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Abstract

Introduction: Pharmacovigilance programs protect patient health and safety by identifying 

adverse event signals through postmarketing surveillance of claims data and spontaneous reports. 

Electronic health records (EHRs) provide new opportunities to address limitations of traditional 

approaches and promote discovery-oriented pharmacovigilance.

Methods: To evaluate the current state of EHR-based medication safety signal identification, we 

conducted a scoping literature review of studies aimed at identifying safety signals from routinely 

collected patient-level EHR data. We extracted information on study design; EHR data elements 

utilized; analytic methods employed; drugs and outcomes evaluated; and key statistical and data 

analysis choices.

Results: We identified 81 eligible studies. Disproportionality methods were the predominant 

analytic approach, followed by data mining and regression. Variability in study design makes 

*Corresponding Author Joshua C. Smith, PhD 2525 West End Ave, Suite 1475, Nashville, TN 37203, joshua.smith@vumc.org.
Author contributions: S.E.D. and J.C.S. designed the study and drafted the initial manuscript. S.E.D., J.C.S., L.Z., and K.C. 
contributed to the abstract screening and data extraction for included studies. R.J.D., S.V.W, J.C.M., J.J.H., D.S., and N.H.S. provided 
critical review of included studies and interpretation of results. All authors contributed to the final version of the manuscript and 
approved submission.

Statements and Declarations
Conflicts of interest: The authors declare no competing interests.

Ethics approval: Not applicable

Consent to participate: Not applicable

Consent for publication: Not applicable

Code availability: Not applicable

HHS Public Access
Author manuscript
Drug Saf. Author manuscript; available in PMC 2024 December 12.

Published in final edited form as:
Drug Saf. 2023 August ; 46(8): 725–742. doi:10.1007/s40264-023-01325-0.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



direct comparisons difficult. Studies varied widely in terms of data, confounding adjustment, and 

statistical considerations.

Conclusion: Despite broad interest in utilizing EHRs for safety signal identification, current 

efforts fail to leverage the full breadth and depth of available data or to rigorously control for 

confounding. The development of best practices and application of common data models would 

promote the expansion of EHR-based pharmacovigilance.

1. Introduction

Pharmacovigilance programs protect the health and safety of patients by identifying signals 

of adverse events through postmarketing surveillance after medications and vaccines become 

available in routine care [1]. A signal, in this instance, refers to “information that arises 

from one or multiple sources, which suggests a new potentially causal association, or a new 

aspect of a known association, between an intervention and an event or set of related events” 

[2]. While many adverse events are recognized during clinical trials of new medications, 

these trials are, by definition, tightly controlled and do not reflect the variability and 

complexity of the general population in terms of demographics, concomitant medication, 

and comorbid conditions [3]. Further, premarketing trials are limited in terms of sample size 

and duration and may not capture rare events. Once approved for widespread use, previously 

unidentified adverse events may be recognized through postmarketing surveillance and 

require adjustment of clinical recommendations or even withdrawal of a medication from the 

market.

Postmarketing surveillance has traditionally relied on spontaneous reporting of suspected 

adverse drug events by concerned healthcare professionals, consumers, and pharmaceutical 

manufacturers [3]. These reports are collected and maintained in national and international 

databases, such as the FDA’s Adverse Event Reporting System (FAERS) [4], the European 

Medicines Agency’s (EMA) EudraVigilance [5], and the WHO’s VigiBase [6]. However, 

data in spontaneous reporting systems are limited to voluntary reports of suspected adverse 

events directly related to a medication exposure, are subject to reporting bias, and provide 

limited information on patient characteristics [3]. With the expansion of longitudinal sources 

of healthcare data, including health insurance claims and electronic health records (EHRs), 

new opportunities are emerging to address these limitations and promote discovery-oriented 

pharmacovigilance [7].

The US FDA’s active medical product safety surveillance system, Sentinel, serves as 

an important complement to FAERS passive surveillance approach. Sentinel uses health 

insurance claims as the primary vehicle for signal identification [8]. Claims data are 

well-suited for longitudinally following patients after medication exposures owing to their 

capture of pharmacy dispensing records, outpatient encounters, and hospitalizations during 

well-defined periods of health plan enrollment. However, such data lack clinical granularity 

and often under-capture subtle events that do not trigger formal coding. In contrast, EHRs 

contain comprehensive structured and semi-structured data as well as rich, unstructured 

clinical narratives that could be leveraged to improve safety signal identification. The 

integration of EHR data as a resource for safety surveillance is a priority of Sentinel, but 
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current signal identification methods used with spontaneous reporting systems and claims 

data may not fully leverage the breadth and depth of EHR data [7]. New signal identification 

methods may be required to incorporate the variable information in EHRs, control the 

impact of confounding, and address the variability in terms of data collection processes, data 

gaps, and data quality across health systems.

In addition to Sentinel, international pharmacovigilance efforts would also benefit from 

advances in this area. Prior work by the EU-ADR project highlighted many of the 

difficulties around using EHR data for signal identification. The EMA’s Data Analysis and 

Real World Interrogation Network (DARWIN) [9], which collects real world health data for 

regulatory decision making, will need to address these issues, as well. Additionally, large 

scale health database efforts, such as the All of Us Research Program [10] in the US and the 

European Health Data Evidence Network (EHDEN) [11] might also benefit from methods to 

improve signal identification using EHR data.

To support the expansion of EHR-based pharmacovigilance, we conducted a scoping 

literature review of current practices in the use of routinely collected EHR data for 

medication safety signal identification. We included studies that performed completely 

hypothesis-free discovery, as well as those that attempted to identify evidence of a signal 

between specific drug-event pairs or among sets of related exposures and events. While 

there are a number of excellent reviews of the pharmacovigilance literature, few have 

as their primary focus the application of signal identification methods to EHR data. 

Most discuss signal identification more broadly, focus on methods applied to spontaneous 

reporting systems, or concentrate on recognition of known adverse drug effects (ADEs) for 

reporting or patient care tools [12–19]. Those reviews that do emphasize EHR-based signal 

identification are often smaller narrative reviews or focus on important related concerns, 

such as extracting documented ADEs from clinical texts or the use of pharmacogenomic 

data, which is beyond the scope of this review [3,20–28]. Herein, we focus on analytic 

methods using routinely-collected EHR data for medication safety signal identification and 

describe how both structured and unstructured EHR data are being utilized.

2. Methods

We conducted a scoping review of the literature documenting adverse event signal 

identification in longitudinal EHR data, characterizing the analytics methods employed, 

handling of statistical challenges, and integration of diverse clinical data. For the purposes of 

this review, we define signal identification as a statistical or algorithmic approach to identify 

an excess burden of adverse events following drug exposure, whether or not the exposure 

was documented as associated with the outcome by the patient or provider at the time of the 

event. A protocol was not preregistered for this review.

2.1. Data sources and search strategy

We queried MEDLINE and Embase, the two largest bibliographic databases of published 

biomedical literature, for all publications indexed as of April 14, 2023.We identified 

potentially relevant articles in both databases using both MeSH (Medical Subject Headings) 

terms and keywords. Our search strategy was designed to capture all citations encompassing 
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three concepts of interest: biomedical domain, analytic methods, and data context (see 

Figure 1). Search queries were crafted for each of these concepts and results were combined 

to identify publications of interest. The biomedical domain search terms required studies 

to focus on pharmacovigilance biomedical research (e.g., drug-related side effects and 

post-marketing surveillance). The analytic methods search terms required studies to report 

on methods used for signal identification (e.g., natural language processing and machine 

learning). The data context search terms required studies to analyze EHR-based data with 

or without integration with spontaneous reporting systems. We subsequently excluded non-

English language publications. The full search query is provided in Table 1. We also 

reviewed the reference lists of eligible articles for relevant studies and searched for full 

text publications associated with eligible conference abstracts.

2.2. Study selection

Studies were eligible for inclusion in our review if they 1) analyzed patient-level EHR data 

collected through routine clinical care; and 2) implemented, evaluated, or proposed analytic 

methods for identifying or discovering adverse event signals. We focused on original 

research studies and excluded commentaries and prior literature reviews. Abstracts were 

independently screened for inclusion by at least two members of the study team (Smith, 

Davis, Coughlin, or Zabotka). Those cases in which reviewers disagreed on study eligibility 

were adjudicated by the two primary reviewers (Davis, Smith).

2.3. Data extraction

For each eligible study, we extracted key information on the clinical population; study 

design; data sources; EHR features extracted; analytic methods used; drugs and outcomes 

evaluated; handling of temporality of exposures and outcomes; adjustment for confounding; 

and consideration of multiple testing. We noted any direct comparisons of methods, as well 

as strengths and limitations of analytic methods.

3. Results

Figure 2 details our search results and disposition of each study using a PRISMA flow 

chart. Our search returned 1095 publications and we included an additional 12 studies 

retrieved from reference lists of relevant studies. After deduplication, 899 study abstracts 

were screened and 245 were selected for full review. During full review, we excluded an 

additional 164 publications. Most studies excluded at this stage were not original research, 

did not conduct adverse event signal identification, failed to provide sufficient detail about 

methods used for signal identification, or sought to extract documented ADEs from clinical 

notes using natural language processing (NLP). After full text review, 81 publications were 

eligible for inclusion.

Table 2 provides an overview of the 81 original research studies included in our review and 

Table 3 summarizes details extracted from these studies along with relevant citations. For 

12 studies, only the abstract was available and served as the full text for review, limiting 

the information we were able to extract. Figure 3 highlights sustained interest in methods 

for EHR-based signal identification over the past two decades. Studies were conducted on 
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EHR data from Europe (n=26, 32%), Asia (n=14, 17%), and the United States (n=38, 47%). 

Studies from Asia and the United States primarily considered EHR data from academic 

medical centers, while those in Europe often included data collected from more diverse 

clinical settings, such as community health centers contributing EHR data to The Health 

Improvement Network (THIN) [29] or the General Practice Research Database (GPRD) [30] 

in the UK. Sample sizes were not consistently reported, with some studies reporting the 

number of observations used for analysis and others reporting the number of patients in a 

data resource. When reported, sample sizes varied widely, from just a few hundred patients 

to millions of patients. Single-drug adverse events were the primary focus, with 14 (17%) 

studies aimed at identifying drug-drug interactions (DDIs).

3.1. Study designs

Most studies employed a cohort (n=54, 67%) or a case-control design (n=22, 27%). Case-

control studies included random matching, simple demographic matching (e.g., matching 

on age and sex only), matching on medical history, and propensity score matching. Self-

controlled designs were less common (n=12, 15%). Ryan and colleagues [31] directly 

compared study designs and observed self-controlled designs to be more accurate in their 

identification of known ADEs and negative controls, yet all designs underperformed in 

estimating signal strength.

3.2. Analytic Methods

Table 4 provides a description of the major analytic approaches, including common specific 

methods reported and both benefits and limitations of how the methods were applied. 

The most common methods applied were various disproportionality analysis (n=48, 59%), 

machine learning/data mining algorithms (n=30, 37%), and regression-based modeling 

(n=25, 31%). Disproportionality analysis, generally speaking, refers to methods that identify 

combinations of exposures and adverse effects that occur more frequently than expected 

by using information on all drugs and effects in the available sample population [14]. 

Specific methods included the reporting odds ratio (ROR), proportional reporting ratio 

(PRR), gamma Poisson shrinker (GPS) and associated variants, and empirical Bayes 

geometric mean (EBGM), among others. The most frequent regression-based approaches 

were logistic and Cox regression. Studies using machine learning and data mining 

algorithms used a variety of supervised and unsupervised methods, including association-

rule mining, clustering, random forests, the tree-based scan statistic, and neural networks. 

Most studies using sequential analyses applied the maximized sequential probability ratio 

test (MaxSPRT). Studies generally took a retrospective approach, seeking to identify 

adverse events from historical extracts of EHR data. However, 6 studies (7%) implemented 

a prospective analysis framework which could be used for prospective surveillance for 

emerging evidence of adverse event signals. These studies used statistical process control, 

regression, and sequence symmetry analysis.

Some studies aimed to evaluate the performance of different methods through signal 

identification applied to specified drug-outcome associations (n=27, 33%). Others 

focused on signal discovery across many drug exposures linked to a specific outcome 

(n=44, 54%) or across many outcomes after exposure to a specific drug (n=34, 
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42%). Methods were evaluated by comparing results to previously reported adverse 

events and known negative controls to document false negatives and false positives. 

Novel associations were also documented, with several studies including additional 

steps to filter out false positives and prioritize potential novel adverse events. This 

filtering and prioritization were accomplished by ranking events by measures of signal 

strength [37,43,57,57,61,63,69,71,82,82,99,102,106,107,109,112], comparing findings to 

parallel analyses of spontaneous reporting data [61,69,71,82,87,91], incorporating external 

knowledge sources [32,43,66,102,105–108,110,112], or assessing protopathic bias using 

Longitudinal Evaluation of Observational Profiles of Adverse events Related to Drugs 

(LEOPARD) [42,60,70,71,87]. Three studies [54,63,90] prescreened potential adverse 

events using disproportionality analyses and conducted more in-depth investigation into 

the potential signals using regression-based models. These studies found such a step-wise 

approach improved precision of signal identification and reduced false positives.

Few studies directly compared adverse event signal identification across methods. Wang 

and colleagues [74] found a random forest model based on data extracted from 

clinical notes outperformed disproportionality analyses on the same data, as well as 

disproportionality analyses on spontaneous reporting data. Jeong and colleagues [86] 

compared disproportionality analyses to machine learning models—including random 

forests, L1 regression, support vector machines, and neural networks—that used the 

summary statistics from disproportionality analyses of laboratory values as inputs, finding 

random forests to have the highest discrimination and all machine learning models 

outperforming the disproportionality analyses.

3.3. EHR Components

Table 3 includes a summary of those portions of the EHR used by analyses described in 

each study. Structured medication data were accessed in the vast majority of studies (n=75, 

93%). Studies that did not use structured medication data identified drug exposures by using 

NLP to extract information from clinical notes [35,53,61,91,109]. Medication information 

typically captured drug names and timing of exposure. Dosing and route information was 

rarely considered. Most reviewed studies accessed diagnostic/procedural codes (n=60, 74%), 

with those not accessing diagnostic/procedural codes using laboratory data or vital signs to 

determine the presence of adverse events. Laboratory data was accessed in 28 (35%) studies 

for outcome determination or confounding adjustment. Use of demographic data was noted 

in 46 (57%) studies for population definition, stratification, or confounding adjustment. Few 

studies used vital sign data or health care utilization metrics.

Unstructured data from clinical notes were accessed in 21 studies (26%). Studies generally 

relied on a combination of NLP extracted event or medication information alongside 

structured EHR. However, three studies relied solely on clinical notes, extracting drug 

exposure, comorbidities, and adverse events using NLP without mentioning access to 

other components of the EHR for signal identification analyses [74,106,109]. The types 

of clinical notes accessed also varied, but included admission history and physical exam 

notes, discharge summaries, clinic visit notes, and nursing documentation. Methods and 

tools used to extract potential adverse events from unstructured data varied widely, from 
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simple regular expression text matching to more sophisticated NLP systems that mapped 

text mentions to concepts in clinical ontologies. An in-depth discussion of specific NLP 

methods for clinical text is beyond the scope of this review, but we direct the interested 

reader to several high-quality reviews on the subject [20,24,28,113].

One study by LePendu and colleagues [54] described methods to transform unstructured 

clinical notes into a deidentified patient-feature matrix encoded using medical terminologies. 

The matrix forms a timeline, noting when events occurred (or were recorded) including 

drug exposures and outcomes of interest. They demonstrated its utility for identifying both 

single-drug adverse events and drug-drug interactions earlier than official alerts by finding 

signals on retrospective data. It also allowed filtering of spurious signals by adjusting for 

potential confounding and could be used to compile prevalence information and estimate 

performance.

3.4. Integration with Spontaneous Reporting Data

Several studies (n=15, 19%) utilized both spontaneous reporting and EHR data. Associations 

identified in spontaneous reports either directed subsequent EHR investigations of specific 

drug-event pairs of interest or filtered EHR-identified signals. This sequential approach was 

aimed at reducing the risk of false positive signals from observational EHR data while 

replicating signals from spontaneous reports in a more diverse population. A study by Li and 

colleagues [69] found a combination of analyses using both spontaneous reporting and EHR 

data more accurately identified ADEs than analyses in either resource alone. Prospective 

studies compared the time to signal recognition between EHR-based analyses and parallel 

analyses in spontaneous reporting data. These studies reported EHR-based methods were 

able to identify adverse event signals sooner than they would have been identified in 

spontaneous reporting databases [87,98]. A study by Patadia and colleagues [71] highlighted 

considerations of the potential interplay between current spontaneous reporting systems and 

ADE identification in EHR data. They found signals were detectable in EHR data earlier 

than spontaneous reporting systems; however, applying the same methods to EHR data 

collected after initial warnings were issued changed practice patterns and reduced the utility 

of subsequent EHR data for signal identification.

3.5. Statistical considerations

Control for confounding was often discussed as a limitation, yet 40% of studies reported 

no specific steps to control for confounding (n=32). When confounding was addressed, 

this typically took the form of matching, stratification, or statistical adjustment for a 

small number of patient features. Ten studies (12%) limited confounding control to simple 

demographic characteristics and 24 (30%) studies controlled for some combination of 

demographics, indications, other drug exposures, and comorbidities. Self-controlled series 

were used to adjust for time-invariant confounders in 12 studies (15%) and several studies 

undertook propensity score matching/adjustment (n=12, 15%). Limited details of propensity 

scoring methods were reported and few studies provided specific justification for the 

selection of confounders.
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Most studies (n=74, 91%) explicitly documented temporal considerations to ensure drug 

exposures occurred within a specified time window prior to adverse event indication or 

documentation. Several studies considered time more specifically by conducting survival 

analyses [80,81,103] or using chronographs of temporal event patterns [47,66,73,76,93]. 

Temporality was further explicitly considered by the five studies [42,60,70,71,87] that used 

LEOPARD to explore the rate of drug initiation before and after adverse events to filter out 

ADEs that may be due to confounding by indication.

As most studies controlled for few, if any patient features, missing data was rarely 

mentioned and studies implicitly assumed no bias in drug exposure or outcome 

ascertainment. Six studies mentioned concerns about missing data and conducted complete 

case analyses [79,84,86,90,99,103]. No studies considered imputation.

While all studies evaluated multiple pre-specified ADEs or many potential drug-event pairs, 

most did not discuss concerns regarding adjustments for multiple comparisons (n=61, 75%). 

When mentioned, Bonferroni correction and false discovery rates were the most common 

approaches to handling multiple comparisons.

4. Discussion

The body of work discussed in this review, along with prior reviews of pharmacovigilance 

studies and methods, make it clear that EHR data can make an important contribution to 

medication safety signal identification. However, there are challenges remaining. Studies 

varied widely in terms of the methods implemented, the data utilized, temporal and 

statistical considerations, and other limitations. Below we discuss each of these areas and 

provide recommendations for future research.

4.1. Analytic Methods

The most commonly used methods were the same approaches popular in spontaneous 

reporting systems, such as disproportionality analysis and regression-based modeling. 

While 37% of studies employed machine learning or data mining methods, the selected 

algorithms were highly variable and do not provide sufficient information to compare 

specific algorithms. Fewer studies applied sequential analysis methods. Each of these 

approaches have benefits and limitations (see Table 4).

Disproportionality methods, such as ROR, PRR, and GPS, are commonly applied to 

spontaneous reporting data despite concerns about underreporting and the inability to 

provide a true incidence rate when the number of outcomes is known and the number 

of exposures is not [3]. While EHRs do not necessarily capture all instances of exposure 

and outcomes (due to missing data and patients visiting multiple health systems), they can 

provide for more-complete capture of numerator and denominator than spontaneous reports 

[14]. This can potentially improve estimates of drug utilization and condition incidence. 

However, as currently applied to EHR data, disproportionality methods are not leveraging 

the breadth of EHR data nor controlling for key confounding. Integration of more advanced 

propensity score matching taking into account the rich patient-level information in the EHR 

may improve the use of these methods for EHR-based pharmacovigilance.
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Similarly, regression-based methods also allow for confounding adjustment. EHRs can 

provide rich clinical detail for such adjustments, but nearly half of studies either reported no 

specific steps to control for confounding or only controlled for simple demographic features. 

When utilized for signal identification (as opposed to confirmation), regression methods 

must be adjusted for multiple testing, however many studies did not report taking this into 

consideration.

While machine learning, data mining, and sequence analysis are promising, there are only 

a few examples of each method and thus limited evidence of performance. The tree-based 

scan statistic, which was applied in two coordinated studies [38,52], highlights the potential 

of these methods for adverse event signal identification. TreeScan, the data mining tool that 

implements the tree-based scan statistic, can simultaneously evaluate a number of potential 

adverse events (and groups of related adverse events) to determine if any occur with higher 

probability among exposed patients [52,114]. Simultaneously, it evaluates if those outcomes 

occur with increased risk among patients exposed to individual drugs or groups of related 

drugs, automatically adjusting for the inherent multiple testing. This approach, normalizing 

drugs to classes and specific outcomes to broader categories of related outcomes, makes use 

of the hierarchical structure of the terminologies used for both exposures and outcomes, and 

can aggregate multiple weaker signals into significant ones.

As described above, there were also very few studies comparing the performance of different 

signal identification methods to one another. This prevents us from commenting on which 

methods may best identify adverse event signals within EHR data. Future efforts should 

develop large, standardized datasets with established drug-event associations against which 

methods can be compared more directly within and across studies.

4.2. Data

Access to large longitudinal claims databases have somewhat alleviated the volume issues 

with traditional surveillance methods, but such databases do not have the depth, or 

granularity, of patient information available in structured and unstructured EHR data. 

The breadth of EHR information lies in the many different types of data available – 

demographics, diagnoses, laboratory results, vital signs, problem lists, and unstructured 

clinical text – and, unfortunately, our review highlights that most EHR-based signal 

identification studies have yet to take full advantage of these complementary data types. 

For example, while many studies accessed diagnosis codes for outcome ascertainment, few 

took advantage of the other recorded diagnoses to control for confounding. Studies also 

frequently operationalized outcomes using only diagnosis codes, only laboratory values, or 

only NLP-processed unstructured clinical notes. While these studies serve to validate each 

method with different data types, methods combining different EHR data types could lead 

to a richer abstraction of the patient and better capture of a wide variety of adverse events. 

This increase in data dimensionality, however, poses unique challenges, including cases in 

which critical features may be sparsely populated. Possible methodological considerations to 

help address these difficulties might include mapping of differing feature types to a common 

terminology, such as MedDRA, or developing methods that can utilize both binary outcomes 

and continuous outcomes, such as lab values.
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4.3. Temporal and Statistical Considerations

Many studies developed interesting approaches with significant opportunity for extension, 

while often neglecting to address a common set of limitations. These include lack of 

control for confounding, adjustment for multiple testing, and attention to missing data. In 

terms of confounding control, most studies either did not report any confounding control 

or controlled for only a few factors, most commonly only age and sex. Some, however, 

took advantage of the rich EHR data available to control for factors such as medications, 

comorbid conditions, and utilization of healthcare resources. Methods such as propensity 

score matching and self-controlled study designs are effective ways to address confounding 

that could have been integrated into many of the methods reviewed. Given the breadth 

of potential confounders in the EHR, further research and evaluation of methods using 

published literature to identify confounders [115] are warranted.

Few studies took common statistical approaches to preempt false positive signals. As 

noted above, most studies minimally controlled for confounding, despite the ability of 

proper confounding control to reduce false positives. Our review also highlighted a lack 

of adherence to recommendations to adjust for multiple comparisons when evaluating 

many potential adverse event signals, with 75% of studies not addressing this statistical 

concern. Given these limitations, many studies required additional analytic steps to filter out 

false positives and determine which drug-event associations highlighted by their analyses 

warranted further investigation. Common filtering approaches included ranking drug-event 

pairs by measures of signal strength, comparing findings to parallel analyses in spontaneous 

reporting data, incorporating external knowledge sources, or assessing protopathic bias using 

LEOPARD. All of these approaches can reduce false positives, but it is also important to 

empirically estimate the false discovery rate so that methods can be accurately evaluated and 

compared.

Careful attention to temporal relationships within data are also critical when performing 

EHR-based signal identification. Most studies were explicit in their methods to ensure 

documented exposures occurred before the suspected adverse events. However, studies were 

not consistent in how they determined initial exposures, minimum unexposed time before 

an index exposure, or relevant follow-up requirements. Best practices for establishing a 

minimum length of medical history in EHR data prior to exposures would help more 

consistently ensure patients were not exposed earlier than suspected. Similarly, standard 

practices should be established for handling cases when exposure and outcome are found in 

the same note but the temporal ordering of events is not explicitly defined or when mentions 

of an outcome in a clinical note does not necessarily mean that it began on the day the 

note was recorded. Evaluations by Patadia and colleagues [71] revealed another temporality 

concern regarding the interaction between early suspicion of potential ADE signals and 

changes in prescribing patterns. They found EHR data collected after media coverage or 

regulatory warnings of a newly detected ADE were less likely to correctly identify the 

ADE signal compared to EHR data collected prior to the dissemination of information 

about the suspected signal. To avoid biasing results, studies must consider announcements of 

any preliminary safety concerns when defining temporal start and end points for studies in 
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retrospective data. Further research on how to handle the temporality of longitudinal EHR 

data is required.

While common in routinely collected EHR data, missing data was rarely discussed in the 

articles we reviewed. Missingness was likely not discussed for studies using structured 

medications and diagnoses because the lack of recording is typically presumed to be the 

absence of a diagnosis or medication. However, undercoding – when structured codes do 

not adequately represent a patient’s condition or the full scope of work being performed – 

is a limitation of structured EHR data that all studies should consider. In studies utilizing 

other EHR features, missingness may become more of a concern and should be addressed. 

For example, missingness may be of particular importance when considering data on 

social determinants of health, which may not be well-recorded in certain subpopulations. 

Furthermore, given the decentralized nature of healthcare in the United States, patient data 

is often scattered across multiple EHRs and health systems. As mentioned above, efforts to 

link longitudinal claims data with EHRs, as well as efforts promoting Health Information 

Exchange, could somewhat alleviate such concern.

4.4. Other Limitations of Current Work

During our analyses, we noticed a number of additional limitations of current research 

in EHR-based signal identification. Medication dosing, for instance was almost never 

considered in the studies we reviewed and few studies focused on exposures that may 

be better-captured in EHRs compared to claims data. For example, the EHR can be a 

source for identifying adverse events due to blood products and contrast media, as well as 

herbals and other non-conventional medications. EHR note type was also rarely mentioned; 

cardiology notes reveal different information than rheumatology notes, for example. Most 

studies implemented analysis at only a single site, which can result in inadequate cases to 

identify signals, particularly for rare events.

While many different studies used spontaneous reports data in combination with EHR data, 

it remains unclear how the two data sources can best complement one another to improve 

sensitivity and reduce false positives safety signals. Additionally, while some studies used 

derivatives of FAERS, such as TWOSIDES [116], it is probable that such derivatives could 

be helpful in more studies. Integration of other data sources may be helpful, as well; 

disproportionality methods, for example, suffer from confounding and frequent non-causal 

associations with indications and comorbidities [117]. Databases such as SIDER [118] 

contain known indications and adverse effects from drug product labels and could be used 

to identify confounding by indication. EHR data itself could be used to identify common 

comorbidities. The combination of these data resources can be used to prioritize unexplained 

signals or discount those signals with other likely explanations.

Finally, we note the lack of studies focused on children and pregnancy. A review by 

McMahon and colleagues [18] noted the lack of robust pediatric-focused post-marking 

surveillance. While a body of work in claims-based maternal-fetal outcomes research exists, 

there is widespread recognition regarding the shortcoming of pharmacovigilance as it relates 

to pregnancy [119–121]. Studies of these populations are critical to drug safety efforts and 

would likely benefit from the addition of EHR data.
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4.5. Recommendations

The current state of research involving EHR-based signal identification is promising but 

would benefit from a more systematic approach to methods evaluation and the development 

of best practices. Methods and data models should also take advantage of the full breadth 

and depth of EHR data. Most reviewed studies focused on a limited number of EHR 

features, many simply accessing specific diagnoses and medication orders of interest. 

Accessing a broader set of features captured in EHRs could allow more thorough control 

for confounding, a unique advantage of EHR data over spontaneous reports. Further 

advancement of prospective approaches should also be prioritized as the existing studies 

indicate such approaches may speed identification of safety concerns. Newer methods 

utilizing recent advances in deep learning, symbolic artificial intelligence, and large 

language models should also be further explored.

Similarly, development of a common data model for tailoring longitudinal EHR datasets 

for pharmacovigilance studies would allow consistent application of methods and simplify 

evaluation. A common EHR transformation for adverse event signal identification could 

be accomplished by extending the work of LePendu and colleagues [54] using patient 

feature matrices. While their study exclusively used features extracted from clinical text, 

structured data could be also represented using the same framework and terminology (e.g., 

MedDRA). Further extensions could allow the incorporation of both continuous features 

and the integration of claims data to address concerns when relevant data is collected from 

multiple health care organizations.

A standardized data model for pharmacovigilance would also support distributed analyses 

that could be performed at multiple sites and foster greater collaboration. While the sensitive 

nature of EHR data makes large repositories difficult, methods for federated machine 

learning and distributed analysis like those currently employed by Sentinel, DARWIN, and 

EDHEN initiatives would enable larger-scale EHR-based data analysis. This is particularly 

important for identifying safety signals involving less common medications or rare events 

that may not have sufficient data for detection at any individual site.

Finally, it is important to both define success metrics and estimate performance to better 

understand the types of signals that would be captured poorly in EHR data. Development 

of a common resources of known adverse event signals and control drug-event associations 

would support comparative evaluations across signal identification methods and enable 

reproducibility. Results for existing and future novel approaches to signal identification 

could be reported against this standard reference to provide more comparable baseline 

comparisons and support the collection of evidence needed to establish best practices.

5. Conclusion

The current state of drug safety signal identification with EHR data is promising. However, 

comparing signal identification methods to one another based upon available research 

is difficult due to differences in study designs and populations; EHR data models and 

components utilized; and diverse combinations of exposures and health outcomes evaluated. 

In addition, published studies differ substantially in their treatment of confounders, temporal 
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considerations, and adjustments for multiple testing. Future efforts to evaluate available 

methods, create a common data model for EHR data, build shared reference sets for 

validation, and develop best practices for signal discovery and confirmation are necessary.
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Key Points

• Detailed electronic health record data could enrich pharmacovigilance 

programs that have traditionally relied on voluntary spontaneous reporting 

systems, with hopes of enhancing and speeding our understanding of 

medication safety signal concerns.

• Our review of electronic health record-based signal identification studies 

highlights great variability in study design and limited application of methods 

for handling confounders, temporal considerations, and adjustments for 

multiple testing.

• While current research is promising, the community of pharmacovigilance 

researchers and practitioners would benefit from a more systematic approach 

to methods evaluation, comparison, and benchmarking to develop best 

practices for implementation and expansion of electronic health record-based 

pharmacovigilance.
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Fig 1. 
Search criteria used in OvidSP to identify publications of interest for the literature review. 

For each primary query, MeSH terms are listed along with keywords from titles and 

abstracts.
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Fig 2. 
PRISMA flow chart of article disposition
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Fig 3. 
Included studies of EHR-based signal identification by year
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Table 1.

Full search query

# Subqueries

1 “Drug-Related Side Effects and Adverse Reactions”/ or Pharmacovigilance/ or Product Surveillance, Postmarketing/ or Drug Interactions/

2 (((drug or medication) adj3 (reaction* or interaction* or safety or “side effect*” or toxicit* or surveillance or “adverse effect*”)) or 
pharmacovigilance).ti,ab.

3 1 or 2

4 limit 3 to English language

5 Data Mining/ or Artificial Intelligence/ or Machine Learning/ or Algorithms/ or Natural Language Processing/ or Pattern Recognition, 
Automated/ or Models, Statistical/

6 (“text mining” or “data mining” or “NLP” or “natural language processing” or “machine learning” or “artificial intelligence” or “deep 
learning” or “signal detection” or “signal identification” or “data-driven” or “data driven”).ti,ab.

7 5 or 6

8 limit 7 to English language

9 Electronic Health Records/ or Medical Records/ or Medical Records Systems, Computerized/

10 (“electronic health record*” or “electronic medical record*” or “EHR*” or “EMR*” or “clinical narrative*” or “clinical note*” or 
“clinical text*” or “observational clinical data” or “medical record*”).ti,ab.

11 9 or 10

12 limit 11 to English language

13 4 and 8 and 12

14 remove duplicates from 13
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Table 2.

Summary of original research studies eligible for review. Sample sizes represent actual sample size used for 

analysis, if available, and data resource sample size otherwise.

Study Setting
Disproportionality 
analysis Regression

Machine 
learning 
and data 
mining

Sequential 
analyses

Chazard et al. 2009 [32] France and the Netherlands, 
variable settings X

Edwards R.I. 2009 [33] International database X

Ryan P.B. et al. 2009 [34] Not reported X

Wang X. et al. 2009 [35] US, single academic medical 
center X

Brownstein J.S. et al. 2010 [36] US, single academic medical 
center X X

Harpaz et al. 2010 [37] US, single academic medical 
center X

Brown J.S. et al. 2011 [38] US, variable settings X

Chazard et al. 2011 [39] Europe variable settings X

Coloma et al. 2011 [40] Europe, variable settings X

Coloma P.M. et al. 2011 [41] Europe, variable settings X X

Ferrajolo C. et al. 2011 [42] Europe, variable settings X

Ji et al. 2011 [43] US, single VA medical center X X

Park M.Y. et al. 2011 [44] Korea, single academic 
medical center X

Trifiro G. et al. 2011 [45] Europe, variable settings X

LePendu P. et al. 2012 [46] US, variable settings X

Star K. et al. 2012 [47] United Kingdom, variable 
settings X

Yoon et al. 2012 [48] Korea X

Afzal Z. et al. 2013 [49] Denmark, variable settings X

An L. et al. 2013 [50] US, variable settings X

Harpaz R. et al. 2013 [51] New York, single academic 
medical center X

Kulldorff M. et al. 2013 [52] US, variable settings X

Lependu et al. 2013 [53] US, single academic medical 
center X

LePendu P. et al. 2013 [54] US, single academic medical 
center X X

Lian Duan et al. 2013 [55] Simulated data X X

Liu et al. 2013 [56] US, single academic medical 
center X X

Reps J. et al. 2013 [57] United Kingdom, variable 
settings X X

Ryan et al. 2013 [31] US, variable settings X X X

Sauzet O. et al. 2013 [58] United Kingdom, variable 
settings X
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Study Setting
Disproportionality 
analysis Regression

Machine 
learning 
and data 
mining

Sequential 
analyses

Eriksson et al. 2014 [59] The Netherlands, single 
academic medical center X

Ferrajolo et al. 2014 [60] Europe, variable settings X

Iyer et al. 2014 [61] US, single academic medical 
center X

Ji et al. 2014 [62] US, single VA medical center X

Li Y. et al. 2014 [63] US, single academic medical 
center X X

Patel and Kaelber 2014 [64] US, variable settings X

Roitmann E. et al. 2014 [65] Denmark, single medical 
center X

Cederholm S. et al. 2015 [66] United Kingdom, variable 
settings X X

Du L. et al. 2015 [67] US, variable settings X

Girardeau Y. et al. 2015 [68] France, single academic 
medical center X

Li Y. et al. 2015 [69] US, variable settings X X

Pacurariu A.C. et al. 2015 [70] Europe, variable settings X

Patadia V.K. et al. 2015 [71] Europe, variable settings X

Reps J. et al. 2015 [72] United Kingdom, variable 
settings X

Star K. et al. 2015 [73] United Kingdom, variable 
settings X

Wang G. et al. 2015 [74] US, single academic medical 
center X X

Zhang P. et al. 2015 [75] US, variable settings X

Hauben M. et al. 2016 [76] United Kingdom, variable 
settings X X

Lorberbaum T. et al. 2016 [77] US, single academic medical 
center X

Lorberbaum T. et al. 2016 [78] US, academic medical centers X

Boland, M.R. et al. 2017 [79] US, single academic medical 
center X X

Fan Y. et al. 2017 [80] US, single academic medical 
center X

Lee S. et al. 2017 [81] Korea, single academic 
medical center X

Personeni et al. 2017 [82] US, single academic medical 
center X

Wang et al. 2017 [83] US, single academic medical 
center X

Chen W. et al. 2018 [84] China, single academic 
medical center X

Choi L. et al. 2018 [85] US, single academic medical 
center X

Jeong E. et al. 2018 [86] Korea, single academic 
medical center X X X
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Study Setting
Disproportionality 
analysis Regression

Machine 
learning 
and data 
mining

Sequential 
analyses

Patadia V.K. et al. 2018 [87] Europe, variable settings X X

Shimai Y. et al. 2018 [88] Japan, single academic 
medical center X

Tham M.Y. et al. 2018 [89] Singapore, single academic 
medical center X

Vajravelu et al. 2018 [90] United Kingdom, variable 
settings X X

Wang L. et al. 2018 [91] US, single academic medical 
center X

Wang X. et al. 2018 [92] US, variable settings X

Whalen E. et al. 2018 [93] United Kingdom, variable 
settings X X

Zhou et al. 2018 [94] United Kingdom, variable 
settings X

Dang T.-T. et al. 2019 [95] US, single academic medical 
center X X

Davazdahemami B. and Delen D. 
2019 [96] US, variable settings X

Duan R. et al. 2019 [97] US, single academic medical 
center X

Yu et al. 2020 [98] US, single academic medical 
center X

Yu Y. et al. 2020 [99] China, single academic 
medical center X

Zhang et al. 2020 [100] US, single academic medical 
center X

Akimoto H. et al. 2021 [101] Japan, single academic 
medical center X

Nie X. et al. 2021 [102] China, single academic 
medical center X X

Shin H. and Lee S. 2021 [103] Korea, single academic 
medical center X

Shin H. et al. 2021 [104] Korea, single academic 
medical center X

Wu et al. 2021 [105] US, single academic medical 
center X

Challa A.P. et al 2022 [106] US, single academic medical 
center X

Kaas-Hansen B.S. et al. 2022 [107] Europe, variable settings X

Kundrot S. et al. 2022 [108] Multinational, variable 
settings X

Mower J. et al. 2022 [109] US, single academic medical 
center X X

Nie X. et al. 2022 [110] China, single academic 
medical center X X

Sauzet O. and Cornelius V. 2022 [111] United Kingdom, variable 
settings X
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Study Setting
Disproportionality 
analysis Regression

Machine 
learning 
and data 
mining

Sequential 
analyses

Yu Y. et al. 2022 [112] China, single academic 
medical center X X

48 (59%) 25 (31%) 30 (37%) 3 (4%)

Abbreviations: electronic health record (EHR)
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Table 3.

Characteristics of original research studies reviewed. Studies may be counted in multiple subcategories within 

each group.

N % Relevant studies

Total original research studies 81

Study aim

 Signal identification for 
specified associations 27 33.3% [34–36,40–42,48,49,53,58,68,69,71,76,78,80,87,88,91,93–95,98,100,103,109,111]

 Signal identification across 
many exposures 44 54.3%

[31,32,37,39,44,45,47,51,54–57,59–61,65–67,70,72–75,77,79,81,82,84–
86,89,90,92,96,97,99,101,102,104–108,110,112]

 Signal identification across 
many outcomes 34 42.0% [31,32,37–39,43,44,50,52,54,56,57,59,61–66,73,74,81–86,89,93,104–108]

Type of event investigated

 Single-drug adverse event 68 84.0% [31–49,51–60,63–66,69–74,76,79,81–91,93–95,98–104,106–112]

 Drug-drug interaction 14 17.3% [50,54,61,62,67,68,75,77,78,80,92,96,105,107]

Analysis frame

 Retrospective 75 92.6% [31–35,37–45,47–86,88–93,95–97,99–112]

 Prospective 6 7.4% [36,46,54,87,94,98]

Study design

 Cohort 54 66.7%
[31,32,34–43,45,47,50–52,55,57,59,61–65,68–74,76–80,82–85,87,95,97–99,101,104–
111]

 Case-control 22 27.2% [31,46,48,53,54,56,58,59,61,67,75,81,85,90–92,96,99,102,103,110,112]

 Self-controlled 12 14.8% [31,34,44,49,60,66,86,89,91,93,94,100]

Outcome type

 Binary 70 86.4% [31–46,48,49,51–56,59–61,63–65,67,68,70,71,73,74,76,79,81–92,94–101,104,105]

 Continuous 4 4.9% [50,77,78,89]

 Time-to-event 10 12.3% [47,58,62,66,73,80,81,93,103,111]

Methods

 Disproportionality 48 59.3%
[31,34,35,40–45,49–51,53,55–61,63,64,66,67,69–71,76–78,83,86–91,93–
96,98,99,102,104,109–112]

 Regression 25 30.9% [31,36,37,48,54,63,68,69,74,75,79–81,85,86,90,92,97,101–103,105,106,110,112]

 Machine learning and data 
mining 30 37.0% [31–33,38,39,41,43,46,47,52,55–57,62,65,66,72–74,76,79,82,84,86,93,95,100,107–109]

 Sequential analyses 3 3.7% [36,54,87]

EHR components accessed

 Demographics 46 56.8%
[31,32,36,38–40,42,43,48–50,52–54,56–
63,66,68,69,72,77,78,80,81,84,85,90,94,96,97,99,101–105,107,110–112]

 Medication orders 75 92.6% [31–34,36–43,45–52,54–60,62–68,70–90,92–108,110–112]

 Diagnostic/procedural codes 60 74.1%
[31–34,36,38–43,45–49,52,54–58,60,62,64–67,69–73,75,76,78–85,87,90,92–94,96–
104,108,110–112]

 Laboratory results 28 34.6%
[32,36,37,39,43,44,48,50,51,56,60,62–
64,68,70,81,83,84,86,88,89,94,99,101,102,110,112]

 Vital signs 3 3.7% [50,64,77]

 Clinical text 21 25.9% [35,37,39,46,51,53,54,59,61,63,65,69,70,74,80,85,91,95,106,107,109]
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N % Relevant studies

Data sources*

 EHR only 66 81.5%
[31,32,34–43,46,48–50,52–60,62–68,70,72,74–76,79–81,84–90,92–97,99,100,102,105–
112]

 EHR and spontaneous reports 15 18.5% [45,51,61,69,71,73,77,78,82,83,87,91,98,101,103,104]

Control for confounding

 None reported 32 39.5%
[35,41,43,45,47,50,51,55,57,62,64,65,67,70,71,73–76,79,82–84,87,88,92,98,104,106–
109,111]

 Demographics 35 43.2%
[31,32,36,38–40,42,48,49,52–54,56,58–61,68,72,77,78,80,81,85,90,96,97,99,101–
103,105,110,112]

 Drug exposures 14 17.3% [31,36,39,46,53,54,61,68,72,78,95,96,101,105]

 Comorbidities 22 27.2% [31,32,36,37,39,46,48,53,54,56,61,63,69,80,81,85,96,99,101,102,110,112]

Statistical considerations

 Explicit consideration of 
temporal constraints 74 91.4% [31,32,34–36,38–46,48–64,66–83,85–87,89–107,110–112]

 Discussion of missing data 6 7.4% [79,84,86,90,99,103]

 Adjustment for multiple testing 20 24.7% [38,51,52,54,59,63,65,68,75,77,78,81,86,87,90,92,98,105,106,108]

*
Note, no studies only accessed spontaneous reports as our inclusion criteria limited the review to studies using EHR data. Abbreviations: 

electronic health record (EHR)

Drug Saf. Author manuscript; available in PMC 2024 December 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Davis et al. Page 31

Ta
b

le
 4

.

Su
m

m
ar

y 
of

 m
et

ho
ds

 e
m

pl
oy

ed
 in

 r
ev

ie
w

ed
 s

tu
di

es
, h

ig
hl

ig
ht

in
g 

ad
va

nt
ag

es
, c

ha
lle

ng
es

, a
nd

 o
pp

or
tu

ni
tie

s 
to

 a
dv

an
ce

 E
H

R
-b

as
ed

 s
af

et
y 

si
gn

al
 

id
en

tif
ic

at
io

n.

M
et

ho
do

lo
gi

ca
l c

la
ss

 a
nd

 
sp

ec
if

ic
 e

xa
m

pl
es

A
dv

an
ta

ge
s

C
ha

lle
ng

es
 a

nd
 li

m
it

at
io

ns
O

pp
or

tu
ni

ti
es

 fo
r 

ad
va

nc
in

g 
si

gn
al

 id
en

ti
fi

ca
ti

on
 

in
 E

H
R

 d
at

a

D
is

pr
op

or
tio

na
lit

y 
an

al
ys

is
• 

R
ep

or
tin

g 
od

ds
 r

at
io

s
• 

Pr
op

or
tio

na
l r

ep
or

tin
g 

ra
tio

• 
G

am
m

a 
Po

is
so

n 
sh

ri
nk

er
• 

E
m

pi
ri

ca
l B

ay
es

 g
eo

m
et

ri
c 

m
ea

n
• 

R
el

at
iv

e 
ri

sk
s 

an
d 

ra
te

 r
at

io
s

• 
M

et
ho

ds
 f

am
ili

ar
 in

 p
ha

rm
ac

ov
ig

ila
nc

e 
pr

og
ra

m
s 

us
in

g 
sp

on
ta

ne
ou

s 
re

po
rt

s
• 

Si
m

pl
e 

an
d 

fa
st

 to
 im

pl
em

en
t

• 
M

an
y 

m
et

ho
ds

 c
ou

ld
 b

e 
co

nd
uc

te
d 

vi
a 

di
st

ri
bu

te
d 

an
al

ys
es

• 
C

ur
re

nt
 im

pl
em

en
ta

tio
ns

 o
ft

en
 n

eg
le

ct
 to

 c
on

tr
ol

 
fo

r 
co

nf
ou

nd
in

g 
or

 c
on

tr
ol

 f
or

 a
 li

m
ite

d 
nu

m
be

r 
of

 
co

nf
ou

nd
er

s
• 

C
ur

re
nt

 im
pl

em
en

ta
tio

ns
 ty

pi
ca

lly
 d

o 
no

t c
on

tr
ol

 
fo

r 
m

ul
tip

le
 te

st
in

g 
or

 u
se

 c
on

se
rv

at
iv

e 
m

ul
tip

le
 

te
st

in
g 

ad
ju

st
m

en
t

• 
In

cr
ea

se
d 

us
e 

of
 p

ro
pe

ns
ity

 s
co

re
 m

et
ho

ds
 c

ou
ld

 
le

ve
ra

ge
 th

e 
br

ea
dt

h 
of

 E
H

R
 d

at
a 

to
 a

dd
re

ss
 h

ig
h-

di
m

en
si

on
al

 c
on

fo
un

di
ng

• 
D

is
tr

ib
ut

ed
 a

na
ly

se
s 

ac
ro

ss
 h

ea
lth

 s
ys

te
m

s 
co

ul
d 

le
ve

ra
ge

 la
rg

er
 d

at
as

et
s 

w
hi

le
 p

ro
te

ct
in

g 
pr

iv
ac

y
• 

Si
m

pl
e 

ap
pr

oa
ch

es
 c

ou
ld

 p
ro

vi
de

 in
iti

al
 s

cr
ee

ni
ng

 
an

d 
hy

po
th

es
is

 g
en

er
at

io
n 

to
 m

ot
iv

at
e 

m
or

e 
de

ta
ile

d,
 

co
m

pl
ex

 in
ve

st
ig

at
io

ns

R
eg

re
ss

io
n-

ba
se

d 
m

od
el

in
g

• 
L

og
is

tic
 r

eg
re

ss
io

n
• 

Po
is

so
n 

re
gr

es
si

on
• 

C
ox

 r
eg

re
ss

io
n

• 
M

et
ho

ds
 f

am
ili

ar
 in

 b
io

m
ed

ic
al

 
ap

pl
ic

at
io

ns
, i

nc
lu

di
ng

 p
ha

rm
ac

ov
ig

ila
nc

e 
an

d 
ph

ar
m

ac
oe

pi
de

m
io

lo
gy

• 
Si

m
pl

e 
an

d 
fa

st
 to

 im
pl

em
en

t
• 

M
an

y 
m

et
ho

ds
 c

ou
ld

 b
e 

co
nd

uc
te

d 
vi

a 
di

st
ri

bu
te

d 
an

al
ys

es
• 

C
ur

re
nt

 im
pl

em
en

ta
tio

ns
 ty

pi
ca

lly
 c

on
tr

ol
 f

or
 

so
m

e 
co

nf
ou

nd
in

g

• 
R

eq
ui

re
s 

pa
ra

m
et

er
iz

at
io

n 
of

 a
ll 

as
so

ci
at

io
ns

, 
in

cl
ud

in
g 

in
te

ra
ct

io
ns

 a
nd

 n
on

lin
ea

ri
ty

• 
C

ur
re

nt
 im

pl
em

en
ta

tio
ns

 o
ft

en
 c

on
tr

ol
 f

or
 a

 li
m

ite
d 

nu
m

be
r 

of
 p

at
ie

nt
 c

ha
ra

ct
er

is
tic

s
• 

C
ur

re
nt

 im
pl

em
en

ta
tio

ns
 ty

pi
ca

lly
 d

o 
no

t c
on

tr
ol

 
fo

r 
m

ul
tip

le
 te

st
in

g 
or

 u
se

 c
on

se
rv

at
iv

e 
m

ul
tip

le
 

te
st

in
g 

ad
ju

st
m

en
t

• 
In

cr
ea

se
d 

us
e 

of
 r

eg
ul

ar
iz

at
io

n 
co

ul
d 

le
ve

ra
ge

 th
e 

br
ea

dt
h 

of
 E

H
R

 d
at

a 
to

 a
dd

re
ss

 h
ig

h-
di

m
en

si
on

al
 

co
nf

ou
nd

in
g

• 
D

is
tr

ib
ut

ed
 a

na
ly

se
s 

ac
ro

ss
 h

ea
lth

 s
ys

te
m

s 
co

ul
d 

le
ve

ra
ge

 la
rg

er
 d

at
as

et
s 

w
hi

le
 p

ro
te

ct
in

g 
pr

iv
ac

y
• 

R
ec

en
t a

dv
an

ce
s 

(e
.g

., 
D

D
I-

W
A

S)
 h

ig
hl

ig
ht

 
po

te
nt

ia
l f

or
 h

yp
ot

he
si

s-
fr

ee
 d

is
co

ve
ry

 a
pp

lic
at

io
ns

M
ac

hi
ne

 le
ar

ni
ng

 a
nd

 d
at

a 
m

in
in

g
• 

R
an

do
m

 f
or

es
ts

• 
N

eu
ra

l n
et

w
or

ks
• 

C
lu

st
er

in
g

• 
Te

m
po

ra
l p

at
te

rn
 d

is
co

ve
ry

• 
A

ss
oc

ia
tio

n 
ru

le
s

• 
T

re
e-

ba
se

d 
Sc

an
 S

ta
tis

tic
 

(T
re

eS
ca

n)

• 
D

at
a-

dr
iv

en
 a

pp
ro

ac
h 

to
 le

ar
ni

ng
• 

Su
pe

rv
is

ed
 a

nd
 u

ns
up

er
vi

se
d 

m
et

ho
ds

 e
na

bl
e 

hy
po

th
es

is
-d

ri
ve

n 
an

d 
di

sc
ov

er
y 

ap
pl

ic
at

io
ns

• 
M

et
ho

ds
 a

dd
re

ss
 h

ig
h-

di
m

en
si

on
al

 c
on

fo
un

di
ng

 
by

 e
na

bl
in

g 
no

nl
in

ea
r 

as
so

ci
at

io
ns

 a
nd

 
in

te
ra

ct
io

ns

• 
Fe

w
 s

tu
di

es
 h

av
e 

co
ns

id
er

ed
 th

e 
sa

m
e 

al
go

ri
th

m
s,

 
pr

ov
id

in
g 

lim
ite

d 
ev

id
en

ce
 o

f 
co

m
pa

ra
tiv

e 
pe

rf
or

m
an

ce
• 

H
ig

he
r 

co
m

pl
ex

ity
 a

nd
 c

om
pu

ta
tio

n 
co

st
s 

co
m

pa
re

d 
to

 r
eg

re
ss

io
n 

an
d 

di
sp

ro
po

rt
io

na
lit

y 
an

al
ys

es
• 

L
im

ita
tio

ns
 o

f 
m

od
el

 in
te

rp
re

ta
bi

lit
y 

an
d 

co
nc

er
ns

 
ab

ou
t t

ra
ns

po
rt

ab
ili

ty
 m

ay
 r

ed
uc

e 
ac

ce
pt

an
ce

 b
y 

ke
y 

st
ak

eh
ol

de
rs

• 
D

at
a 

hu
ng

ry
 m

et
ho

ds
 m

ay
 r

eq
ui

re
 la

rg
er

 d
at

as
et

s 
th

an
 s

im
pl

er
, t

ra
di

tio
na

l a
pp

ro
ac

he
s

• 
Su

pp
or

t u
se

 o
f 

th
e 

br
ea

dt
h 

of
 E

H
R

 d
at

a 
to

 a
dd

re
ss

 
hi

gh
-d

im
en

si
on

al
 c

on
fo

un
di

ng
 a

nd
 in

te
gr

at
io

n 
of

 
di

ve
rs

e 
da

ta
 ty

pe
s

• 
O

pp
or

tu
ni

tie
s 

to
 le

ve
ra

ge
 in

he
re

nt
 h

ie
ra

rc
hi

ca
l 

re
la

tio
ns

hi
ps

 a
m

on
g 

cl
in

ic
al

 c
on

ce
pt

s 
th

ro
ug

h 
ap

pr
oa

ch
es

 s
uc

h 
as

 T
re

eS
ca

n
• 

O
pp

or
tu

ni
tie

s 
fo

r 
hy

po
th

es
is

-f
re

e 
di

sc
ov

er
y 

ap
pl

ic
at

io
ns

Se
qu

en
tia

l a
na

ly
se

s
• 

St
at

is
tic

al
 p

ro
ce

ss
 c

on
tr

ol
• 

Se
qu

en
tia

l p
ro

ba
bi

lit
y 

ra
tio

 te
st

s

• 
D

es
ig

ne
d 

fo
r 

ac
tiv

e,
 o

ng
oi

ng
 s

ur
ve

ill
an

ce
• 

E
vi

de
nc

e 
fr

om
 e

xi
st

in
g 

st
ud

ie
s 

th
at

 p
ro

sp
ec

tiv
e 

m
on

ito
ri

ng
 m

ay
 id

en
tif

y 
ad

ve
rs

e 
ev

en
t s

ig
na

ls
 in

 
E

H
R

 d
at

a 
ea

rl
ie

r 
th

an
 in

 s
po

nt
an

eo
us

 r
ep

or
tin

g 
da

ta
• 

M
ul

tip
le

 te
st

in
g 

co
nt

ro
l i

s 
in

he
re

nt
 in

 m
et

ho
d 

de
si

gn
s 

an
d 

pa
ra

m
et

er
iz

at
io

ns
• 

E
xi

st
in

g 
m

et
ho

ds
 s

up
po

rt
 c

on
fo

un
di

ng
 

ad
ju

st
m

en
t a

nd
 b

in
ar

y 
or

 c
on

tin
uo

us
 o

ut
co

m
es

• 
Fe

w
 s

tu
di

es
 c

ur
re

nt
ly

 e
xp

lo
re

 th
es

e 
m

et
ho

ds
 f

or
 

E
H

R
-b

as
ed

 s
ig

na
l i

de
nt

if
ic

at
io

n 
or

 im
pl

em
en

t t
he

se
 

m
et

ho
ds

 p
ro

sp
ec

tiv
el

y 
in

 E
H

R
s

• 
Pr

os
pe

ct
iv

e 
su

rv
ei

lla
nc

e 
re

qu
ir

es
 d

if
fe

re
nt

 d
at

a 
in

fr
as

tr
uc

tu
re

 th
an

 tr
ad

iti
on

al
 r

et
ro

sp
ec

tiv
e 

an
al

ys
es

• 
N

ew
 p

ro
to

co
ls

 a
nd

 s
ta

ff
in

g 
re

so
ur

ce
s 

w
ou

ld
 b

e 
re

qu
ir

ed
 f

or
 r

es
po

nd
in

g 
to

 s
ur

ve
ill

an
ce

-b
as

ed
 a

le
rt

s 
an

d 
fo

llo
w

in
g-

up
 o

n 
po

te
nt

ia
l s

af
et

y 
si

gn
al

s

• 
Pr

io
r 

ap
pl

ic
at

io
ns

 in
 c

la
im

s-
ba

se
d 

da
ta

 p
ro

vi
de

 
ro

ad
m

ap
 f

or
 w

id
er

 im
pl

em
en

ta
tio

n 
in

 E
H

R
s

• 
E

na
bl

e 
on

go
in

g 
m

on
ito

ri
ng

 f
or

 s
ig

na
ls

 s
ta

rt
in

g 
at

 
dr

ug
 a

pp
ro

va
l

• 
D

as
hb

oa
rd

s 
m

on
ito

ri
ng

 m
ul

tip
le

 p
ot

en
tia

l d
ru

g 
sa

fe
ty

 s
ig

na
ls

 c
ou

ld
 p

ro
vi

de
 in

si
gh

t a
nd

 e
ar

ly
 

w
ar

ni
ng

• 
Fr

eq
ue

nc
y 

of
 e

va
lu

at
io

n 
ca

n 
be

 m
at

ch
ed

 to
 e

ve
nt

 
an

d 
ex

po
su

re
 v

ol
um

es
 f

or
 e

ac
h 

dr
ug

A
bb

re
vi

at
io

ns
: e

le
ct

ro
ni

c 
he

al
th

 r
ec

or
d 

(E
H

R
)

Drug Saf. Author manuscript; available in PMC 2024 December 12.


	Abstract
	Introduction
	Methods
	Data sources and search strategy
	Study selection
	Data extraction

	Results
	Study designs
	Analytic Methods
	EHR Components
	Integration with Spontaneous Reporting Data
	Statistical considerations

	Discussion
	Analytic Methods
	Data
	Temporal and Statistical Considerations
	Other Limitations of Current Work
	Recommendations

	Conclusion
	References
	Fig 1
	Fig 2
	Fig 3
	Table 1.
	Table 2.
	Table 3.
	Table 4.

