 inhibition using AZD5991. Remarkably, coincubation with
both compounds resulted in the release of BIM from all 3 anti-
apoptotic regulators (Figure 2A-B; supplemental Figure 5).

To further validate these findings, we conducted dynamic BH3
profiling21,22 in RCH-ACV. Upon treatment with the dual BCL-2/
BCL-XL inhibitor (AZD4320), we observed a marked increase in
dependency on MCL-1 (Figure 2C). Conversely, when the cells
were treated with the MCL-1 inhibitor AZD5991, an increased
combined dependence on BCL-2 and BCL-XL was observed
(Figure 2D-E). These results of alternating dependencies strongly
suggest that cotargeting all 3 antiapoptotic proteins could over-
come intrinsic resistance to apoptosis.

To validate these findings in a more physiologically relevant envi-
ronment, we performed dose-response matrix analyses23 in ALL
PDX cells cocultured with primary bone marrow human telomerase
reverse transcriptase-immortalized mesenchymal stroma cells
(MSCs)24,25 (Figure 2F). Samples were exposed to 7 increasing
concentrations of AZD4320 and AZD5991, and the combination
effects were assessed. We discovered higher cell death with high
efficacy and positive Bliss synergy scores in all BCP-ALL samples
tested, including samples that are less sensitive to the inhibitors
alone (Figure 2G; supplemental Figure 6). We also conducted
dose-response matrix analyses with peripheral blood mononuclear
cells (PBMCs), which showed lower sensitivities than ALL cells
(Figure 2H). Importantly, the most synergistic area was typically
achieved at lower concentrations in ALL samples than PBMCs,
ties. (D) Association of A-1331852 and AZD4320 sensitivities. (E) BCP-ALL PDX

2.5, 5, 10, 25, 50, 100, 500, 1000 and 5000 nM) of the MCL-1 inhibitor AZD5991.

a range from 13.93 nM to 51.86 μM and a median of 267 nM. (F) Comparison of the

sociation of S63845 and AZD5991 sensitivities. (H) Association of the sensitivities of

venetoclax, A-1331852, and S63845 have been published previously.7 Spearman
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Figure 2. Cell death signaling induced by combined targeting of antiapoptotic proteins. (A-B) The interactions of proapoptotic and antiapoptotic proteins were analyzed

upon exposure of leukemia cells to apoptosis-inducing drugs by coimmunoprecipitation (IP). RCH-ACV cells (A) were exposed to AZD4320 (100 nM) and/or AZD5991 (1 μM)

and NALM-6 cells (B) to AZD4320 (2 μM) and/or AZD5991 (2 μM) for 4 hours. The IP lanes show the interactions of BCL-2, BCL-XL, and MCL-1 with BIM, and the input lanes

show whole protein lysates. Representative immunoblots of 2 independent experiments are shown. (C-E) Dynamic BH3 profiling was performed in RCH-ACV cells. The cells were

treated with 10-nM AZD4320 (C) or 100-nM AZD5991 (D-E) for 2 hours. After permeabilization, the cells were exposed to 0.3 μM of the proapoptotic BH3-peptide BAD (binding

to BCL-2, BCL-W, and BCL-XL), 30-μM HRK (BCL-XL), or 10-μM MS1 (MCL-1), followed by fixation and staining with an anticytochrome c antibody that selectively binds to

mitochondrial cytochrome c. Delta priming was calculated as the percentage of drug-induced cytochrome c release minus the percentage of cytochrome c release induced by the

control. The bar graphs show mean values ± standard deviations derived from 3 independent experiments in triplicates. (F) Schematic overview of ex vivo coculture of BCP-ALL

PDX cells on MSCs. On day –1, MSCs were seeded in 96-well plates before the addition of ALL PDX cells. On day 0, samples were exposed to increasing concentrations (0.1, 1,

2.5, 5, 10, 100, and 500 nM) of AZD4320 and/or AZD5991 in a drug matrix for 72 hours. Cell death rates were determined by PI staining and flow cytometry measurement after

drug exposure. Created with BioRender.com. (G-I) Heat maps showing cell death rates from dose-response matrix analyses of ALL PDX samples (G), PBMCs (H), and MSCs (I).

Cell death rates were assessed by PI staining after 72 hours of drug exposure and coculture with MSCs. Efficacy scores were calculated as the mean of normalized cell death

rates across the matrix. Synergy effects were visualized using SynergyFinder, and synergy scores were analyzed using the Bliss independence model. Dashed lines indicate the

MSA. (J) Comparison of efficacy scores of the drug matrix analyses of AZD4320 and AZD5991 between ALL PDX samples, PBMCs, and MSCs. Bar graphs show mean ±

standard deviation. Mann-Whitney U test; *P < .05. DMSO, dimethyl sulfoxide; MSA, most synergistic area.
suggesting efficacy at lower doses. Finally, we performed dose-
response matrix analyses on MSCs (Figure 2I), demonstrating
that MSCs do not undergo cell death. This indicates that the
observed cell death in ALL cells is due to the effects of the com-
pounds on the ALL cells themselves and not due to the absence of
MSC support. Comparing the effects of combined targeting of
6038 RESEARCH LETTER
antiapoptotic molecules revealed higher efficacy in inducing cell
death in ALL cells than in PBMCs and MSCs (Figure 2J). Notably,
our results indicate significantly higher efficacy in ALL cells,
particularly at lower concentrations, suggesting a potential for
reduced dosing in therapeutic applications. Previous studies have
reported that AZD4320 shows transient thrombocytopenia as the
10 DECEMBER 2024 • VOLUME 8, NUMBER 23
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most notable adverse effect,14,15 whereas AZD5991 has demon-
strated favorable tolerability in preclinical models.10 However,
further research is needed, including larger studies and in vivo
validation, to elucidate the therapeutic potential and safety profiles
of these treatments.

In summary, the data of this study indicate that combined BCL-2
and BCL-XL inhibition is an efficient treatment for BCP-ALL and
that concurrent targeting of MCL-1 increases the induction of
leukemia cell death. Thus, the use of synergistic combination
therapies could be further evaluated to avoid side effects and
toxicity associated with high doses of individual substances.

Leukemia samples were collected from patients after obtaining
informed written consent in accordance with the institutional ethics
review board guidelines.
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