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Abstract

Background: We retrospectively evaluated radiomics as a predictor of the

tumor microenvironment (TME) and efficacy with anti-PD-1 mAb (IO) in R/M

HNSCC.

Methods: Radiomic feature extraction was performed on pre-treatment CT

scans segmented using 3D slicer v4.10.2 and key features were selected using

LASSO regularization method to build classification models with XGBoost

algorithm by incorporating cross-validation techniques to calculate accuracy,

sensitivity, and specificity. Outcome measures evaluated were disease control

rate (DCR) by RECIST 1.1, PFS, and OS and hypoxia and CD8 T cells in

the TME.

Results: Radiomics features predicted DCR with accuracy, sensitivity, and

specificity of 76%, 73%, and 83%, for OS 77%, 86%, 70%, PFS 82%, 75%, 89%,

and in the TME, for high hypoxia 80%, 88%, and 72% and high CD8 T cells

91%, 83%, and 100%, respectively.

Conclusion: Radiomics accurately predicted the efficacy of IO and features of

the TME in R/M HNSCC. Further study in a larger patient population is

warranted.
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1 | INTRODUCTION

Recurrent/metastatic squamous cell carcinoma of the
head and neck (R/M HNSCC) is associated with poor
outcomes.1 However, progress has been made in systemic
therapy with the advent of anti-PD-1 mAb immunother-
apy. First, in 2016, nivolumab significantly improved
overall survival (OS) compared to standard chemother-
apy in the platinum failure setting.2 Then, more recently
in 2019, in the frontline setting, pembrolizumab mono-
therapy improved survival compared to the EXTREME
regimen for PD-L1 expressors with CPS ≥1 and chemo-
therapy plus pembrolizumab for PD-L1 expressors, as
well as the total population.3 Still, response rates to anti-
PD-1 monotherapy remain low at 16%–20%.2–4 As new
therapeutic combinations make their way through clini-
cal trials and with chemotherapy as a choice to add to
pembrolizumab in the frontline setting, there is an even
greater need for predictive biomarkers for anti-PD-1 mAb
monotherapy.

In R/M HNSCC, PD-L1 expression, immune gene
expression (GEP), and tumor mutational burden (TMB)
have been found to be predictive of efficacy.5–7 However,
even with two favorable biomarkers (TMB high/PD-L1
high or GEP high/TMB high), the response rate to pem-
brolizumab was only 35%.7 In addition, these biomarkers
need an invasive procedure and reflect a small static
“snapshot” sample of the tumor which can be heteroge-
neous. This speaks to the need for better biomarkers that
can robustly and non-invasively identify and predict
those patients who will benefit from immunotherapy,
inclusive of tumor heterogeneity.

Radiomics is a method for extraction of quantitative
features from standard modality imaging with the goal
of deeper understanding of cancer biology, genomics,
and spatial heterogeneity.8–10 Radiomics has been used
to evaluate the efficacy of immunotherapy treatment
and found to be predictive of efficacy in studies with
combining advanced solid tumors or isolated to tumor
types such as melanoma and non-small cell lung can-
cer.11 However, to the best of our knowledge, no study
has been published evaluating radiomics as a bio-
marker for predicting immunotherapy efficacy in R/M
HNSCC.11,12 Radiomics has a number of benefits; it is
non-invasive and features are obtained from standard
medical scans that makes it ideal for smoother clinical
translation as a non-invasive tool to determine
response. Therefore, we evaluated the predictive value
of radiomics based on pretreatment CT scans in anti-
PD-1 mAb therapy treated R/M HNSCC patients and
also its correlation with the tumor immune
microenvironment.

2 | MATERIALS AND METHODS

2.1 | Study design and patient
population

We conducted a single-center retrospective analysis of
patients with R/M HNSCC treated with anti-PD-1 mAb
therapy between 2015 and 2020 at the UPMC Hillman
Cancer Center, that had consented to the UPMC
Hillman tissue banking protocol (HCC 99-069). Clinical
data was obtained via chart review, including baseline
demographics, clinical characteristics, and treatments
received. Our in vivo imaging core facility at UPMC Hill-
man Center determined treatment response by RECIST
1.1. Additional endpoints obtained were progression-free
survival (PFS) and overall survival (OS). Thirty-five out
of the 61 patients in this cohort had previously under-
gone tumor microenvironment analysis, including analy-
sis for intratumoral hypoxia, CD8+ T cells (CD8) and
Foxp3+ T cells (Treg).13 As previously published,14 to
conduct these analyses, antigen retrieval was done on
formalin-fixed paraffin-embedded sections from patient
samples. Tissue sections were then stained with Pan cyto-
keratin eFluor 570 (Life Technologies), CD8 Alexa Fluor
647 (Biolegend), Foxp3 Alexa Fluor 488 (Life Technolo-
gies), and DAPI, and mounted with ProLong Diamond
Antifade Mountant (Life Technologies). These sections
were then imaged with an Olympus IX83 microscope
with analysis via ImageJ software.13 PD-L1 Immunohis-
tochemistry (IHC) scoring was obtained and character-
ized using the combined positive score (CPS).

All 61 patients were identified for the purpose of pre-
diction analysis to identify the radiomics signatures that
can predict OS in months, PFS in months, and Response.
And 35 out of the 61 patients were identified to carry out
prediction analysis to identify the radiomics signatures
that can predict Hypoxia, CD8/TREGs, and Average
CD8/panck Area. We had previously reported on these
35 patients in abstract form at the ASCO Annual meeting
in 2021 (DOI: 10.1200/JCO.2021.39.15_suppl.6045 Jour-
nal of Clinical Oncology 39, no. 15_suppl (May 20, 2021)
6045); however, this analysis just evaluated disease con-
trol rate and hypoxia.

2.2 | Lesion segmentation and feature
extraction

Feature extraction was performed on the pre-
immunotherapy baseline CT scans. The lesions were seg-
mented using 3D slicer v4.10.2 to create a volume of
interest (VOI) for radiomics texture analysis. For each
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patient, we segmented radiomics texture features from
three different lesions: Primary Recurrent Lesion
(PL_RL), Distant Recurrent Lesion (D_RL), and Lymph
Node Lesion (LN) (Figure 1). For normalization, sterno-
cleidomastoid muscle was also segmented.

In the domain of radiomics feature extraction,
intensity-level histograms and gray-level co-occurrence
matrices (GLCMs) were used. The extraction process
encompasses two primary categories: first-order features
and second-order features.

First-order features are derived directly from the pixel
intensity values of an image without considering the spa-
tial relationships between the pixels. In our study for
first-order features, a comprehensive set of 10 metrics,
informed by the theoretical framework of Papoulis et al.,
is utilized.15 These metrics encompass the minimum,
maximum, mean, standard deviation (SD), skewness,
kurtosis, and four percentile values (1%, 5%, 95%, 99%).

GLCM (Gray-Level Co-occurrence Matrix) features
represent a statistical approach widely employed in tex-
ture analysis to evaluate the spatial relationship of pixel
pairs within an image. This method quantifies the

occurrence frequency of pixel pairs with designated
values and orientations, culminating in the creation of a
matrix. This matrix is then used to extract features that
describe the image's texture, offering insights into its
structural variations and spatial patterns.

In this study, we computed a total of 195 features
using established methodologies by Haralick et al.,
Clausi, and Soh et al.16–18 These texture features include
angular second moment, variance, contrast, correlation,
inverse difference moment, entropy, sum average, sum
variance, sum entropy, difference variance, difference
entropy, information measure of correlation (I and II).
Each feature was evaluated at four distinct orientations
(0�, 45�, 90�, and 135�), representing the angle between
the voxel of interest and its in-plane neighbor.

To ensure rotation invariance, we computed average,
median, and range values, resulting in 39 rotation-
invariant features. Additionally, we quantized the origi-
nal images into five gray-level categories (8, 16, 32, 64,
and 256 gray levels) to enhance signal-to-noise ratio. At
each quantization level, the 39 rotation-invariant features
were extracted, enabling robust analysis across varying

FIGURE 1 Workflow for radiomics analysis.

ZANDBERG ET AL. 131



levels of detail. This feature extraction pipeline was pro-
grammed using Python Programming Language (ver-
sion: 3.10.8).

A total of 205 texture features were extracted from
each lesion's VOI, including 10 histogram-based first-
order features and 195 second-order features using gray-
level co-occurrence matrices. After feature normalization,
we divided the 195 second-level features by the volumes
of each VOI to generate another 195 volume-independent
features per VOI. A total of 400 features (10 histogram-
based and 390 second-order texture features) were calcu-
lated from each extracted volume of interest (VOI).

2.3 | Feature selection

Given the large multi-dimensional dataset, there was a
need to perform feature selection in order to reduce the
dimension of the dataset and only retain those features
that were most meaningful and important for the predic-
tion of the target outcome variable. Hence, for this pur-
pose, we used the feature selection method, Least
Absolute Shrinkage and Selection Operator (LASSO)
technique.13 This regularization method simultaneously
performs regression and regularization analysis and iden-
tifies the most significant and relevant features that are
needed for the prediction of outcome variables.

2.4 | Bioinformatic analysis—Radiomics
model building

Machine learning supervised analysis using binary logis-
tic regression through eXtreme Gradient Boosting
(XGBoost) algorithm was used for the purpose of radio-
mics model building.14 XGBoost is a machine learning
algorithm that employs a tree-boosting technique to
perform parallel computation, regularization, cross-
validation, and tree pruning simultaneously. For radio-
mic model building to predict OS, PFS, and treatment
response, we have divided our dataset of 61 patients into
training and testing with 70:30 split, where 70% of the
dataset was used as the training set (n = 44) and
the remaining 30% of the dataset was used as a separate
independent hold-out testing set (n = 17) for evaluating
the performance of the final trained model. While train-
ing the model, to assess its performance, the training set
was further divided into 10 folds using a 10-fold cross-
validation technique. Therefore, care was taken to ensure
that the hold-out testing set (n = 17) was kept indepen-
dent and the process of feature selection using LASSO
regularization and fitting of the training model was

performed exclusively on the training set alone. By doing
so, this allowed us to evaluate the generalizability of our
training model beyond the training set. Given the small
sample size (n = 35) patients, for radiomic model build-
ing to predict Hypoxia, CD8/TREGs, and Average
CD8/panck Area, we used Leave-One-Out Cross-
Validation or LOOCV, a configuration of k-fold cross-
validation in which each patient/sample is hold-out as
the validation set and the reaming n-1 patients/samples
are used as the training set. To address and avoid overfit-
ting of our radiomic models, especially given the charac-
teristics of our dataset, all the training models were built
by implementing hyper-parameter tuning using the
XGBoost algorithm's booster parameters; “eta,” a param-
eter used to control the learning rate (range: 0.001–0.3),
and “max_depth,” a parameter used to control over-
fitting (range: 1–6).The final selected radiomics model
was the one with the least number of LASSO features
that yielded high prediction accuracy and required less
computation time. Each of the radiomics model's accu-
racy was evaluated using the area under the receiver
operating characteristic curve (AUC), sensitivity, and
specificity. R software (version 3.4.0, R Foundation for
Statistical Computing, Vienna, Austria) was used for all
the analysis: XGBoost package (version 0.6.4.1) and the
Machine Learning package mlr (version 2.11) were used
for feature selection and model building. Finally, ROC
analysis was performed using pROC package (ver-
sion 1.9.1).

2.5 | Statistical consideration

Survival analysis for OS and PFS was performed through
the Kaplan–Meier method. The mean, median and 95%
confidence interval (CI) for OS and PFS in months were
calculated for 61 patients in the study.

3 | RESULTS

We identified 61 R/M HNSCC patients treated with anti-
PD-1 mAb monotherapy between 2015 and 2020. Base-
line characteristics are shown in Table 1. The median age
of our cohort was 61 years and was predominantly male
(77%) and Caucasian (92%). The oral cavity was the most
common primary site (36%), and of the 20 oropharyngeal
cancer patients, 70% were HPV positive. The majority of
patients received anti-PD-1 for platinum failure (61%),
with the remainder being treated in the frontline setting.
Platinum failure was defined as progression within
6 months of platinum based chemoradiation for locally
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advanced disease or after progression on platinum based
chemotherapy given for R/M HNSCC. The median PFS
and OS of the entire cohort were 3.3 [95% CI (1.4–5.2)]
and 9.7 months [95% CI (8.3–11.1)], respectively. The
overall response rate was 18% (3CR, 8 PR), with SD
achieved in an additional 18% of patients for a disease
control rate (CR/PR plus SD) of 36%.

We evaluated the texture features from the pre-
treatment CT scan including all applicable lesions (pri-
mary, distant, and/or lymph nodes), either alone or in
combination. For OS, LASSO feature selection identified
37 features and our model based on the top 8 features
(Table 2) via XGBoost machine-learning method

predicted OS with high accuracy, sensitivity, and specific-
ity (77%, 86%, 70%) (Figure 2A). For PFS, 10 out of
22 LASSO features (Table 3) predicted PFS with 82%,
75%, and 89% accuracy, sensitivity, and specificity,
respectively (Figure 2B). Our predictive model for disease
control showed accuracy, sensitivity, and specificity of
76%, 73%, and 83%, respectively, using the top 8 out
55 LASSO features (Table 4, Figure 2C). Comparing the
significant LASSO features from these three models for
OS, PFS, and DCR did not show any overlapping fea-
tures. For DCR and OS, the aforementioned best models
used primary recurrent lesions, distant lesions and/or
lymph nodes, while for PFS, the best model was with just
the primary lesion and/or lymph node.

Previous studies have shown the predictive value of
Neutrophil/lymphocyte (N/L) ratio and HPV status for
anti-PD-1 mAb treatment.19,20 Therefore we compared
these variables to radiomics as well in combination with
radiomics. For DCR, PFS, and OS, the AUC with radio-
mics was higher than that of N/L ration and HPV status
as well as the combination of either N/L ratio or HPV sta-
tus plus radiomics (Figure 3 and Figures S1 and S2). For
example, the AUC for DCR was 71.21% with radiomics
compared to 50.03% and 46.97% with N/L ratio and HPV
status respectively (Figure 3).

We had previously published that both increased hyp-
oxia and low CD8 tumor-infiltrating lymphocytes were
predictive of worse efficacy with anti-PD-1 mAb treat-
ment in R/M HNSCC, with each independently associ-
ated with efficacy.13 We applied our radiomics model to
the 35 patients in our current cohort that also had intra-
tumoral hypoxia and CD8 analysis as per our prior pub-
lished analysis. Using 4 out of 29 LASSO features, our
model predicted high hypoxia in the tumor microenvi-
ronment with accuracy, sensitivity, and specificity of
80%, 88%, and 72%, respectively (Figure 4A, Table S1).
Our model with the top 7 of 25 LASSO features was also
successful in predicting high CD8 T cells in the tumor
microenvironment with 91%, 83%, and 100% accuracy,

TABLE 1 Baseline characteristics of patients.

Category N (%)

Age Median 61 (range 40–80)

Sex Female: 14 (23)
Male: 47 (77)

Race White: 56 (92)
Black: 5 (8)

Smoking Yes: 38 (62)
No: 23 (38)

Primary site Oral cavity: 22 (36)
Oropharynx: 20 (33)
HPVa (+): 14/20 (70)
Larynx/hypopharynx: 12(20)
Other: 7 (11)

Type of recurrence Locoregional only: 26 (43)
Distant only: 12 (20)
Locoregional + distant: 23 (37)

Indication for anti-PD-1 Platinum failure: 37 (61%)
Frontline: 24 (39%)

PD-L1 by CPSb Positive: 17 (29)
Negative: 17 (29)
Unknown: 27 (44)

aHPV by p16 or HPV ISH for oropharynx primary.
bPD-L1 expression by combined positive score. Positive defined as ≥1.

TABLE 2 Top 8 features of 37

extracted from 61 patients for

prediction of OS.

Order no. Feature Gray-level Feature name

1 PL_RL_FV59 16 Range of sum variance

2 PL_RL_FOF9 16 First order: Skewness

3 PL_RL_FV50 16 Average of difference entropy

4 LN_F142 64 Range of information measure of correlation

5 D_RL_F125 64 Average of sum entropy

6 D_RL_F25 8 Range of information measure of correlation

7 PL_RL_FV1 8 Average of angular second moment

8 PL_RL_FV83 32 Average of inverse difference moment
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sensitivity, and specificity, respectively (Figure 4B,
Table S2). Using 5 of 26 LASSO features, the accuracy,
sensitivity, and specificity were 85%, 83%, and 88%,

respectively, for the prediction of increased CD8/Treg
ratio (Figure 4C, Table S3). There was no overlap in top
features for hypoxia, CD8, or CD8/Treg prediction.

FIGURE 2 (A) ROC curve representing the performance of the predictive model when using top 8 of 24 LASSO features to predict

overall survival. (B) ROC curve representing the performance of the predictive model when using top 10 of 22 LASSO features to predict

progression-free survival. (C) ROC curve representing the performance of the predictive model when using top 8 of 55 LASSO features to

predict disease control (CR/PR/SD vs. PD).

TABLE 3 Top 10 features of 22 extracted from 61 patients for prediction of PFS.

Order no. Feature Gray-level Feature name

1 PL_RL_FV26 8 Range of information measure of correlation

2 PL_RL_F11 8 Average of difference entropy

3 PL_RL_F117 32 Variance of information measure of correlation 2

4 LN_F4 8 Average of sum of squares

5 LN_F127 64 Average of difference variance

6 LN_FV176 256 Range of sum variance

7 LN_F3 8 Average of correlation

8 PL_RL_F30 8 Variance of sum of squares

9 PL_RL_FV39 8 Variance of information measure of correlation 2

10 PL_RL_FV173 256 Range of sum of squares

TABLE 4 Top 8 features of 55 extracted from 61 patients for prediction of response.

Order no. Feature Gray-level Feature name

1 PL_RL_FOF4 First order: Standard deviation

2 LN_FOF4 First order: Standard deviation

3 LN_FV52 16 Average of information measure of correlation 2

4 LN_F21 8 Range of sum entropy

5 LN_FOF9 First order: Skewness

6 PL_RL_FV88 32 Average of difference variance

7 PL_RL_FV78 16 Variance of information measure of correlation 2

8 D_RL_FOF7 First order: Percentile 95

134 ZANDBERG ET AL.



4 | DISCUSSION

There is a great need for better predictive biomarkers for
the efficacy of anti-PD-1 mAb therapy, especially non-
invasive biomarkers. In our analysis, we found that radio-
mics applied to pretreatment CT scans showed high accu-
racy, sensitivity, and specificity for predicting the efficacy
of anti-PD-1 mAb therapy as well as intratumoral hyp-
oxia, CD8 T cells, and CD8/Treg ratio. To our knowledge
this is the first evaluation of the predictive value of radio-
mics in anti-Pd-1 mAb treated R/M HNSCC patients.

Better predictive biomarkers have been a constant
need in solid tumors, including R/M HNSCC, since the
first studies with this class of therapeutics. Reliable pre-
diction of what patient is likely to benefit from anti-PD-1

monotherapy is even more important when there is an
alternative choice of therapy for the same indication. For
PD-L1 expressors (CPS ≥1) with R/M HNSCC, there is
the option of adding chemotherapy to pembrolizumab or
just using pembrolizumab alone in the frontline setting.
Exploratory subgroup analysis of KEYNOTE 048 suggests
that Pembrolizumab monotherapy may be of less benefit
in PD-L1 CPS 1–19 patients, and while not compared
directly, chemotherapy plus pembrolizumab has a
numerically higher response rate compared to pembroli-
zumab monotherapy (36% vs. 19%), albeit at the cost of
higher toxicity.3,21 Therefore, a biomarker that can pre-
dict with high accuracy those that would benefit from
anti-PD-1 mAb monotherapy would significantly benefit
clinical decision making. Importantly, radiomics analysis

FIGURE 3 (A) ROC curve

representing the performance of the

radiomics predictive model compared to

Neutrophil/Lymphocyte ratio for disease

control (CR/PR + SD vs. PD). (B) ROC

curve representing the performance of

the radiomics predictive model

compared to HPV status (positive

vs. negative) for disease control (CR/PR

+ SD vs. PD).
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of pre-treatment CT scans is non-invasive and practical,
given all patients undergo pre-treatment imaging.

Comparison of the predictive value of our radiomics
model to HPV status and N/L ratio showed a higher
AUC for the radiomics model. An important question is
how radiomics compares to other established tumor bio-
markers such as PD-L1, TMB, and immune gene expres-
sion. There are limitations to cross comparison of trials,
and most clinical trials report numeric efficacy with high
or low biomarkers. However, an analysis of 258 R/M
HNSCC patients treated with pembrolizumab in Keynote
055 and 012, where ROC analysis was used, showed an
AUC for response with PD-L1, TMB, and immune gene
expression of 64%, 63%, and 71%, respectively, compared
to 71.21% in our study.7 A noted limitation of our study is
that do to PD-L1 not being standard in platinum failure
patients, and lack of tissue availability, we were not able
to compare the predictive value of radiomics directly to
PD-L1, TMB, or GEP in our population. Further analysis
is needed to compare radiomics to these and other pre-
dictive biomarkers including whether there is additive
and/or independent predictive value.

Additionally important is the correlation between
radiomics and the tumor immune microenvironment.
Previously we showed that hypoxia is independently
associated with worse efficacy of anti-PD-1 mAb therapy
in R/M HNSCC patients.13 Here, we show that radiomics
can predict hypoxia with high accuracy. There is much
ongoing work in the field, including in R/M HNSCC, on
modulating metabolism and pathways involved in hyp-
oxia and therefore non-invasive prediction could prove
important in selecting patients most likely to benefit from
these therapeutics.

Previous radiomics studies in patients with various
diseases provide support for the potential clinical trans-
lation of our radiomics-based model to predict immuno-
therapy response. Sun et al. used machine learning
based radiomics score for predicting immunotherapy
response. They discovered that they could predict CD8
gene expression based on their initial radiomics score.
And patients with higher radiomics score had higher
CD8 gene expression and better response to immuno-
therapy in comparison to patients with progressive or
stable disease. Also, when compared to patients with
progressive disease, patients with controlled disease
(stable disease, partial response, complete response) did
not have a significantly higher baseline radiomics
score.22 In another radiomics study, Mu et al. described
a multi-parametric radiomics model based on positron
emission tomography (PET)/CT images to predict dura-
ble clinical benefit of immunotherapy response in
patients with advanced NSCLC (AUC ranging from 0.81
to 0.86). They showed that compared with that of the
multi-parametric radiomics signature, the AUCs of the
radiomics model generated by CT-only-based features to
predict response were lower (AUCs ranging from 0.64 to
0.69).23 These AUCs are also lower in comparison to our
study most likely because the CT images used from
PET/CT studies have lower resolution than the diagnos-
tic CT studies as used in the present study and were
non-contrast enhanced CTs. Despite downsides, these
results are consistent with our study in highlighting the
possibility of radiomics models in predicting response to
immunotherapy.

Our paper has a number of limitations. Primarily, it is
the smaller sample size and there will be a need to

FIGURE 4 (A) ROC curve representing the performance of the predictive model when using top 4 of 29 LASSO features to predict

hypoxia (high vs. low). (B) ROC curve representing the performance of the predictive model when using top 7 of 25 LASSO features to

predict average CD8/PanCK (high vs. low). (C) ROC curve representing the performance of the predictive model when using top 5 of

26 LASSO features to predict CD8/Treg (high vs. low).
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validate these results in a larger cohort. Another limita-
tion is that it is retrospective, albeit importantly, our
in vivo imaging core facility performed and verified
response assessments making our results more accurate
than other retrospective studies that just dependent on
chart review. Currently, we are recruiting prospectively
into this cohort of anti-PD-1 mAb treated R/M HNSCC
patients.

In summary, our study shows that radiomics analysis
of pretreatment CT scans in R/M HNSCC anti-PD-1 trea-
ted patients is predictive of efficacy as well as intratu-
moral hypoxia and CD8 T cells with high accuracy.
Further study is needed to validate radiomics as a predic-
tor, but this technology has the potential to make a sig-
nificant impact as a non-invasive predictive biomarker in
R/M HNSCC.
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