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Using discrete fractional calculus, a wide variety of physiological phenomena with various time 
scales have been productively investigated. In order to comprehend the intricate dynamics and 
activity of neuronal processing, we investigate the behavior of a slow-fast FitzHugh-Rinzel (FH-
R) simulation neuron that is driven by physiological considerations via the Caputo fractional 
difference scheme. Taking into account the discrete fractional commensurate and incommensurate 
mechanisms, we speculate on the numerical representations of various excitabilities and persistent 
activation reactions brought about by the administered stimulation. Furthermore, the outcomes 
concentrate on the variability of several time scales, encompassing mixed-mode oscillations and 
mixed-mode bursting oscillations formed by the canard occurrence. It is confirmed that the fast-
analyzing component, which was isolated within this framework with the slow-fast evaluation 
process, is bistable, and the criterion for bistability is added as well. The architecture appears 
to be bistable based on this. The pertinent factors for examining time evolution, Poincaré maps, 
the bifurcation configuration of the system and chaos illustrations involve the inserted power 
stimulation using commensurate and incommensurate fractional-order values. We investigate 
the canards adjacent to the folded platforms using the folded node hypothesis. Additionally, we 
are employing mixed-mode oscillations to illustrate the homoclinic bifurcation and the resulting 
chaotic trajectory. Also, we determine our research results by computing the Lyapunov spectra 
as an expression of time in conjunction with the dominating factor ℑ to demonstrate the chaotic 
behavior in a particular domain. Besides that, we estimate intricacy employing the sample entropy 
(Sp-En) approach and ℂ0 complexity. The emergence of chaos within the hypothesized discrete 
fractional FH-R system is verified using the 0 −1 criterion. Ultimately, we examine the prospective 
implications of mixed-mode oscillations in neuroscience and draw the inference that our observed 
outcomes could potentially be of great relevance. As a result, the predicted intricacy decreases 
while applying it to non-horizontal significant models. Finally, the simulation’s characteristic 
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phases, canards and mixed model oscillations are achieved statistically with the assistance of 
varying fractional orders.

1. Introduction

Over the past 20 years, chaotic discrete-time algorithms (maps) have drawn a lot of interest because of their extensive implications 
for oversight and image enhancement [1,2]. These representations behave chaotically in this way because their respective positions 
heavily rely on the initial configuration of the framework. The investigations and practical implications of fractional discrete calculus 
have garnered greater enthusiasm within the scientific field in the last decade. Because of their limitless memory, fractional discrete 
algorithms offer a significant boost versus their associated object alternatives. This provides for greater modeling adaptability and 
increases the probability of chaotic behavior. Furthermore, fractional visualizations are more applicable in neural networks (NNs) 
since they typically show a chaos pattern throughout an assortment of fractional orders (FOs) (see [3–6]). Recently, Abbas and Nazar 
[7] expounded the fractional analysis of unsteady MHD Jeffrey flow over an infinite vertical plate in the presence of Hall current. 
Abbas et al. [8] contemplated the effect of chemical reaction on MHD Casson natural convection flow over an oscillating plate in 
porous media using Caputo fractional derivative. Abbas et al. [9] explored the soret effect on MHD Casson fluid over an accelerated 
plate with the help of constant proportional Caputo fractional derivative. For more details see [10,11] and the reference cited therein. 
A number of studies have tried to expand the robustness hypothesis underlying classical discrete calculus to encompass the fractional 
region while developing a comprehensive foundation for discrete fractional (DF) calculus [12–15]. To the greatest extent of our 
comprehension, just a handful of FO chaotic visualizations have been identified and suggested throughout research, for example 
[16–20], because DF calculus remains an emerging area.

Furthermore, continuous-time fractional mathematical algorithms have prospective uses in an assortment of domains, including 
image processing, memory reconstruction, identification of patterns, and algorithmic optimization. An extensive number of re-
searchers have recently focused on studying these systems’ evolution. Nevertheless, discretizing continuous-time connections is crucial 
while they serve as instruments for technological device processing, creativity, or replication. This is especially true if continuous-
time connections are constructed for these purposes. The continuous fractional model’s counterpart’s discretization process cannot 
maintain its unpredictable nature (see [21]). Consequently, it is essential to inquire about the structure of DF NNs. A few studies 
examining the unpredictable functioning of DF NN simulations have currently been published [22]. For example, Chen et al. [23]
examined the chaos in DFO NNs with application to image encryption. Wu and Baleanu [24] contemplated the Jacobian matrix 
algorithm for Lyapunov exponents of the discrete fractional maps. Gafel and Rashid [25] contemplated the evolutionary approach for 
solving fractional difference recurrent NN systems. However, according to the most effective of our abilities, not much investigation 
has been executed to examine the evolving behaviors of DF NNs using discrete commensurate FO and incommensurate FOs [26,27]. 
The overwhelming majority of the previously discussed DF NN inquiry focuses on algorithms via commensurate or incommensurate 
FOs. Thus, it is interesting to explore the chaotic nature of NN models founded on fractional differences involving commensurate and 
incommensurate variations in conjunction with associated statistical assessment.

Multi-timescale networks are frameworks that have numerous time dimensions [28–30]. Multi-timescale behavior is a ubiqui-
tous trait shared by all three biological entities, particularly in neuronal representations. Due to the considerable differences in the 
progression of components in the multi-timescale mechanism, the setup is generally termed the slow-fast mechanism. The slow-fast 
behavioral structure of the fractional NNs and its properties, which typically show elliptical exploding, are covered extensively in 
this piece of information. It presents the method by which interconnected difference equations featuring slow-fast time frames in 
biological structures can produce diverse rhythms. We examine a single significant component within this structure; spiking changes 
happen while it fluctuates significantly. Certain neural pathways spontaneously fire at various points. One such phenomenon can 
be identified as exploding, and it is characterized by intervals of recurrent activation intermingled by inactive or motionless inter-
vals. Certain neural pathways spontaneously fire at various moments, a phenomenon known as overflowing, which is composed of 
reserved or empty intervals between bursts of recurrent activation. It gradually exhibits an eruption throughout the dynamic seg-
ments, recovers gradually within the inactive stage, and becomes positioned to commence an additional explosion of shocks [31,32]. 
The central nervous system’s fundamental communication of knowledge technique hinges on electrical signals across the neuronal 
barrier; whenever these potentials elevate beyond a threshold, the network produces exploding and firing bursts through a variation 
in administered stimulus. Through the application of multiple nonlinear structures involving interconnected difference equations (as 
well as varying empirical characteristics), it is possible to theoretically represent the repetitive behavior of cellular potential [33,34].

Mixed-mode oscillations (M-M-Os) are among the particularly fascinating, complicated, and unpredictable fluctuations that arise 
through neuronal electromagnetic responses [35,37]. The alternate paths, which combine tiny and huge intensity rhythms, are re-
ferred to as M-M-Os. M-M-Os have complicated repetitive oscillations with distinct peaks and troughs of diverse intensities occurring 
during every loop. The hypothesis of M-M-Os involving canard algorithms has drawn a lot of attention from scholars lately [38,39]. 
This type of M-M-O emerges thanks to its gradual-speed characteristics. Persistent current stimulation is provided to the neuron, 
which results in diverse flashing sequences capable of illustrating the functioning of the framework with respect to the reactions of 
the neurons. By applying instability concept and stabilization assessment, we are able to determine the enriched explosions involv-
ing M-M-Os/M-M-B-Os that are possibly triggered via the canard phenomena. M-M-B-Os: bursting can occasionally be seen in small 
2

intensity recurrent vibrations, the occurrence of M-M-Os and M-M-B-Os [40] might be either regular or irregular. Because of this, 
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Nomenclature

FH-R FitzHugh-Rinzel
Sp-En Sample Entropy
Ap-En Approximate Entropy
ℂ0 Complexity
FOs Fractional orders
DF Discrete fractional

NNs Neural networks
DFO Discrete fractional order
M-M-Os Mixed mode oscillations
M-M-B-Os Mixed mode bursting oscillations
FHN FitzHugh-Naguma
MLE Maximum Lyapunov exponents

the representation is appealing, and the findings offer intriguing and possible implications for the context of both gradual and quick 
excitability realistic processes. The explosion behaviors of M-M-B-Os include bursts that include the greatest intensity oscillations as 
well as small intensity vibrations. A burst involving procedures is created in the architecture by the formation of M-M-B-Os.

However, the formation of small-intensity vibrations occurs when pathways pass close to a crumple and is caused by foldable 
strangeness. We must investigate the dynamics around foldable discontinuities and canard phenomena in order to comprehend the 
processes underlying M-M-Os. The Van der Pol equation’s recurrent responses that continue adjacent to the repulsive weak continuum 
are represented by the canard phrase, which initially appeared [40]. The existence of canard phases within an enormously tiny range 
of attributes is their main characteristic. We refer to this stage of change as the “canard eruption” [41]. The canard systems connecting 
the gradual manifolds that embrace and repel are generated. Canard evolves robustly in nonlinear networks including multiple delayed 
variables, including small intensity rhythms approaching the fold discontinuity [42,43]. The essential margin within our slow-fast 
mechanism possesses a cubic structure. When M-M-Os and M-M-B-Os are generated in the network, the supercritical Hopf-type 
bifurcation proceeds to a canard detonation, which causes shattering. M-M-Os are commonly seen at canard points, where slow-fast 
dynamics alternate between insignificant oscillations (near a stable manifold) and huge adventures (escape from the manifold).

Meanwhile, it has been discovered in earlier research that the behavior of M-M-Os resembles the neural and behavioral actions of 
inhalation or transpiration [44]. M-M-Os are additionally caused by disturbance and instability at various intervals in time [45,46]. 
It has been identified in the electrocardiac and oxycontin signaling pathways [47]. We reveal the fact that canard occurrence via 
nonlinear structure techniques can be used to analyze the development of M-M-Os [48,49]. The process underlying M-M-O fluctuations 
was investigated by Krupa et al. [50] employing a 2D representation of catecholamine neurons in the mammalian neural stems. 
The production of M-M-O according to the connected FitzHugh-Nagumo (FHN) framework was examined in [51]. A conductance-
dependence simulation [49] was implemented to analyze the processes underlying these formations. M-M-Os may reportedly induce 
a sort of overflowing that appears in a biophysical representation of hypothalami lactotroph [52] and it is additionally perceived in 
constellation neurons of the lateral entorhinal cortical. The effects of current stimuli on calcium pathway resistance variations and a 
factor associated with the proportion of liberated cytoplasmic calcium levels in an activated simulation that influences neurological 
behavior that leads to the evolution via pseudo-plateau overflowing to M-M-Os have been studied lately [53]. The investigation by 
Bertram et al. [54] demonstrated that M-M-Os and M-M-B-Os could be additionally seen within the pancreatic beta-cell system. In 
addition to such investigations and endeavors, which include individual and coupling biophysics simulations, experts additionally 
delve into the electrical activity characteristics and aggregated behaviors of neurons interconnected in an intricate network framework 
[55,56]. Pre-Botzinger intricate systems, a cortical area in animals that regulates inhalation, were found to contain M-M-Os [37]. 
Authors [57] investigated the formation of M-M-Os and rhythmic activity in an inconspicuous ensemble of disseminated connected 
Izhikevich neurons against a background of various capabilities. Xie et al. [58] just published a simulation study on the dual hybrid 
mode and twofold canard interactions with regard to the FH-R framework.

Adopting the aforesaid propensity, the behavior of a single neuronal layer is illustrated in this research employing the appropriate 
FH-R model [59,60] using the Caputo-type difference operator, which is a variation of the conventional FH/N framework. We describe 
the differences between the FHN approach and the underlying interactions. It displays intriguing characteristics related to elevated 
production and physiological excitability using commensurate and incommensurate FOs. According to [61,62], the algorithm is un-
able to produce a variety of sophisticated activation themes, particularly those observed in cortex-derived neurons using conventional 
techniques. In particular, in cortical code, the interaction involving firing and exploding reveals an intriguing physiological function 
in addition to a noteworthy phenomenon using commensurate FO values. The next factor causes explosive fluctuations and permits a 
repeated passage over the Hopf bifurcation. Both of the additional parameters are dependent on the initial contingent, 𝐮1. The inten-
sity of the gradually altering electric stimulation and the fluctuations of the gradually shifting component determine the changeover 
stages via the incommensurate FO phenomenon. It can generate various activation patterns that are autonomous within a prede-
termined set of specifications. Both conceptual and computational examinations of the mathematical representation are conducted. 
Analysis is performed on the numerous characteristic configurations that match the significantly varied and unpredictable features 
of FOs. One intriguing aspect of curvilinear exploding is that the rhythms could possess an insignificant intensity when they occur, 
and the periodicity of activity spikes beginning and ending is nonzero [63]. This kind of explosion has been detected successfully 
within the trifacial muscles that regulate the articulation of mice’s jaws [64,65]. Furthermore, an analogous neuron with a variety of 
rhythms may operate in extensive systems with discrete patches. Researchers have examined the desingularized structure using the 
blowup approach. At this point, we investigate the FH-R framework using the geometric singleton disturbance technique convoluted 
with the DFO approach. We provide a variety of M-M-Os and M-M-B-Os that have not been thoroughly studied before. The current 
3

research can be considered advantageous as a beginning demonstration to explore broad-term NN structures by applying gradual 
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and quick representations. We determine the bifurcations of various brusting/inactive areas contingent on setting collections. The 
simulation can generate inactive or fluctuating practices that can be captured via actual brain cells. A fascinating conventional rep-
resentation of slow-fast interactions involves the 3D structure [42,57]. It also displays the canard occurrence that is confirmed by the 
Shilnikov bifurcation hypothesis [66,67] and illustrates substances that transition tremendously from an unalterable to a seemingly 
unpredictable manifold’s for an extensive span in the convoluted framework timescale [51]. At this point, we demonstrate whether 
such rhythms and the development of M-M-Os and M-M-B-Os differentiate from various explosions having biophysically significant 
implications [68]. In addition to a thorough exploration of the dynamic attributes, a variety of FOs are employed to examine certain 
fundamental evolving features illustrated via this visualization, including Poincaré maps, bifurcation illustrations, and the maximum 
Lyapunov exponent (MLE) for the commensurate and incommensurate scenarios. Moreover, we provide sample entropy (Sp-En) eval-
uation, 0 − 1 assessment and ℂ0 complexities values in order to statistically quantify intricacy and verify the existence of chaos in 
the suggested FH-R model.

The article is composed as follows: We provide a few fundamental foundational ideas for DFC in Section 2. In Section 3, we 
provide an explanation of the hyperactive system’s behavior, which displays the electric potential identified as spiking alongside 
certain essential information for the formation of the suggested framework. A detailed analysis of the DF FH-R model is constructed 
to qualitatively investigate the dynamics of the existence of canard in M-M-Os and M-M-B-Os, respectively. In Section 4, we employ the 
foldable network concept to show the canard response adjacent to the folding platforms, providing numerical findings, including both 
commensurate and incommensurate cases. Chaos, bifurcation schematics, phase equilibrium representation, and Lyapunov exponent 
evaluation aid in this investigation. We also explain the way the framework can experience the chaos of the Shilnikov diversity. 
In addition, we present our primary discoveries, which include a detailed discussion of the FH-R algorithm’s dynamic expansion 
associated with the bifurcation outcomes. In Section 5, we quantify intricacy and confirm the occurrence of chaos in the representation 
using the ℂ0 complexities, Sp-En test and 0 − 1 analysis. Lastly, we wrap up the report with a summary of all of the substantial 
discoveries we found during the investigation.

2. Preliminaries

Here, the fundamental concepts in mathematics and theories needed for the article’s quantitative evaluation are presented. Assume 
that ℕ𝑎̃ =

{
𝑎̃, 𝑎̃ + 1, 𝑎̃ + 2, ...

}
such that 𝑎̃ ∈ℝ.

Definition 2.1. ([12]) Assume that there is a mapping  ∶ℕ𝑎̃ ↦ℝ, then the 𝜒 -th order fractional sum defined as

Δ−𝜒
𝑎̃  (𝜀) = 1

Γ(𝜒)

𝜀−𝜒∑
𝜈=𝑎̃

(𝜀 − 𝜈 − 1)(𝜒−1) (𝜈), (2.1)

where 𝜀 ∈ ℕ𝑎̃+𝜒 , 𝜒 > 0.

Definition 2.2. ([13]) For 𝜒 > 0 and there is a mapping  ∶ℕ𝑎̃ ↦ℝ, then the Caputo difference defined as

𝑐Δ𝜒
𝑎̃  (𝜀) = Δ−(𝜁−𝜒)

𝑎̃ Δ𝜁 (𝜀)

= 1
Γ(𝜁 − 𝜒)

𝜀−(𝜁−𝜒)∑
𝜈=𝑎̃

(𝜀 − 𝜈 − 1)(𝜁−𝜒−1)Δ𝜁 (𝜈), (2.2)

where 𝜁 = [𝜒] + 1 and 𝜀 ∈ℕ𝑎̃+𝜁−𝜒 .

Theorem 2.1. ([17]) Assume that there is a discrete fractional difference system of order 𝜒 is

𝑐Δ𝜒
𝑎̃  (𝜀) = 

(
𝜀 + 𝜒 − 1, (𝜀 + 𝜒 − 1)

)
,

Δ𝜁 (𝜀) = 𝜁 , 𝜌 = ⌈𝜒⌉+ 1, 𝜁 = 0,1,2, ..., 𝜌 − 1, (2.3)

hence the equivalent numerical representation is

 (𝜀) = 0(𝜀) +
1

Γ(𝜒)

𝜀−𝜒∑
𝜈=𝑎̃+𝜌−𝜒

(𝜀 − 𝜈 + 1)(𝜒−1)
(
𝜈 + 𝜒 − 1, (𝜈 + 𝜒 − 1)

)
, 𝜀 ∈ ℕ𝜒+𝜌 (2.4)

having

0(𝜀) =
𝜌−1∑
𝜁=0

(𝜀 − 𝑎̃)(𝜁)

Γ(𝜁 + 1)
Δ𝜁 (𝑎̃). (2.5)

Remark 2.1. Selecting the discrete kernel significance 
𝜀−𝜒∑

𝜈=𝑎̃+𝜌−𝜒
(𝜀 − 𝜈 + 1)(𝜒−1) as Γ(𝜀−𝜈)

Γ(𝜒)Γ(𝜀−𝜈−𝜒+1) considering the prerequisites that 
4

𝑎̃ = 0 and 𝜈 + 𝜒 = 𝚥, the numerical formulae for the case where 𝜒 ∈ (0, 1) could potentially identified as
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 (𝜀) =  (0) + 1
Γ(𝜒)

𝜀∑
𝚥=1

Γ(𝜀 − 𝚥 + 𝜒)
Γ(𝜀 − 𝚥 + 1)


(
𝚥 − 1, (𝚥 − 1)

)
. (2.6)

Lemma 2.1. ([69]) For 𝜒 ∈ (0, 1) and the fractional difference scheme can be expressed as follows:

Δ𝜒Ξ(𝜀 + 1 − 𝜒) = ΛΞ(𝜀), 𝜚2 = 0,1,2, ... , (2.7)

where Λ ∈ℝ𝜅×𝜅 . Assume that

 𝜒 =
{

𝜐 ∈ℂ ∶ |𝜐| <(2cos( | arg(𝜐)|− 𝜋

2 − 𝜒

))𝜒

𝑎𝑛𝑑 | arg(𝜐)| > 𝜒𝜋

2

}
, (2.8)

where, arg(.) symbolizes the arguments for the result. Whenever all 𝜐 ∈ 𝜒 , then the mechanism (2.7) is systematically stable and whenever 
𝜐 ∈ ⧵𝑐𝑙( 𝜒 ) given certain 𝜐 therefore the mechanism (2.7) is unstable.

Remark 2.2. A wide variety of interpretations exist for DFO differences, including the Riemann-Liouvile and Caputo formulations. 
Of these, the Caputo fractional difference characterization is the most widely utilized in real-world situations for the explanations 
listed below. On the contrary, any constant’s Caputo difference equals zero, and its existential significance is more obvious than that 
of other differences. However, the configuration of the initial settings of processes offered by the Caputo difference is identical to 
that of integer-order processes. In light of the aforementioned, this work adopts the Caputo fractional difference.

3. Construction of the slow–fast FH-R model

In what follows, we address the electrical processes of cortical cellular potential throughout a significant assortment of factor 
settings by focusing on the complex mechanisms of the responsive FH-R mechanism. The interactively diverse characteristics of 
the representation can be analyzed with computing efficiency and extensive significance. The subsequent collection of ordinary 
differential equations [59,60] characterizes the temporal progression of the computational framework as⎧⎪⎪⎨⎪⎪⎩

𝑑𝐮1
𝑑𝜉

= 𝐮1 −
𝐮31
3 − 𝐮2 + 𝐮3 +ℑ,

𝑑𝐮2
𝑑𝜉

= 𝜌(𝜍1 + 𝐮1 − 𝜍2𝐮2),
𝑑𝐮3
𝑑𝜉

= 𝜇(𝜍3 − 𝐮1 − 𝜍4𝐮3),

(3.1)

where 𝐮1, 𝐮2, and 𝐮3 stand for the protective membrane power, recuperation factor and gradual power variation, respectively. 
Component characteristics are 𝜍1, 𝜍2, 𝜍3, 𝜍4, 𝜌 and 𝜇. The value ℑ quantifies the value of the exogenous infused voltage. Smaller 
factors, denoted by 𝜌 and 𝜇, control the rate at which the gradual process characteristics, 𝐮2 and 𝐮3, fluctuate. We choose 𝜇 = 𝜌2

[50] to create a framework containing three unique time frames, i.e., an explosive level that includes two slowing categories, the 
miniature factor 𝜇, that occurs in 0 < 𝜇 ≪ 1. We consider the relatively small component 𝜍2 > 0 [70]. The factor quantity 𝜍3 in the FH-
R paradigm and its value 𝜍1 in the two-dimensional FHN paradigm coincide [60]. Additionally, there is a generally consistent period 
of exploding, but the time frames for bursting are greater whenever we diminish the significance of 𝜍1 . The interburst frequencies 
shorten, and recurrent exploding transforms into acute surging as 𝜍1 approaches. The slow-fast compartments of the structure define 
it; the initially presented two formulae show the standard slow-fast FHN approach [42,51], which only produces firing. “Superslow” 
is indicated by the attribute 𝐮3. More specifically, it results in barely noticeable intensity fluctuations and significant amplification 
surges in elliptical explosions given a predetermined collection of settings [60]. Following the quiescent period of exploding, it 
produces fluctuations with insignificant strength that diminish and increase slowly rather than being quickly dampened. Initially, we 
consider a neuron’s membrane to be at the moment of blasting, and as the regulatory system being controlled changes cautiously, it 
exhibits spiking creation. We suggest a few fundamental explanations of canard and M-M-Os, which are noted within our observations 
of the oscillating structure transformation. The slow-fast mechanism is capable of being represented numerically [61] as:⎧⎪⎨⎪⎩

𝜘̇1(𝜉) =  (𝜘1,𝜘2),

𝜘̇2(𝜉) = 𝜌(𝜘1,𝜘2),
(3.2)

where 𝜘̇1(𝜉) =  (𝜘1, 𝜘2) (gradual oscillation) and 𝜘̇2(𝜉) = 𝜌(𝜘1, 𝜘2) (rapid firing). The quickly moving factors are represented by 𝜘1 ∈
ℝ𝜚1 and the intermediary elements by 𝜘2 ∈ℝ𝜚2 , where 0 < 𝜌 ≪ 1 indicates the time frame separating parameter. The phase mechanism 
that comprises these interactions represents the singularity constraint that corresponds to 𝜌 = 0, and the gradually increasing factor 
𝜘2 exhibits an element in the confining structure [71,72].

In the context of a slow-fast nonlinear framework, when the time dimension separating factor 𝜌 = 0, the threshold exponentially, 
represented by  =

{
(𝜘1, 𝜘2) ∈ℝ𝜚1 ×ℝ𝜚2 ∶  (𝜘1, 𝜘2) = 0

}
correlates to each multilayered structure’s stationary points.

Definition 3.1. Assuming the majority of the fixed points in 1 exhibit hyperbolicity conditions of the underlying framework, that 
5

is, Δ𝜘1
 possesses no eigenvalues containing zero real components, then any portion of 1 ⊂ , which constitutes the critical expo-
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nentially, is designated as instinctively hyperbolic. In terms of dynamics, while eigenvalues are determined to comprise a greater or 
lesser real portion, 1 is said to be attracted (or repelled), whereas if they have neither, 1 constitutes a saddle.

Definition 3.2. ([51,72]) Let us assume the following: there is certainly one eigenvalue containing zero real component in the 
collection of points belonging to c the fact that it does not constitute transcendental points, that is., Δ𝜘1

 as

2 =

{
(𝜘1,𝜘2) ∈  ∶

⎛⎜⎜⎝
𝑟𝑎𝑛𝑘

(
Δ𝜘1

 (𝜘1,𝜘2)
)
= 𝜚1 − 1,

𝓁
(
Δ2
𝜘1
 (𝜘1,𝜘2)

)
(𝜈, 𝜈) ≠ 0,

𝓁
(
Δ𝜘2

 (𝜘1,𝜘2)
)
≠ 0,

⎞⎟⎟⎠
}

,

where constructed eigendirections of Δ𝜘1
 are indicated by 𝓁 and 𝜈. The folded portion positions of the essential region  are 

displayed in 2. The threshold considerably  is selectively divided into portions that possess various stabilization by 2 .

Definition 3.3. When a slow-fast dynamical approach 𝜘̇1(𝜉) =  (𝜘1, 𝜘2) or 𝜘̇2(𝜉) = 𝜌(𝜘1, 𝜘2), remains inside 𝜃(𝜌) of a repulsive 
extend that forms the vital exponentially during an amount of time, i.e., 𝜃(1) depending on the medium time frame interactions 
𝜏 = 𝜌, it is referred to being a canard.

Investigating the desingularized mechanism, which may be derived by considering delayed interactions by employing a specific 
temporal development, is necessary. The shape of the fold positions as well as the fixed positions of the slow-fast structure are 
surrounded by 𝜃(𝜌) environment that contains the stabilizing endpoints of the desingularized network. By implementing 𝜏 = 𝜌𝜉 to 
modify the expanded temporal category, we derive the slow-fast interactions in the following way:{

𝜌𝜘̇1(𝜉) =  (𝜘1,𝜘2),
𝜘̇2(𝜉) = (𝜘1,𝜘2),

(3.3)

The simplified structure, which can be defined on the threshold exponentially, , is the exceptional restriction that describes 𝜌 = 0. 
It reflects the algebraic differential equations [50] correlating to the delayed component 𝜘̇2(𝜏) = (𝜘1, 𝜘2). The fixed points of the 
restricted interactions and the entire framework are identical. The differentiation  (𝜘1 , 𝜘2) = 0 using (3.3) regarding to 𝜏 yields the 
resulting formulation, which we employ to figure out the desingularized structure [71,72] as:

𝐃𝜘1


𝑑𝜘1
𝑑𝜏

+𝐃𝜘2


𝑑𝜘2
𝑑𝜏

= 0. (3.4)

It is presently feasible to determine the transpose value for the cofactor matrix of 𝐃𝜘1
 simply by dividing each component of (3.4)

by adj(𝐃𝜘1
 ) as

−det(𝐃𝜘1
 )

𝑑𝜘1
𝑑𝜏

= 𝑎𝑑𝑗(𝐃𝜘1
 )(𝐃𝜘2

 )(𝜘1,𝜘2), (3.5)

where the unique framework, often known as folding indications, is represented by det(𝐃𝜘1
 ) = 0. Within various indications, the 

usual presence and distinctiveness arguments are invalid. This is the process of obtaining the desingularized structure as

⎧⎪⎨⎪⎩
𝑑𝜘1
𝑑𝜏

= 𝑎𝑑𝑗(𝐃𝜘1
 )(𝐃𝜘2

 )(𝜘1,𝜘2),
𝑑𝜘2
𝑑𝜏

= −det(𝐃𝜘1
 )(𝜘1,𝜘2).

(3.6)

When 𝜚1 = 1, adj(𝐃𝜘1
 ) = 1 and 𝐃𝜘1

 = det(𝐃𝜘1
 ) = ℧

℧𝜘1
are scalars. In order to derive the component domain outflows associated 

with the simplified interactions resulting that the desingularized framework, one needs to change the pattern of the circulation of the 
desingularized mechanics on the freshly formed branches wherein det(𝐃𝜘1

 ) > 0, contingent on the newly introduced time duration 
𝑑𝜏 = − det(𝐃𝜘1

 )𝑑𝜏 . Currently, both kinds of stationary locations within the generalized configuration (3.6) are referred to as folding 
absurdities and standard anomalies, respectively, and we characterize them according to what follows:

Definition 3.4. ([51,72]) Assuming the fixed location that represents the desingularized mechanism (3.6) is equivalent to a point of 
reference of the simplified network and lies within the proximity 𝜃(𝜌) of the balance phase of the whole interactions, then such a 
point is referred to as being a conventional strangeness. The singularity’s requirements are expressed as

(𝜘1,𝜘2) = 0, det(𝐃𝜘1
 ) ≠ 0, 𝑎𝑑𝑗(𝐃𝜘1

 )(𝐃𝜘2
 )(𝜘1,𝜘2) ≠ 0.

Definition 3.5. ([51,72]) Assuming a folding region of the simplified phase coincides with the balance point from the desingularized 
framework, it is referred to as a foldable absurdity. The following are the prerequisites to achieve a foldable singularity:
6

det(𝐃𝜘1
 ) = 0, 𝑎𝑑𝑗(𝐃𝜘1

 )(𝐃𝜘2
 )(𝜘1,𝜘2) = 0.
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3.1. Analysis of the DF FH-R model

In the recent investigation, we implement the Caputo difference operator to create a DFO FH-R model, extending the integer-order 
FH-R model. The FH-R’s first-order difference can be represented by the following procedure:

⎧⎪⎨⎪⎩
Δ𝐮1(𝜂 + 1) = 𝐮1(𝜂) −

𝐮31(𝜂)
3 − 𝐮2(𝜂) + 𝐮3(𝜂) +ℑ,

Δ𝐮2(𝜂 + 1) = 𝜌
(
𝜍1 + 𝐮1(𝜂) − 𝜍2𝐮2(𝜂)

)
,

Δ𝐮3(𝜂 + 1) = 𝜇
(
𝜍3 − 𝐮1(𝜂) − 𝜍4𝐮3(𝜂)

)
,

(3.7)

where the commonly used difference operator is represented by Δ𝐮1(𝜂) = 𝐮1(𝜂 + 1) − 𝐮1(𝜂). A FO difference system is created in the 
previously stated procedure by replacing 𝜂 by 𝜓 + 𝜑 − 1 and Δ by substituting the Caputo difference operator 𝑐Δ𝜒

𝜉
, then

⎧⎪⎪⎨⎪⎪⎩
𝑐Δ𝜒

𝜉
𝐮1(𝜓) = 𝐮1(𝜓 + 𝜒 − 1) −

𝐮31(𝜓+𝜒−1)
3 − 𝐮2(𝜓 + 𝜒 − 1) + 𝐮3(𝜓 + 𝜒 − 1) +ℑ,

𝑐Δ𝜒
𝜉
𝐮2(𝜓) = 𝜌

(
𝜍1 + 𝐮1(𝜓 + 𝜒 − 1) − 𝜍2𝐮2(𝜓 + 𝜒 − 1)

)
,

𝑐Δ𝜒
𝜉
𝐮3(𝜓) = 𝜇

(
𝜍3 − 𝐮1(𝜓 + 𝜒 − 1) − 𝜍4𝐮3(𝜓 + 𝜒 − 1)

)
,

(3.8)

where 𝜓 ∈ ℕ𝜁+1−𝜒 , 𝜁 is the starting value and 𝜒 ∈ (0, 1] indicates the FO. Systems generated employing the Caputo formulation 
implement non-FO starting indications, but those formed using the Riemann-Liouville formulation necessitate FO initial conditions. 
This is the primary benefit of using the Caputo fractional difference formulation versus the Riemann-Liouville operator. Investigation 
on the subjective evaluation of such structures is continuing, and it is essential to understand whether the non-local nature of DF 
operators significantly affects network feedback, resulting in peculiar, unpredictable actions not noticed in continuous time-dependent 
processes.

Currently, considering fractional sum formulas for the commensurate FO, we determine the numerical solutions defined in Theo-
rem 2.1 as⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐮1(𝜓) = 𝐮1(0) +
𝜓∑

𝜈=1

Γ(𝜓−𝜈−1+𝜒)
Γ(𝜒)Γ(𝜓−𝜈)

(
𝐮1(𝜈) −

𝐮31(𝜈)
3 − 𝐮2(𝜈) + 𝐮3(𝜈) +ℑ

)
,

𝐮2(𝜓) = 𝐮2(0) +
𝜓∑

𝜈=1

Γ(𝜓−𝜈−1+𝜒)
Γ(𝜒)Γ(𝜓−𝜈)

(
𝜌
(
𝜍1 + 𝐮1(𝜈) − 𝜍2𝐮2(𝜈)

))
,

𝐮3(𝜓) = 𝐮3(0) +
𝜓∑

𝜈=1

Γ(𝜓−𝜈−1+𝜒)
Γ(𝜒)Γ(𝜓−𝜈)

(
𝜇
(
𝜍3 − 𝐮1(𝜈) − 𝜍4𝐮3(𝜈)

))
, 𝜓 = 1,2, ... .

(3.9)

Furthermore, the incommensurate version of the DFO FH-R system is defined as follows:⎧⎪⎪⎨⎪⎪⎩
𝑐Δ𝜒1

𝜍1
𝐮1(𝜓) = 𝐮1(𝜓 + 𝜒1 − 1) −

𝐮31(𝜓+𝜒1−1)
3 − 𝐮2(𝜓 + 𝜒1 − 1) + 𝐮3(𝜓 + 𝜒1 − 1) +ℑ,

𝑐Δ𝜒2
𝜍1
𝐮2(𝜓) = 𝜌

(
𝜍1 + 𝐮1(𝜓 + 𝜒2 − 1) − 𝜍2𝐮2(𝜓 + 𝜒2 − 1)

)
,

𝑐Δ𝜒3
𝜍1
𝐮3(𝜓) = 𝜇

(
𝜍3 − 𝐮1(𝜓 + 𝜒3 − 1) − 𝜍4𝐮3(𝜓 + 𝜒3 − 1)

)
,

(3.10)

where 𝜓 ∈ℕ𝜍1+1−𝜒𝜄
, 𝜍1 is the starting value and 𝜒𝜄 ∈ (0, 1], 𝜄 = 1, 2, 3 indicates the FO.

In view of Theorem 2.1, the incommensurate FO framework for the FH-R model evaluates the computational process for the 
aforesaid framework as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐮1(𝜓) = 𝐮1(0) +
𝜓∑

𝜈=1

Γ(𝜓−𝜈−1+𝜒1)
Γ(𝜒1)Γ(𝜓−𝜈)

(
𝐮1(𝜈) −

𝐮31(𝜈)
3 − 𝐮2(𝜈) + 𝐮3(𝜈) +ℑ

)
,

𝐮2(𝜓) = 𝐮2(0) +
𝜓∑

𝜈=1

Γ(𝜓−𝜈−1+𝜒2)
Γ(𝜒2)Γ(𝜓−𝜈)

(
𝜌
(
𝜍1 + 𝐮1(𝜈) − 𝜍2𝐮2(𝜈)

))
,

𝐮3(𝜓) = 𝐮3(0) +
𝜓∑

𝜈=1

Γ(𝜓−𝜈−1+𝜒3)
Γ(𝜒3)Γ(𝜓−𝜈)

(
𝜇
(
𝜍3 − 𝐮1(𝜈) − 𝜍4𝐮3(𝜈)

))
, 𝜓 = 1,2, ... ,

(3.11)

where the ICs are denoted by 𝐮1(0), 𝐮2(0) and 𝐮3(0). This FH-R mechanism is completely new and possesses “memory ef-
fects.” The results indicate that the factors 𝐮1(𝜓), 𝐮2(𝜓) and 𝐮3(𝜓) are interconnected with respect to each preceding component 
𝐮11(0), 𝐮12(0), ..., 𝐮1(𝜓 − 1), 𝐮21(0), 𝐮22(0), ..., 𝐮2(𝜓 − 1) and 𝐮31(0), 𝐮32(0), ..., 𝐮3(𝜓 − 1). This can be observed in (3.10).

4. Dynamical analysis of FH-R system with external stimulus

The present portion intends to examine the stability and chaos of the previously proposed DFO FH-R models (3.9) and (3.11) in 
two scenarios: commensurate and non-commensurate FOs, respectively. A variety of mathematical approaches will be employed in 
this study, including phase visualization in multidimensional approximations and bifurcation diagrams. Furthermore, we will assess 
7

whether chaos exists in the analysis of FH-R models (3.9) and (3.11), respectively.



Heliyon 10 (2024) e40659S. Rashid, I. Ali, S. Sultana et al.

Fig. 1. Surfaces of the critical manifold Ψ𝑠̄
0 for the commensurate FO FH-R framework (3.9) having standard components (a) ℑ = 0.25, (b) ℑ = 0.375. (c) Plot of the 

manifold Ψ𝑠̄
0 for relaxing threshold process with 𝐮∗1 = 1, using identical assumptions that are shown in Fig. 1 (a).

4.1. Commensurate fractional order

Here, the layering structure that corresponds to (3.9) and implements the relatively sluggish interactions (3.2) is initially derived 
in this subsection. In this instance, the slow component is 2D, whereas, as indicated by the two separate pairs carriers 𝜘1 ≡ 𝐮1 and 
𝜘2 ≡ (𝐮2, 𝐮3), indicating the fast component. The gradually increasing 𝐮2 and extremely sluggish 𝐮3 parameters in scheme (3.8) have 
two distinct time frames, 𝜌 and 𝜌2, respectively. After viewing the slower factors (𝐮2 𝑎𝑛𝑑 𝐮3) as parameters within the exceptional 
framework (4.1), the level framework is derived by assuming the exceptional restriction 𝜌 = 0 in the framework (3.8). The subsequent 
collection of FO difference equations describes the layer structure as

⎧⎪⎪⎨⎪⎪⎩
𝑐Δ𝜒

𝜉
𝐮1(𝜓) = 𝐮1(𝜓 + 𝜒 − 1) −

𝐮31(𝜓+𝜒−1)
3 − 𝐮2(𝜓 + 𝜒 − 1) + 𝐮3(𝜓 + 𝜒 − 1) +ℑ =Υ(𝐮1,𝐮2,𝐮3),

𝑐Δ𝜒
𝜉
𝐮2(𝜓) = 0,

𝑐Δ𝜒
𝜉
𝐮3(𝜓) = 0.

(4.1)

With mechanism (3.1) currently configured with the sluggish time frame 𝜏1 = 𝜌𝜉, we get 𝑐Δ𝜒
𝜏1

𝜏1 = 𝜌 𝑐Δ𝜒
𝜏1

𝜉. The process (4.1) can be 
articulated as⎧⎪⎪⎨⎪⎪⎩

𝜌 𝑐Δ𝜒
𝜏1
𝐮1(𝜓) = 𝐮1(𝜓 + 𝜒 − 1) −

𝐮31(𝜓+𝜒−1)
3 − 𝐮2(𝜓 + 𝜒 − 1) + 𝐮3(𝜓 + 𝜒 − 1) +ℑ,

𝑐Δ𝜒
𝜏1
𝐮2(𝜓) =

(
𝜍1 + 𝐮1(𝜓 + 𝜒 − 1) − 𝜍2𝐮2(𝜓 + 𝜒 − 1)

)
,

𝑐Δ𝜒
𝜏1
𝐮3(𝜓) = 𝜌

(
𝜍3 − 𝐮1(𝜓 + 𝜒 − 1) − 𝜍4𝐮3(𝜓 + 𝜒 − 1)

)
.

(4.2)

By assigning 𝜌 = 0 in (4.2), the equivalent simplified mechanism is produced. Therefore, the simplified process is capable of being 
represented as⎧⎪⎪⎨⎪⎪⎩

0 = 𝐮1(𝜓 + 𝜒 − 1) −
𝐮31(𝜓+𝜒−1)

3 − 𝐮2(𝜓 + 𝜒 − 1) + 𝐮3(𝜓 + 𝜒 − 1) +ℑ,

𝑐Δ𝜒
𝜏1
𝐮2(𝜓) =

(
𝜍1 + 𝐮1(𝜓 + 𝜒 − 1) − 𝜍2𝐮2(𝜓 + 𝜒 − 1)

)
,

𝑐Δ𝜒
𝜏1
𝐮3(𝜓) = 0.

(4.3)

It additionally carries out algebraic difference equations. Knowing the functioning of the entire structure (3.2) employing com-
ponents (4.1) and (4.3) with 𝜌 > 0 is the most important objective of researching the patterned singularity disturbances theory. 
The behavior of the significant membrane Ψ0 is described by the algebraic formula of the aforementioned framework, which could 
potentially be written as follows:

Ψ0 =
⎧⎪⎨⎪⎩
{
(𝐮1,𝐮2,𝐮3) ∶  (𝐮1,𝐮2,𝐮3) = 0

}
,{

(𝐮1,𝐮2,𝐮3) ∶ 𝐮1(𝜓 + 𝜒 − 1) −
𝐮31(𝜓+𝜒−1)

3 − 𝐮2(𝜓 + 𝜒 − 1) + 𝐮3(𝜓 + 𝜒 − 1) +ℑ = 0
}

,

=
{
(𝐮1,𝐮2,𝐮3) ∶ 𝐮2(𝜓 + 𝜒 − 1) = 𝐮1(𝜓 + 𝜒 − 1) −

𝐮31(𝜓 + 𝜒 − 1)
3

+ 𝐮3(𝜓 + 𝜒 − 1) +ℑ
}

. (4.4)

The geometry that defines tremendously Ψ0 is comparable to the configuration with the perceptible functioning, which describes the 
8

crucial network (see Fig. 1(a-b)). It additionally provides the component technique’s assortment of fixed points (4.1). The factor 𝐮3
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within Ψ0 is implemented as a constant since we can compute Δ𝜒
𝜏1

using (4.4). The folding perspectives (Φ±) are the regions wherein 
Ψ0 no longer exhibits its typical hyperbolicity. Consequently, Φ± splits Ψ0 over three categories:

Ψ0 = Ψ𝜍1 ,−
0 ∪ Φ− ∪Ψ𝑠̄

0 ∪ Φ+ ∪Ψ𝜍1 ,+
0 ,

where the magnetizing components of Ψ0 are represented as Ψ𝜍1 ,−
0 and Ψ𝜍1 ,+

0 and are specified as

Ψ𝜍1 ,−
0 ∪ Ψ𝜍1 ,+

0 =
{
(𝐮1,𝐮2,𝐮3) ∈ Ψ0 ∶ Δ𝐮1 < 0

}
=
{
(𝐮1,𝐮2,𝐮3) ∈ Ψ0 ∶ 𝐮1 < −1 𝑎𝑛𝑑 𝐮1 > 1

}
.

Furthermore, the repulsive component of Ψ𝑠̄
0 is denoted by Ψ0 is described as

Ψ𝑠̄
0 =
{
(𝐮1,𝐮2,𝐮3) ∈ Ψ0 ∶ Δ𝐮1 > 0

}
=
{
(𝐮1,𝐮2,𝐮3) ∈ Ψ0 ∶ −1 < 𝐮1 < 1

}
.

Fig. 1(a-b) shows the folded contours (℧+ and ℧−) within the commensurate FO FH-R mechanism. We additionally sketch the 
multidimensional components Ψ0 having a pattern in a multidimensional (𝐮1, 𝐮2, 𝐮3) region for improved visualization (see Fig. 1(c)). 
The overlapping patterns on the reverse side are ℧+ and on the contrary, they are ℧−. The attractive panels of Ψ0 reside on the exterior 
left portion of ℧+ and the reverse edge of ℧−. The paths pursue swift movement across the absorbing layer Ψ𝜍1 ,−

0 , where they can 
intersect the folding path ℧+ at an abrupt position Φ+. At this moment, the pathways climb through the enticing layer, approaching 
the folded accordance ℧− and then leap back across the capturing strip Ψ𝜍1 ,+

0 closest to the collapse position Φ− . The procedure 
can be represented as Φ+ ↦ Ψ𝜍1 ,−

0 ↦ Φ− ↦ Ψ𝜍1 ,+
0 . The recesses that comprise Ψ0 are represented by the values of 𝜙− and 𝜙+ (see 

Fig. 1(a)), which are generated by meeting all of the requirements outlined in the specification of folded elements.

According to [36], considering a single faster and several sluggish components of such criteria, it decreases simply 𝑐Δ𝐮1
|||Φ± = 0, 

𝑐Δ𝜒
𝐮1Δ

−(𝜁−𝜒)
𝐮1 

|||Φ± ≠ 0, and 𝑐Δ𝜒
𝐮1Δ

−(𝜁−𝜒)
𝐮2 

|||Φ± possesses complete rank one. The mechanism (3.8) has foldable indicates of 𝐮1 =

±1 if the initial circumstance, 𝑐Δ𝐮1
|||Φ± = 0, is achieved. The subsequent criteria generate 𝑐Δ𝜒

𝐮1Δ
−(𝜁−𝜒)
𝐮1 

|||Φ± = 2 𝑜𝑟 − 2 and 
𝑐Δ𝜒

𝐮1Δ
−(𝜁−𝜒)
𝐮2 

|||Φ± = (−1, 1) having total rank a particular one, respectively. The mathematical formulas  (𝐮1 , 𝐮2, 𝐮3) = 0, regard-

ing the value of 𝜏1 have been decomposed in order to represent the gradual circulation as a function of the rapid factor 𝐮1 . This yields 
Δ𝐮1Δ𝜏1

𝐮1 + Δ𝐮2Δ𝜏1
𝐮2 + Δ𝐮3Δ𝜏1

𝐮3 = 0 or (1 − 𝐮21)Δ𝜏1
𝐮1 − Δ𝜏1

𝐮2 = 0.
By replacing the default setting of Δ𝜏1

𝐮2 in (4.3), we get

(
1 − 𝐮21(𝜙 + 𝜒 − 1)

)
Δ𝜏1

𝐮1 =
(

𝜍1 + 𝐮1(𝜙 + 𝜒 − 1) − 𝜍2

(
𝐮1(𝜙 + 𝜒 − 1) −

𝐮31(𝜙 + 𝜒 − 1)
3

+ 𝐮3(𝜙 + 𝜒 − 1) +ℑ
))

.

To convert the previous formula into a delayed-fast structure, one can typically add an inefficient module. Following a folding 
trajectory, the consequent 2D framework is unique. By reducing the temporal frame as 𝑐Δ𝜒

𝜍1
𝜏1 = −

(
1 − 𝐮21(𝜙 + 𝜒 − 1)

)
𝑐Δ𝜒

𝜍1
𝜏2, it is 

possible to desingularize the gradual motion around the folding positions 𝐮∗1 = ±1. Thus, the desingularized simplified scheme, which 
is represented as follows

⎧⎪⎨⎪⎩
𝑐Δ𝜒

𝜍1
𝐮1(𝜙) = −

(
𝜍1 + (1 − 𝜍2)𝐮1(𝜙 + 𝜒 − 1) − 𝜍2

(
−

𝐮31(𝜙+𝜒−1)
3 + 𝐮3(𝜙 + 𝜒 − 1) +ℑ

))
,

𝑐Δ𝜒
𝜍1
𝐮3(𝜙) = −𝜌

(
1 − 𝐮21(𝜙 + 𝜒 − 1)

)(
𝜍3 − 𝐮1𝜙 + 𝜒 − 1 − 𝜍4𝐮3(𝜙 + 𝜒 − 1)

)
,

(4.5)

confined to Ψ0. The collapsed absurdity is able to be categorized by the terms flipped concentration, pressed node, or collapsed 
saddle by considering the variety of eigenvalues present in the desingularized simplified scheme Jacobian matrix at this point in 
time. The foldable discontinuities, which are located on the overlapping edges ℧± , are obtained as the state of stead-state with the 
structure (4.5). There are two different kinds of absurdities within the desingularized simplified scheme (4.5): foldable singularities 
and standard discrepancies. The distinct stability that remains on the folded point ℧+ is 𝐮2 =

𝜍1+1
𝑏̄

having 𝐮∗1 = 1 and 𝐮∗3 =
𝜍1
𝜍2
−(2 +3ℑ). 

In the same manner, the solitary point of stability along the folding path ℧− is 𝐮2 =
𝜍1−1

𝑏̄
having 𝐮∗1 = −1 and 𝐮∗3 =

𝜍1
𝜍2

− (2 − 3ℑ). 
The desingularized simplified scheme’s pushed extremes include two such stability positions, (4.5). By substituting the formulae 

𝜍3 − 𝐮1(𝜙 + 𝜒 − 1) − 𝜍4𝐮3(𝜙 + 𝜒 − 1) = 0 as well as 
(

𝜍1 + (1 − 𝜍2)𝐮1(𝜙 + 𝜒 − 1) − 𝜍2

(
−

𝐮31(𝜙+𝜒−1)
3 + 𝐮3(𝜙 + 𝜒 − 1) +ℑ

))
= 0 for 𝐮1

and 𝐮3, respectively, the conventional equilibria solution can be established. The desingularized simplified scheme’s Jacobian matrix 
enveloping the wrapped discontinuity is provided by

 =

(
−1 𝜍2

2𝜌𝐮∗1(𝜍3 − 𝐮∗1 − 𝜍4𝐮∗3) 0

)
. (4.6)

Currently, we are taking 𝜇1 and 𝜇2 to represent the intrinsic values of  for (4.5) over the position (𝐮∗1 , 𝐮∗3) that is constrained to Ψ0. 
Next, based upon the foldable discontinuities, we categorize the reference point (𝐮∗1 , 𝐮∗3) as described 𝜇1𝜇2 > 0, 𝜇1,2 ∈ ℝ signifies a 
9

folded node, and 𝜇1𝜇2 > 0 with 𝐼𝑚𝑔(𝜇1,2) ≠ 0 indicates the folded focus.
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Matrix (4.6) demonstrates the eigenvalues 𝜇1,2 = −0.856601 ± 0.887345𝐢 and 𝜇3,4 = −0.44785 ± 0.567892𝐢. For 𝜒 = 0.7, we have (
2 cos

( | arg(𝜇1,2)|−𝜋

1.3

))0.7
= 1.3985677 and 

(
2 cos

( | arg(𝜇3,4)|−𝜋

1.3

))0.7
= 1.4110981. Therefore, criterion |𝜇| < (2 cos( | arg(𝜇)|−𝜋

1.3

))𝜒

has been met by (3.8) and (4.5). Furthermore, | arg(𝜇)| > 𝜒𝜋

2 is valid. Two conjugate complex eigenvalues are present; therefore, it is 
necessary to confirm the subsequent requirements using Lemma 2.1. Consequently, it is apparent that the prerequisite | arg(𝜇)| > 𝜒𝜋

2
meets the criteria with the result | arg(𝜇1,2,3,4)| < 1.210. Mechanism (4.5) is exceptionally steady in the equilibrium phase, as shown 
in Fig. 2 (a-c) and quantitative assessment confirms the reliability criterion given in Lemma 2.1.

In an architecture that displays M-M-Os, the extending network and foldable saddle-node transitions are typically observable 
[50]. In this instance, we will investigate various M-M-Os and exploding instabilities in mixed-mode phenomena in the framework 
of foldable nodes.

When 𝜌 > 0 is appropriate to accommodate the slow-fast scheme (3.9), the subsequent requirements are met:

(i) If 𝜗 =
𝜇𝐮2
𝜇𝐮1

< 1 given a folding cluster is taken into consideration, therefore the singularity canard 𝛿𝑟 , sometimes known as “the 
powerful canard,” necessarily impacts towards a peak performance canard 𝛿𝑟 .

(ii) The single canard 𝛿𝑚, sometimes known as “the inadequate canard,” exists whenever 𝜗 − 1 ∈ ℕ. Furthermore, it disturbs a 
maximized canard 𝛿𝜀, wherein 𝛿𝑚 as well as 𝛿𝜀 stand for basic canards. Assume that within a foldable component, 𝜚2 > 0
represents a value that yields 𝜗 ≠ 1∕(2𝜚2 + 2) as well as 2𝜚2 + 3 < 𝜗 < 2𝜚2 + 1. Following that, perhaps 𝜚2 additional extreme 
canards, designated as supplementary canards, exist along with 𝛿𝑚,𝜀 .

(iii) There are currently no optimum canards regarding foldable concentration.

Numerous underlying foldings and stretchings of randomness are shown via homoclinic bifurcation in Fig. 3(a-d) for various ℑ
and 𝜒 = 0.7. We present the data supporting M-M-Os having a pathway leading to homoclinic instability. The requirement for the 
framework’s presence of simply one valid and two intricate corresponding components has been quantitatively deduced (4.6).

The framework’s (3.9) equilibrium boundaries are determined as 𝐮∗2 = (𝐮∗1 + 𝜍1)∕𝜍2, 𝐮∗3 = (𝜍3 − 𝐮∗1)∕𝜍4 and 𝐮∗1
3 − 3𝐮∗1𝜈 = 𝑚, where 

𝜈 = 𝜍2𝜍4−𝜍4−𝜍2
𝜍2𝜍4

and 𝑚 = 3ℑ𝜍2𝜍4−3𝜍1𝜍4+3𝜍3𝜍2
𝜍2𝜍4

, respectively. The structure of (3.9) is capable of an optimal number of three equilibria of 

balance determined by the form of the exponent of the cubic formula: 𝐮∗1
3 − 3𝐮∗1𝜈 − 𝑚 = 0. The aforementioned cubic polynomial’s 

characteristic is provided by −
(
4
(

𝜍1
𝜍2

)3
+ 27

(
3𝜍3 +

3𝜍1
𝜍2

− 3ℑ
)2)

< 0 for 𝜍2 > 0 and 𝜍4 = 1, it demonstrates that a single, real-neutral 

situation prevails. After addressing the cubic formula aforesaid, we get 𝐮∗1 =
3
√
8


− 

3
√
8
, where  =

(
81𝜍1𝜍22 − 81𝜍32𝜍3 − 81𝜍32ℑ +(

(81𝜍1𝜍22 − 81𝜍32𝜍3 − 81𝜍32ℑ)2 + 2916𝜍32

)1∕2)1∕3
. Currently, we may acquire the variational matrix 𝕁 produced by linearizing the 

framework (3.8) adjacent to its particular neutral position (𝐮∗1 , 𝐮∗2 , 𝐮∗3) as

𝕁(𝐮∗1) =
⎛⎜⎜⎜⎝
1 − 𝐮∗1

2 −1 1

𝜌 −𝜌𝜍2 0

−𝜌2 0 −𝜌2

⎞⎟⎟⎟⎠ . (4.7)

The matrix that represents 𝕁’s characteristic polynomial is supplied by 𝑃1(𝜁1) = 𝜁31 −
(
1 −𝐮∗1

2 −𝜌𝜍2 −𝜌2
)
𝜁21 +

(
𝜌 −𝜌𝜍2 +𝜍2𝜌2 +𝜍2𝜌𝐮∗1

2 +
𝜌2𝐮∗1

2)𝜁1 + (𝜌3 + 𝜍2𝜌3𝐮∗1
2).

The determinant of 𝕁 can be derived simply as 𝑑𝑒𝑡(𝕁) = −𝜌3(1 + 𝜍2𝐮∗1
2) < 0 signifying that at least one of the roots of 𝑃1(𝜁1)

remains non-positive. The discriminant of the aforesaid system is as follows:

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝜍2𝜌3 − 𝜍2𝜌 + 𝜍2𝜌𝐮∗1
2 + 𝜌 + 𝜌2𝐮∗1

2)2(𝜍2𝜌 + 𝜌2 + 𝐮∗1
2 − 1)2

−4(𝜍2𝜌3𝐮∗1
2 + 𝜌3)(𝜍2𝜌 + 𝜌2 + 𝐮∗1

2 − 1)3

+18(𝜍2𝜌3 − 𝜍2𝜌 + 𝜍2𝜌𝐮∗1
2 + 𝜌 + 𝜌𝐮∗1

2)(𝜍2𝜌3𝐮∗1
2 + 𝜌3)(𝜍2𝜌 + 𝜌2 + 𝐮∗1

2 − 1)

−(𝜍2𝜌3 − 𝜍2𝜌 + 𝜍2𝜌𝐮∗1
2 + 𝜌 + 𝜌2𝐮∗1

2)3 − 27(𝜌3 + 𝜍2𝜌3𝐮∗1
2)2.

(4.8)

Assuming the eigenvalues of 𝕁, assessed from the identical stability in this case, are 𝜆1 = 𝜑 and 𝜆2,3 = 𝜁11 ± 𝐢𝜁12, whereby 𝜑𝜁11 < 0
and 𝜁12 ≠ 0, then the state of equilibrium of the 3D structure (3.9) is referred to as an exponential saddle concentration. Thus, 
two corresponding imaginary eigenvalues, as well as the requirements from Lemma 2.1, must be confirmed. As a result, cri-

terion |𝜆| < (2 cos( | arg(𝜆)|−𝜋

1.3

))𝜒

has been satisfied by (3.8) and (4.5). Also, | arg(𝜆)| > 𝜒𝜋

2 holds. As a consequence, we have (
2 cos

( | arg(𝜆1)|−𝜋

1.3

))0.7
= 1.37001287 and 

(
2 cos

( | arg(𝜆2,3)|−𝜋

1.3

))0.7
= 1.3906780. Therefore, the condition of Lemma 2.1 is satisfied. 

As a result, the criterion | arg(𝜆)| > 𝜒𝜋

2 is fulfilled, and the value | arg(𝜆1,2,3)| < 1.1 is clearly noticeable. Considering a 3D continuous 
10

unsupervised nonlinear process with saddle concentration steady state for DFO 𝜒 , there is a Shilnikov-type homoclinic chaos [73]. If 
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Fig. 2. Bursting reactions and adjustments of the commensurate FO FH-R system (3.8) via predetermined centered factors and the most prevalent value are taken into 
consideration for various FOs (a) 𝜒 = 0.67 and ℑ = 0.13, (b) 𝜒 = 0.75 and ℑ = 0.21, (c) 𝜒 = 0.85 and ℑ = 0.27, (d) 𝜒 = 0.78 and ℑ = 0.36, (e) 𝜒 = 0.80 and ℑ = 0.38,
(f) 𝜒 = 0.81 and ℑ = 0.375, (g) 𝜒 = 0.85 and ℑ = 0.38, (h) 𝜒 = 0.89 and ℑ = 0.395, (i) 𝜒 = 0.93 and ℑ = 0.41, (j) 𝜒 = 0.95 and ℑ = 0.45, (k) 𝜒 = 0.98 and ℑ = 0.49,

(l) 𝜒 = 0.99 and ℑ = 0.36.
11



Heliyon 10 (2024) e40659S. Rashid, I. Ali, S. Sultana et al.

Fig. 3. Phase illustrations of the commensurate FO FH-R system (3.8) in the homoclinic chaos slow-fasts via predetermined centered factors and the most prevalent 
value are taken into consideration for (a) ℑ = 0.13, (b) ℑ = 0.21, (c) ℑ = 0.36, (d) ℑ = 0.395, (e) ℑ = 1.15, (f) ℑ = 2.13, (g) ℑ = 3.13, (h) ℑ = 3.157 for FO 𝜒 = 0.7.

we take the technique’s eigenvalues to be 𝜆1 = 𝜑 and 𝜆2,3 = 𝜁11 + 𝐢𝜁12,3, therefore the scenarios of 𝜑 < 0 as well as 𝜁11 > 0 or 𝜑 > 0
and 𝜁11 < 0 using |𝜑| > |𝜁1| are those under which the Shilnikov chaos occurs (see Fig. 3 (e-h)), whereby paths that lie in the 2D 
eigenspace having 𝜑 < 0 as well as 𝜁1 > 0 pass through the saddle concentration stability in an inverted way following the steady 
eigenvector. We subsequently construct the saddle measure as 𝐮1 =

|||𝜁11∕𝜑
||| and the overall saddle parameters as 𝜑1 = 𝜑 + 𝜁11. When 

𝜑1 < 0 or 𝐮1 < 1, the processes of the structure (3.8) towards the saddle concentration are straightforward, and when 𝜑1 > 0 𝑜𝑟 𝐮1 > 1, 
they are multifaceted [67]. While discussing the sequencing of M-M-Os and M-M-B-Os involving the changeover path to homoclinic 
instability and corresponding explosions in the sluggish and quicker biophysical framework, we concentrate the observations on the 
simplified criterion |𝜑| > |𝜁11| regarding the appearance of Shilnikov chaos. According to the modeling findings [62,63], the com-
ponent settings having variable ℑ are regarded as 𝜍1 = 0.7, 𝜌 = 0.08, 𝜍2 = 0.8, 𝜍3 = −0.775 and 𝜍4 = 1. Initially, we examine the 
steady states prior to the bifurcations to investigate the behavior of the framework. Using the method described in Theorem 2.1, 
mathematical computations of the DFO processes are carried out over extended time spans 𝜉 = 10000, while maintaining time steps 
of Δ𝜉 = 0.05 or less. Important distinctions are not evident in the modeling outcomes obtained using a reduced time step. Employing 
the MatCont software programmer, the bifurcated graph illustrating the dynamics algorithm’s stationary points is calculated [74].

Meanwhile, the framework for commensurate FO (3.9) phase illustrations investigation is demonstrated using the implanted volt-
age stimuli ℑ = 0.375 as the main component (see Fig. 4 (a-i)) for various FOs. Given ℑ, the mechanism possesses a real fixed 
point that falls within a predetermined region. For 𝜒 ∈ (0.65, 1] steady and unsteady equilibria subdivisions are shown, respec-
tively, in Fig. 2 (d-i). For 𝜒 = 0.75, there is simply a single steady state subdivision in the framework (a steady concentration 
node) under smaller electric stimulation values (ℑ < 0.13556). The structure demonstrates barely noticeable fluctuations when 
ℑ = 0.13556, wherein an insignificantly steady limiting process begins and a supercritical Hopf bifurcation (SHB) occurs with DFO 
𝜒 = 0.07, 0.15, 0.21, 0.35, 0.36, 0.55, 0.67, 0.83, 0.87, 0.90.0.95, 1 (see Fig. 5 (a-j)). Considering 0.13556 < ℑ < 3.26674, the stable state 
abruptly disappears and an irregular restriction process attractor occurs in an alternating concentration phase. The architecture fea-
tures an unchanging network for ℑ > 3.99945 with an additional robust concentration network with greater current stimulation 
(3.26674 < ℑ < 3.99945). For 𝜒 = 0.9, recurrent transitioning within the steady and unsustainable limitation cycles can be identi-
fied in the framework, which is a fascinating characteristic (see Fig. 5 (k)). Moreover, the framework (3.9) exhibits an additional 
SHB when ℑ = 3.26674, and an unsteady equilibrium point exhibiting robust limitation processes arises in Fig. 5 (l). A neuron, 
having been in a stable state, is triggered within the parabolic concentration domain and exhibits various forms of temporal and 
unpredictable repetitive behavior. It displays different kinds of M-M-Os and M-M-B-Os. Initially, followed by restorative surges. It 
is noteworthy to observe that as we boost the intensity of ℑ more thoroughly for 𝜒 = 0.95, the framework subsequently settles 
towards a passive condition within the SHB threshold and displays an entirely distinct M-M-Os configuration. Fig. 2 (a-i) displays 
the most extreme and least fluctuations of 𝐮1 via reference to ℑ. The equilibrium situation evolves within an unsteady region at 
ℑ = 0.13342, where commensurate FO (3.9) exhibits various instabilities. The structure’s insignificant and enormously intensified 
fluctuations for 𝜒 = 0.90 (see Fig. 5 (j)), having different frequencies and resonances, are indicated by the dark zone containing 
subdivisions about 𝐮1 = ±1. An intriguing observation has been made: the denseness of the zone adjacent to 𝐮1 = −1 reduces while 
we progressively raise the level of ℑ when reducing the commensurate FO 𝜒 = 0.95. Fig. 4 (a-h) and Fig. 5 (m-p) demonstrates the 
chaotic domains exhibiting the MLEs. When 𝜒 approaches zero, the commensurate FH-R system (3.9) featuring FO demonstrates 
predictable behavior that transitions to chaos as 𝜒 increases gradually. As a result, this demonstrates that the result is a modification 
12

to activation sequences and a reduction in the aggregate amount of small amplitude oscillations in the framework (see Fig. 2 (a-f)). 
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Fig. 4. Phase illustrations of the commensurate FO FH-R system (3.8) via predetermined centered factors and the most prevalent value are taken into consideration 
for various FOs (a) 𝜒 = 0.07, (b) 𝜒 = 0.15, (c) 𝜒 = 0.21, (d) 𝜒 = 0.35, (e) 𝜒 = 0.36, (f) 𝜒 = 0.55, (g) 𝜒 = 0.67, (h) 𝜒 = 0.83, (i) 𝜒 = 0.87, (j) 𝜒 = 0.90, (k) 𝜒 = 0.95
and (l) 𝜒 = 1.

A comparable occurrence is noted for 𝐮1 = 1, but thanks to a declining ℑ level (see Fig. 2 (g-l)). Employing dispersed panels in the 
bifurcation diagram, Fig. 3 (a-f) illustrates the chaotic zone. Furthermore, Fig. 4 (a-l) describe phase illustrations of the commensu-
rate FO FH-R system (3.8) via predetermined centered factors and the most prevalent value are taken into consideration for various 
FOs 𝜒 = 0.07, 𝜒 = 0.15, 𝜒 = 0.21, 𝜒 = 0.35, 𝜒 = 0.36, 𝜒 = 0.55, 𝜒 = 0.67, 𝜒 = 0.83, 𝜒 = 0.87, 𝜒 = 0.90, 𝜒 = 0.95 and 𝜒 = 1. As can be 
demonstrated by examining the MLEs in Fig. 5 (m-p)), the framework transforms into an area of stabilization whenever the 𝜒 rises. 
Figs. 2-5 highlight an intriguing evaluation: the framework reveals an alteration in behavior from a steady helical phase plane to the 
development of complete loops when the 𝜒 is approaching 1.

4.2. Incommensurate fractional order

The objective of this portion is to explore the blasting characteristics displayed by the incommensurate FO FH-R model (3.11)
architecture and the equilibria’s transitioning behavior. To grasp the functioning of the framework comprehensively, the simulation 
is performed in several consecutive situations, each featuring unique factor selections. A vital point of contention is the type of 
equilibrium transition that can be detected in the current state parameters. Regarding all of the primary situations, the research addi-
tionally contrasts the impact of exterior influences. The article that follows is a comprehensive examination regarding the activation 
modifications through the inactive phase through the restriction process domain. The reported M-M-Os and M-M-MB-Os are formed 
up of spiked edges, or a ℘ quantity of small amplitude oscillations, and a 𝓁 quantity of large amplitude oscillations for 𝜒1 = 0.5. 
The framework shows M-M-Os returning to the inactive phase (ℑ = 0.15; see Fig. 6(a-c)) with an estimated ℑ = 0.25. It consists of a 
limited quantity of slowly oscillating waves containing an individual large-amplitude oscillation surge and varying intensities. This 
study includes a 0.001 increment size variation from 0 to 1 for the orders 𝜒1 (as shown in Fig. 6(a-c)), 𝜒2 (as shown in Fig. 6(d-f)) and 
𝜒3 (as shown in Fig. 6(g-i)), respectively. As demonstrated in Fig. 7a, it has a structure of 𝓁℘𝓁℘𝓁℘... = 1𝜚11𝜚11𝜚1 ..., where 𝑚 = 𝜚1 is a 
real bounded integers. When ℑ = 0.255, an analogous class of M-M-Os is additionally detected (see Fig. 6(j-l)). The overall amount of 
small amplitude oscillations reduces while we elevate ℑ and ℘ the periodicity of the explosions varies according to various choices 
of ℘ and 𝓁. With the exception of an extremely restricted domain 𝜒𝜄 ∈ [0.05, 0.80], (𝜄 = 1, 2, 3), where paths demonstrate chaotic 
behavior, Fig. 7(a) clearly shows that the condition of the incommensurate FH-R model (3.11) displays chaotic behavior throughout 
a wide range of 𝜒1. This is demonstrated due to the existence of non-negative MLEs (see Fig. 9 (m)). A while analysis (𝜉 = 10000) 
13

shows, for instance, that the pattern of M-M-Os, at ℑ = 0.20, resembles 110110.... Other configurations are similarly feasible, including 



Heliyon 10 (2024) e40659S. Rashid, I. Ali, S. Sultana et al.

Fig. 5. Bifurcation illustrations of the commensurate FO FH-R system (3.8) via predetermined centered factors and the most prevalent value are taken into consideration 
for various FOs (a-I)𝜒 ∶ 𝜒 = 0.07, 0.15, 0.21, 0.35, 0.36, 0.55, 0.67, 0.83, 0.87, 0.90, 0.95 and 1 and ℑ ∈ [0.09356, 0.55618]. Lyapunov spectra evolution for the 
subsequent system parameters: (m) time-dependent MLE for ℑ = 0.13 and 𝜒 = 0.67, (n) MLE for ℑ = 0.38 and 𝜒 = 0.95, (o-p) MLEs as an expression of ℑ in the 
domains ℑ = [2.0013, 4] and ℑ = [0.45231, 5.2001] for 𝜒 = 0.99, respectively.

various amounts of small intensity oscillations and modifications in the intensity of small cycles (see Fig. 8 (a-d)). The incommen-
surate FO FH-R (3.11) has a nonlinear Hopf bifurcation with ℑ = 0.13465. Within the splitting point of view, a canard detonation is 
induce, while the mechanism approaches its explosive domain when 𝜒2 is altered (see Fig. 9 (a-d)). A canard bursting is detected 
quantitatively at ℑ = 0.15677, wherein an enormous intensity unwinding process emerges involving an internal modification beyond 
cycles exhibiting small intensities.

Additionally, the mechanism exhibits certain intriguing fluctuations, such as M-M-B-Os, which are symmetrical or irregular re-
sponses formed up of two distinct stages (see Fig. 8 (e-h)). Alternately, explosions or numerous substantial surges within the greatest 
intensity oscillations emerge in conjunction with small-intensity disturbances. The patterns of small intensity disturbances reveal 
in excess of a particular number of small intensity disturbances (varying from a single to indefinitely countless). We employ the 
foldable cluster static approach to the slow-fast network to examine the quantity of small intensity disturbances within the M-M-Os, 
which could be influenced by the dominating component ℑ. The disregularized configuration (3.11) at ℑ = 0.201 contains the fol-
lowing eigenvalues at the neutral aspects: (𝐮∗1 = −1, 𝐮∗3 = 0.11772) and (𝐮∗1 = 1, 𝐮∗3 = 1.37891), respectively. It contains eigenvalues 
(−0.9844556, −0.0265734) and (−0.50000 + 𝐢0.37768, −0.50000 + 𝐢0.45678), as 𝜒2 reduces and tends to 0, or when it boosts to 1, 
the states of the incommensurate fractional order FH-R (3.11) exhibits chaotic attractors (see Fig. 7 (b-d)), where the MLEs predict 
14

their greater value (see Fig. 9 (n). Also, it is simple to determine whether the subsequent amplitude is a foldable concentration, 
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Fig. 6. Time-dependent plots of the incommensurate FO FH-R model (3.11) for (a) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.15, (b) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.25,
(c) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.35, (d) (𝜒1 , 𝜒2, 𝜒3) = (1, 1, 0.7) and ℑ = 0.13465, (e) (𝜒1 , 𝜒2 , 𝜒3) = (1, 1, 0.7) and ℑ = 0.15676, (f) (𝜒1 , 𝜒2, 𝜒3) = (1, 1, 0.7) and 
ℑ = 0.201, (g) (𝜒1 , 𝜒2, 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.13465, (h) (𝜒1 , 𝜒2, 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.15676, (i) (𝜒1 , 𝜒2, 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.201, (j)
(𝜒1 , 𝜒2, 𝜒3) = (0.8, 0.75, 0.05) and ℑ = 0.255, (k) (𝜒1 , 𝜒2, 𝜒3) = (0.8, 0.75, 0.05) and ℑ = 0.3523, (l) (𝜒1 , 𝜒2, 𝜒3) = (0.8, 0.75, 0.05) and ℑ = 0.3765.
15
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Fig. 7. Phase profiles of the incommensurate FO FH-R model (3.11) for (a) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.15, (b) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.25,
(c) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.35, (d) (𝜒1 , 𝜒2, 𝜒3) = (1, 1, 0.7) and ℑ = 0.13465, (e) (𝜒1 , 𝜒2 , 𝜒3) = (1, 1, 0.7) and ℑ = 0.15676, (f) (𝜒1 , 𝜒2, 𝜒3) = (1, 1, 0.7) and 
ℑ = 0.201, (g) (𝜒1, 𝜒2 , 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.13465, (h) (𝜒1, 𝜒2 , 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.15676.

Fig. 8. Poincaré plots of the incommensurate FO FH-R model (3.11) for (a) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.15, (b) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.25,
(c) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.35, (d) (𝜒1 , 𝜒2, 𝜒3) = (1, 1, 0.7) and ℑ = 0.13465, (e) (𝜒1 , 𝜒2 , 𝜒3) = (1, 1, 0.7) and ℑ = 0.15676, (f) (𝜒1 , 𝜒2, 𝜒3) = (1, 1, 0.7) and 
ℑ = 0.201, (g) (𝜒1 , 𝜒2, 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.13465, (h) (𝜒1 , 𝜒2, 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.15676, (i) (𝜒1 , 𝜒2, 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.201, (j)
16

(𝜒1 , 𝜒2, 𝜒3) = (0.8, 0.75, 0.05) and ℑ = 0.255, (k) (𝜒1 , 𝜒2, 𝜒3) = (0.8, 0.75, 0.05) and ℑ = 0.3523, (l) (𝜒1 , 𝜒2, 𝜒3) = (0.8, 0.75, 0.05) and ℑ = 0.3765.
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Fig. 9. Bifurcation plots of the incommensurate FO FH-R model (3.11) for (a) (𝜒1 , 𝜒2, 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.15, (b) (𝜒1 , 𝜒2, 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.25,
(c) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 1) and ℑ = 0.35, (d) (𝜒1 , 𝜒2, 𝜒3) = (1, 1, 0.7) and ℑ = 0.13465, (e) (𝜒1 , 𝜒2 , 𝜒3) = (1, 1, 0.7) and ℑ = 0.15676, (f) (𝜒1 , 𝜒2, 𝜒3) = (1, 1, 0.7) and 
ℑ = 0.201, (g) (𝜒1 , 𝜒2, 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.13465, (h) (𝜒1 , 𝜒2, 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.15676, (i) (𝜒1 , 𝜒2, 𝜒3) = (0.3, 0.45, 0.95) and ℑ = 0.201, (j)

(𝜒1 , 𝜒2, 𝜒3) = (0.8, 0.75, 0.05) and ℑ = 0.255, (k) (𝜒1 , 𝜒2, 𝜒3) = (0.8, 0.75, 0.05) and ℑ = 0.3523, (l) (𝜒1 , 𝜒2, 𝜒3) = (0.8, 0.75, 0.05) and ℑ = 0.3765. Also, MLEs depic-
tions for (m) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 0.66) and 𝜉 = 0.25 (n) (𝜒1 , 𝜒2, 𝜒3) = (0.5, 0.67, 0.95) and ℑ = 0.567, (o) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.67, 0.97) and ℑ = [2.14, 4.16], (p)

(𝜒1 , 𝜒2, 𝜒3) = (0.5, 0.67, 0.97) and ℑ = [0.45, 5.15].

whereas the initial represents a foldable component. Throughout the other part of this range, the paths are perfectly consistent, in 
particular for 𝜒2 ∈ [0.25, 0.57]. The resulting behavior highlights the framework’s responsiveness to extremely small variations in the 
incommensurate FO 𝜒2. Regarding the foldable network [36], using ℵ = |𝜂𝜛 |∕|𝜂℘| = 0.02453 < 1 and ℵ−1 = 70.0001 ∉ℕ. In addition, 
ℵ−1 = 70.0001 indicates that there is a 70.0001-fold difference in the strength of the insufficient eigenvector within the dominant one. 
At this point, the principal canards (𝛿℘ and 𝛿𝜛 , respectively) are the weakest and strongest canards that disrupt the highest possible 
canard. Additionally, we get 𝜚2 = 32, which satisfies the variant 2𝜚2 + 3 < 1

ℵ
< 2𝜚2 + 1 and ℵ−1 ≠ 2𝜚2 + 2.

Furthermore, there are also an additional 32 extreme canards, referred to simply as supplementary canards, to be added to the 
existing fundamental canards 𝛿℘,𝜛 . As a result, 34 insignificant strength disturbances maxima are observable close to the collapsed 
terminal. Based on the numerical modeling, we determine 10 brief intensity disturbances, that correspond effectively with our anal-
ysis conclusions (see Fig. 6 (a-l)). When 𝜌 is adequately appropriate, the estimation of the accurate assortment of resonances with 
small amplitudes is accurate. If ℵ ≫

√
𝜌 entails, the precise M-M-Os layout can be considered anticipated [59]. We determine that 

there definitely are no ultimate canards regarding foldable concentration, according to [66]. The total variety of small intensity os-
17

cillations in the M-M-Os decreases while exterior stimulation increases progressively. We discovered M-M-Os of category 1616... at 
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ℑ = 0.25 and we notice an intriguing behavior while we change the dominating factor via ℑ = 0.25 to ℑ = 0.322. The algorithm is 
currently displaying M-M-Os with the pattern 14151415... (see Fig. 6 (d-f)). Subsequently, assuming ℑ = 0.34, 0.35, 0.36 and 0.375, 
respectively, the order of operations shifts to 13141314..., 1313..., 12131213..., and 11121112... (see Fig. 6 (g-i)). These graphs clearly 
show diverse characteristics, which suggest that the configurations of the incommensurate FO FH-R model (3.11) are greatly affected 
by an alteration in FOs (𝜒1, 𝜒2, 𝜒3) (see Fig. 7 (e-f)). For example, the structure’s phases fluctuate between regular and chaotic be-
havior, exhibiting regular twofold bifurcation whenever the value of ℑ extends whenever (𝜒1, 𝜒2, 𝜒3) = (0.5, 1, 1) (see Fig. 8 (e-h)). 
The periodicity structure transforms once more to 11121112... at 1111... at ℑ = 0.31 before transforming to 111111... at ℑ = 0.38 (see 
Fig. 9 (e-h)). Here are two separate cycle stages, which include first, which is characterized by an immense supply of small intensity 
oscillations, immediately following a dual, or two enormous spiking in an identical explosion. This configuration duplicates itself 
for an extensive interval (𝜉 = 10000) until 𝜉 = 0.46. According to Fig. 7 (g-h), the pattern is 2121...., wherein 𝓁 = 2 and ℘ = 1, re-
spectively. Following that, when we boost ℑ = 0.45, the total assortment of large-intensity oscillations 𝓁 rises. The cycle generated 
alternately after 21312131... having 𝓁 = 2, 3 and ℘ = 1 Fig. 9 (i-l). The aggregate number component 𝓁 rises once more, while at 
ℑ = 0.40 (Fig. 6 (a-l)), we see M-M-B-Os containing characteristic 3131... in a comparable fashion. For each of the aforementioned 
scenarios, small intensity oscillations can be seen circling the foldable, demonstrating 𝐮∗1 = −1, as shown by the critically important 
exponential as well as the framework’s period series Fig. 8 (i-l).

Considering an unaltered threshold process, the activation crossover occurs in the mechanism at ℑ = 0.4, or resonant surging for 
(𝜒1, 𝜒2, 𝜒3) = (1, 0.6, 1) in Fig. 9 (a-l). During the halfway point periods, the periodic spiked behavior shifts to swift elevating pattern, 
which subsequently transforms across M-M-Os of an entirely distinct nature. It examines patterns that include a single large intensity 
oscillation containing several small oscillations (like 11121112...); when we boost a threshold of ℑ > 3.5, the pattern approaches 
1717... at ℑ = 3.5 (Fig. 6 (a-b)). When (𝜒1, 𝜒2, 𝜒3) = (0.5, 0.7, 1), a transition trajectory is apparent, with overall pathways continuing 
consistent with relatively small amounts of ℑ and turning chaotic for significant amounts of ℑ ∈ [2.6, 3] (see Fig. 7 (a-h)). The 
foldable cluster for 𝐮∗1 = 1, 𝐮∗3 = −1.74301 as well as the foldable concentration for 𝐮∗1 = −1, 𝐮∗3 = −2.90086 have now appeared in the 
desingularized diminished framework (3.11). As seen in Fig. 6 (i-l), the small amplitude oscillations are formed within the foldable 
component, 𝐮∗1 = 1.

In view of (3.11), we determine ℵ = |𝜂𝜛∕𝜂℘| = 0.026734 < 1 and ℵ−1 = 60.0034 ∉ℕ. In this instance, the predominant eigenvector 
outweighs the less powerful eigenvector by a factor of 60.0034. When 𝜚2 = 27, that is, when there are certainly a maximum of 
27 supplementary canards added to the fundamental canards, the inequality is in acceptable harmony. As a result, there are 29 
small-intensity oscillations surrounding the folding position. According to Fig. 6 (d-f), the mechanism is effectively simply seven small-
intensity oscillations, which is within the prediction’s range. After that, as ℑ increases even more, it enters the inactive domain. While 
we modify the intake potential stimulation, ℑ, we display the changes in the striking layouts for both separate settings corresponding 
to the temporal duration factor, 𝜌. In addition, Fig. 9 (a-l) displays the bifurcation diagram and the MLE that correlate to it when the 
values of 𝜒3 are changed throughout the interval of 0 and 1. At this point, 𝜒1 = 𝜒2 = 1 is maintained to preserve the incommensurate 
ordering. The bifurcation visualization illustrates the fact that M-M-O processes are present within the transition from cyclic to chaotic 
regimes (see Fig. 7 (a-h)). By providing various repetitive transitions to Farey patterns, the M-M-Os are observable. We see the M-M-O 
crossover stages utilizing the Farey algorithm. When we change the prevalent factor ℑ, the incommensurate FO FH-R algorithm (3.11)
displays a distinct series of recurring M-M-Os in addition to core and supplementary M-M-Os. This particular pattern for recurrent 
M-M-Os is designated as the Farey pattern [66], meaning whenever the regulating factor progressively approaches homoclinity, it 
resembles 10 ↦∞1 ↦ℑ1 ↦ 1𝑚 ↦ 1∞. While ∞1 represents an extended dominant spiked or repetitive resonances using a crossover 
from a moderate intensity cycle occurring the first time in the entire operational domain, 10 signifies the big intensity restriction 
periods in the temporal region regarding dominant firing (see Fig. 6 (g-i)). After then, it moves to M-M-B-Os and M-M-Os that have 
distinct values of 𝓁 and ℘, either periodic or sporadic. One significant intensity fluctuation accompanied by a countably plenty of 
inconsistent lower intensity fluctuations constitutes homoclinic chaos authentication, or 1∞ (see Fig. 7 (a-d)). The Farey pattern 
shown in this instance is 1𝜚1 ↦ ...110... ↦ ...16... ↦ ...1415... ↦ 1314 ↦ ...10 ↦ ...17 (see Fig. 7 (e-f)).

Next, we investigate the homoclinic chaos in the architecture (3.11) and attempt to identify the structure’s tumultuous frames 
for 𝜒3 within the interval of (0, 1). Considering an unchanged threshold of 𝜍3 = −0.775, the homoclinic chaos criterion is valid for 
ℑ ∈ [0.14, 0.16] and [3.21, 3.26] (see Fig. 7 (g-h)). The distinctive realistic steady state is identified at ℑ = 0.25 and can be expressed as 
(𝐮∗1 = −0.97241, 𝐮∗3 = −0.33659, 𝐮∗2 = 0.192345). Absolute values of the eigenvalues are |(−0.0109013, 0.00720096 ± 𝐢0.285853)| and (
2 cos

( | arg(𝜆1,2)−𝜋|
2−𝜒𝜄

))𝜒𝜄

= 1.426783, 𝜄 = 1, 2, 3. In other words, 𝜑 = −0.0110345 < 0, 𝜁1 = 0.009867 > 0 and |𝜑∕𝜁1| = 1.678901 > 1

satisfy the requirements of homoclinic chaos (see Fig. 7 (a-h)). The results show that the saddle amplitude is 𝜑1 = −0.00456099
and the saddle factor is 𝐮1 = 0.780032. Regarding this case, we conclude 𝜑1 < 1 and 𝐮1 < 1, indicating straightforward processes 
concerning the saddle concentration of the framework (3.11). Fig. 8 (a-l)) displays the phase images and accompanying data trends 
that represent the FH-R framework for various ℑ conditions in the homoclinic chaos domain 𝜒3 ∈ [0.563, 0.714) ∪ (0.8341, 0.9812]. In 
each phase of perspective, we see the spiraling dynamics surrounding the saddle concentration for 𝜒2 ∈ (0, 1]. In order to demonstrate 
the fractional chaotic dynamics of the framework (3.11), we additionally examine the MLEs over an expression of duration and the 
prevailing factor ℑ (see Fig. 9 (o-p)). Then, we depict the continuum assuming ℑ = 0.25 while taking into account the MLEs being 
an extension of delay. The Lyapunov factors that we discovered are (0.000089, −0.000065, −0.067534). The structure is chaotic, as 
shown by the elevated fundamental Lyapunov factor in Fig. 9 (n). The spectra of MLEs within the range ℑ = [2.14, 4.16] are shown in 
Fig. 9 (o-p), where it becomes apparent whether the primary MLE is non-negative within this region for (𝜒1, 𝜒2, 𝜒3). As can be shown 
in Figs. 6 (a-l), the framework (3.11) demonstrates M-M-Os characterized by one enormous and inevitably numerous asymmetrical 
18

small intensity fluctuations 1∞ within this phase. Consequently, we see M-M-Os as a pathway leading to homoclinic chaos. The 



Heliyon 10 (2024) e40659S. Rashid, I. Ali, S. Sultana et al.

authentic steady state has been determined to be (𝐮∗1 = 0.975612, 𝐮∗2 = 2.14523, 𝐮∗3 = −1.800912) at ℑ = 3.0092 as well. As in the 
previous instance, we discovered that (−0.0236701, 0.01780098 ± 𝐢0.3015672) being the respective eigenvalues of the fundamental 
framework, because the homoclinic chaos requirements are encountered, such as 𝜑 = −0.0236701 < 0, 𝜁1 = 0.01780098 > 0 and |𝜑∕𝜁1| = 1.2301 > 1. At this point, the characteristics of the framework are straightforward adjacent to the saddle concentration, 
with 𝜑1 < 0 and 𝐮1 < 1. Plotting the MLE continuum with regards to ℑ, where ℑ ∈ [0.45, 5.15], we determined that the initial MLE 
is non-negative within this time period, suggesting that chaos is present in the framework (3.11) throughout this time frame (see 
Fig. 9 (p)).

5. Statistical tests for the DFO FH-R model

In this section, we analyze the fluctuating properties of the suggested 3D FH-R model by contemplating its complexities at both 
commensurate and incommensurate FOs. Higher levels of intricacy in an environment are frequently correlated with higher levels of 
chaos. In order to do this, we utilize the ℂ0 complexity approach in addition to the sample entropy (Sp-En) approach. Furthermore, 
we employ the 0 − 1 criterion to confirm that chaos exists in the FH-R system.

5.1. The Sp-En procedure

Here, we adopt the Sp-En technique as a tool to evaluate the intricacy of the 3D DFO FH-R model that is commensurate with (3.9)
and its counterpart that is incommensurate with FO (3.11). In contrast to approximate entropy (Ap-En), Sp-En is able to quantify time 
series variability independent of both the comparison factor (𝜑) and its embedded level (𝓁). As a result, Sp-En supplies an increasingly 
scientific and accurate assessment than Ap-En [75]. The amount of the time sequence’s difficulty is indicated by the Sp-En numbers, 
where larger numbers denote greater complexity [76]. The following procedure is used to calculate Sp-En:

𝑆𝑝𝐸𝑛 = −log ϝ𝜂+1(𝜏)
ϝ𝜂(𝜏)

, (5.1)

where the mathematical formula for ϝ𝜂 (𝜏) is

ϝ𝜂(𝜏) = 1
𝓁 − 𝜂 + 1

𝓁−𝜂+1∑
℘=1

log𝜂
℘(𝜏) (5.2)

and the acceptable range can be calculated as 𝜎 = 0.2
√

𝑉 𝑎𝑟(), with 𝑉 𝑎𝑟() indicating for positive square root of variance. 
Fig. 10 (a-b) displays the Sp-En values for the commensurate FO FH-R model (3.9) as well as the incommensurate FO FH-R model 
(3.11) (see Fig. 10 (c-d)). More significant values suggest an increased degree of challenges in the measurement succession, as in-
dicated by the calculated Sp-En outcomes. The findings show that the significantly higher Sp-En levels of the commensurate and 
incommensurate FO FH-R model (3.11) suggest more elevated sophistication. The produced outcomes additionally reinforce the un-
predictable character of the processes in the suggested non-integer network and are consistent with the outcomes of the 𝑀𝐿𝐸𝑠

study. The suggested incommensurate FO FH-R model (3.11)’s diverse variations are captured by fractional exponents, as seen by 
their chaotic performance and increased richness.

5.2. The ℂ0 complexity

The ℂ0 complexities procedure is employed to perform a complexity assessment [77,78] for the purpose of investigating how the 
FO affects the dynamic features of the commensurate FO FH-R model (3.9) and the incommensurate FO FH-R model (3.11). The ℂ0
intricacy is computed by the inverse Fourier transform.

We propose the ℂ0 productivity approach for an ordered sequence 
{

𝜀(0), ..., 𝜀( − 1)
}

in the following manner:

∙ It can be identified by the discrete Fourier transform of the sequence 
{

𝜀(0), ..., 𝜀( − 1)
}

is:

Ξ (Θ) =
−1∑
𝐮=0

𝜀(𝐮) exp
(−2𝜋𝐢𝑑𝐮



)
, Θ= 0, ..., − 1. (5.3)

∙ This formula yields the mean square significance:

 = 1


−1∑
Θ=0

|||𝜃 (Θ)|||2. (5.4)

∙ Adjusting:

𝜃 (Θ) =
⎧⎪⎨𝜃 (Θ) if |||𝜃 (Θ)|||2 > 𝜑 ,

2
(5.5)
19

⎪⎩0 if |||𝜃 (Θ)||| ≤ 𝜑 .



Heliyon 10 (2024) e40659S. Rashid, I. Ali, S. Sultana et al.

Fig. 10. Sample entropy plots for the commensurate FO FH-R model (3.9) when (a) 𝜒 = 0.9 with ℑ = 0.13465, (b) 𝜒 = 0.95 with ℑ = 0.13465. Also, sample entropy 
plots for the commensurate FO FH-R model (3.11) when (c) (𝜒1 , 𝜒2, 𝜒3) = (0.5, 1, 1) with ℑ = 0.13465, (d) (𝜒1, 𝜒2 , 𝜒3) = (1, 0.6, 1) with ℑ = 0.13465.

∙ The following is the inverse Fourier transform of 𝜃 :

𝜀̃(Θ) = 1


−1∑
𝐮=0

𝜃(𝐮) exp
(−2𝜋𝐢𝑑𝐮



)
, Θ= 0, ..., − 1. (5.6)

Furthermore, we examine the ℂ0 complexity estimate by:

ℂ0 =

−1∑
𝐮=0

|𝜀(𝐮) − 𝜀̃(𝐮)|2
−1∑
𝐮=0

|𝜀(𝐮)|2 . (5.7)

The ℂ0 complexities of the commensurate FO FH-R model (3.9) and the incommensurate FO FH-R model (3.11) are presented in 
Fig. 11(a-d) with the following parameterized adjustment. These outcomes illustrate that the DFO FH-R model possesses greater 
complexity, which is compatible with the previously mentioned findings. This suggests that chaotic attractors could be produced by 
the DFO FH-R model, featuring commensurate and incommensurate fractional exponents.

5.3. The 0-1 approach for chaos

Specifically, we apply the 0-1 examination technique [79] for chaotic to determine if chaos exists in the commensurate fractional 
order FH-R model (3.9) and the incommensurate FO FH-R model (3.11). Letting 

{
ℏ(Θ), Θ = 1, 2, ..., 

}
be an assortment of states, 

and notifying the transformation factors 𝐩 and 𝐪 be expressed as follows to illustrate this technique:

𝐩(Θ) =
Θ∑

℘=1
ℏ(℘) cos(℘𝜍),

𝐪(Θ) =
Θ∑

℘=1
ℏ(℘) sin(℘𝜍), (5.8)

where Θ ∈
{
1, 2, ..., 

}
and 𝜍 ∈ (0, 𝜋). A helpful instrument for determining whether chaos exists in the suggested DFO FH-R model 

involves the 𝐩 − 𝐪 diagram. Significant understanding of the fluctuations of the framework is possible to obtain through inspecting 
20

the progressions of the values of the 𝐩 and 𝐪 components. Assuming 𝐩 and 𝐪’s paths stay confined, it demonstrates that whatever 
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Fig. 11. Graphical illustrations ℂ0 complexity for the commensurate FO FH-R model (3.9) when (a) 𝜒 = 0.9 with ℑ = 0.13465, (b) 𝜒 = 0.95 with ℑ = 0.13465. Also, 
sample entropy plots for the commensurate FO FH-R model (3.11) (c) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 1, 1) with ℑ = 0.13465, (d) (𝜒1 , 𝜒2, 𝜒3) = (1, 0.6, 1) with ℑ = 0.13465.

dynamic features of the representation are periodic. On the other hand, assuming these pathways behave according to the Brownian 
framework, their interactions underlying the visualization are chaotic. At this point, the mean square eviction is determined using a 
specific algorithm that takes into consideration 𝐩 and 𝐪.

𝜍 =
1


∑
℘=1

((
𝐩(℘+Θ) − 𝐩(℘)

)2 + (𝐪(℘+Θ) − 𝐪(℘)
)2)

,  > 10Θ. (5.9)

The asymptotic rate of expansion is computed in the following way:

𝜍 = lim
Θ↦∞

log𝜍

logΘ
(5.10)

and  = 𝑚𝑒𝑑𝑖𝑎𝑛(𝜍 ).
As a result, the framework behaves chaotically if  approaches 1, and periodically whenever  arrives at 0. The 0 −1 evaluation 

of the commensurate FO FH-R model (3.9) and the incommensurate FO FH-R model (3.11) are depicted in Figs. 12(a-c) and 12 (d-i). 
The network’s periodicity is demonstrated by the restricted patterns that are evident in Figs. 12 (f) and 12 (h). Figs. 12(a) and 12 (i) 
demonstrate Brownian-like practices, which demonstrate the possibility of chaos and therefore confirm the occurrence of chaotic 
dynamics over either the commensurate as well as the incommensurate FH-R model. The results of the 0-1 assessment correspond 
closely to both the ℂ0 complexities, the Sp-En technique and 𝑀𝐿𝐸𝑠.

6. Conclusion

In this article, we explore the phenomena that occur across numerous time scales within the slow-fast FH-R system, specifically 
focusing on M-M-Os and M-M-B-Os via discrete fractional calculus. Examining several categories of activation features, we have 
examined the evolution of the FH-R system using the main bifurcation factor, ℑ with the aid of commensurate and incommensu-
rate FO. Meanwhile, we have demonstrated that Hopf bifurcations and the canard phenomenon are real. The fractional order has 
a considerable effect on the length and intensity of small and large oscillations in canard-type dynamics. Particularly, fractional 
differences incorporate memory impacts, resulting in greater complexity of dynamical behavior than integer-order derivatives. Our 
computational experiments entailed solving the dynamical framework of discrete fractional difference equations and we reveal the 
parameterized domain of canard phenomena wherein M-M-Os exist. Furthermore, we have employed folded network analysis to 
support the identification of the optimum amount of small-amplitude oscillations within two successive large-amplitude oscillations. 
Considering the simplified structure (4.1) and related significant manifolds, each of the steady-state evolution of the simulation has 
21

been examined. Remarkably, there are two separate classifications into which we may place the phases of M-M-Os and M-M-B-Os. 
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Fig. 12. Graphical depictions for (𝐩 −𝐪) plots for the commensurate FO FH-R model (3.9) when (a) 𝜒 = 0.9 with ℑ = 0.13465, (b) 𝜒 = 0.95 with ℑ = 0.15, (c) 𝜒 = 0.99
with ℑ = 0.35. Also, (𝐩 − 𝐪) plots for the commensurate FO FH-R model (3.11) when (d) (𝜒1 , 𝜒2, 𝜒3) = (0.5, 1, 1) with ℑ = 0.13465, (e) (𝜒1, 𝜒2 , 𝜒3) = (1, 0.6, 1) with 
ℑ = 0.13465, (f) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 0.5, 1) with ℑ = 0.15, (g) (𝜒1, 𝜒2 , 𝜒3) = (1, 0.6, 0.1) with ℑ = 0.35, (h) (𝜒1, 𝜒2 , 𝜒3) = (0.5, 1, 1) with ℑ = 0.13465, (i) (𝜒1, 𝜒2 , 𝜒3) =
(0.2, 0.6, 1) with ℑ = 0.377.

Two classes exist: one where small-amplitude oscillations are formed close to the position 𝕜− and the second where small amplitude 
oscillations develop close to the spot 𝕜+ for various FOs (see Figs. 2(a-l) and 6(a-l)), respectively.

Meanwhile, a detailed analysis has been conducted on the boundary between chaotic behavior and M-M-Os. M-M-B-Os are made 
up of small and large intensity oscillations and contain abrupt explosive fluctuations that include changeovers and crashes. Several 
spatiotemporal structures, including M-M-Os, inactivity, periodic exploding, etc., emerge at the threshold. In this regard, broad impli-
cations enabling multidimensional slow-fast networks accompanying the formation of M-M-Os have been developed; heterogeneity 
network features can potentially be incorporated for more research. Furthermore, an empirical basis for analyzing the fluctuating 
features of both functioning and malignant neurons revealed in research findings is provided by this sort of descriptive physiological 
approach [55]. We have studied in detail the behavioral attributes of this slow-fast dynamics of canard within both commensurate 
and incommensurate FOs. By utilizing diverse analytical methods such as bifurcations, homoclinical chaos, Poincaré maps, and Lya-
punov exponent computations, the unique characteristics of the suggested fractional FH-R model were comprehensively investigated 
under a range of conditions. In addition, the Sp-En methodology and the ℂ0 complexities approach were implemented to measure 
the M-M-O’s and M-M-B-O’s level of complexity, while the 0 −1 experiment has been applied to confirm that chaos exists on the visu-
alization. The computational analyses executed revealed a number of fascinating and varied chaotic behaviors that were revealed by 
the mechanism’s settings, commensurate FO and incommensurate FOs’ substantial effect on the physical states of the fractional FH-R 
model. These factors are crucial in determining how the procedure interacts and how its functioning changes, resulting in various 
22

reactions and pathways in the configuration structure of the proposed fractional FH-R model. The understanding of chaos phenomena 
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and nonlinear structures will be greatly enhanced by such results, which have great importance in clarifying the consequences of 
fractional NNs and memristive systems.

Under the implementation of M-M-Os and fractional formulations, synaptic activation is capable of being decreased to facilitate the 
removal of the activation prospective threshold to stable phases [56,68]. Studies in [80,81] examined the effects of barely noticeable 
vibrations, or small intensity oscillations, on various neural reactions. The small intensity oscillations have an intriguing function in 
the development of M-M-Os and in regulating spike aggregation [82,83]. Additionally, small intensity oscillations affect how sensitive 
neurons are to changes in neural signals and how synchronized the system is for specific activation frequencies [84]. We addressed a 
variety of potential scientific hypotheses over the purposes of M-M-Os, which would be significant for scientists studying dynamical 
phenomena and computational modeling, both of which are important fields for comprehending the periodic actions of neurons. 
The present investigation of analogous M-M-Os and M-M-B-Os in physiological processes encompasses hypothetical, mathematical 
and behavioral techniques. In order to explore potential implementations in this domain, such types of investigations may also be 
expanded from interrelated processes to physiological platforms featuring various system topologies.
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