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ABSTRACT: Energy system optimization models facilitate analyses on a national
or regional scale. However, understanding the impacts of climate policy on specific
populations requires a much higher spatial resolution. Here, we link an energy
system optimization model to an integrated assessment model via an emission
downscaling algorithm, translating air pollution emissions from nine U.S. regions
to U.S. counties. We simulate the impacts of six distinct policy scenarios, including
a current policy and a 2050 net-zero target, on NOx, SO2, and PM2.5 emissions
from on-road transportation and electricity generation. We compare different
policies based on their ability to reduce emission exposure and exposure disparity
across racial groups, allowing decision-makers to assess the air pollution impacts of
various policy instruments more holistically. Modeled policies include a clean
electricity standard, an on-road ICE vehicle ban, a carbon tax, and a scenario that
reaches net-zero GHG emissions by 2050. While exposure and disparities decrease
in all scenarios, our results reveal persistent disparities until at least 2040, particularly for Black non-Hispanic Americans. Our
estimates of avoided deaths due to air pollution emphasize the importance of policy timing, showing that thousands of lives can be
saved by taking action in the near-term.
KEYWORDS: energy system modeling, decarbonization, air quality, equity, environmental justice

1. INTRODUCTION
Many countries, including the United States, are adopting
policies to reduce greenhouse gas emissions to mitigate the
worst impacts of anthropogenic climate change.1,2 These
policies stand to transform economic systems fundamentally.3

The ramifications of such a large-scale change are likely to
manifest unequally across society.4−6 As such, governments
must focus on ensuring an equitable energy transition. For
example, the Justice40 initiative sets a goal that 40% of overall
benefits from certain federal investments will go to
marginalized and underserved communities.7 Historically,
regulatory impact assessments have said nothing about
environmental justice goals or made brief qualitative state-
ments. This analysis aims to inform policy design in this
domain by synthesizing results from the electric power
generation and on-road transportation sectors of an econo-
my-wide energy system model coupled with high-resolution
health impact analyses to quantify environmental justice
outcomes.

The literature describes three primary areas of equity:
procedural, recognitional, and distributional.6,8,9 This paper
focuses on distributional equity, the fair distribution of benefits
across all stakeholders.8 Through this lens, we explore how
different decarbonization policies affect racial groups’ exposure
to air pollution, expanding the literature that explores different
metrics to score energy transition equity outcomes.10−12

Our equity-focused analysis is motivated by three facts. First,
over 100 million U.S. residents live in counties that do not
meet the National Ambient Air Quality Standards that govern
air pollution concentrations.13 Second, air pollution is
concentrated in communities of color and low-income
communities.14−19 Third, exposure to air pollution is
associated with acute and chronic health effects, including
premature mortality.20−23 Numerous studies show that climate
policy produces substantial cobenefits from reductions in air
pollution.24−28 Energy system optimization models (ESOMs)
are one tool researchers and policymakers can use to study
changes in greenhouse gas and air pollution emissions resulting
from policy instruments and technological advancement.
Researchers have used ESOMs to explore national emissions
in the absence of new federal climate policy,29 opportunities
for power sector decarbonization,30,31 pathways to achieving
net-zero emissions,32,33 and the impact of carbon taxes on
emissions and technology deployment34−36 and to assess
realistic policy instruments.37
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These studies offer insights into the aggregate consequences
of energy system decarbonization. However, studies that use
national or regional scale models are ill-suited to assess
distributional equity outcomes.38,39 The air quality models that
researchers use to understand spatially resolved concentration
changes and health outcomes require spatially disaggregated
emission inputs.40 Modelers using ESOMs must make trade-
offs between spatial and temporal resolution, technology detail,
and the ability to represent multisector interactions. Increasing
any of these improves the realism of the model’s results but
may make computational time intractable. However, research-
ers can explore distributional impacts without increasing the
spatial resolution of ESOMs (and, as a result, increasing the
computational intensity) by downscaling emissions and
performing posterior analyses. In this work, we downscale
nitrogen oxide (NOx), sulfur dioxide (SO2), and particulate
matter (PM2.5) emissions from power plants and on-road
transportation vehicles to use as inputs into an air quality
model.

Existing work explores the distributional equity implications
of different subsectors of the current and near-future energy
system. For example, a substantial body of work explores the
emission impacts of near-term electric vehicle adoption.14,41−43

Holland et al. find, for example, that individuals living in census
block groups with a median income greater than $65,000 have
positive environmental benefits from electric vehicles, but
individuals below this threshold receive negative externalities.42

The authors also explore how their findings vary by racial
group, reporting that White and Black individuals receive
negative externalities, while Hispanic and Asian residents
receive positive benefits. Thakrar et al. quantify source-specific
PM2.5 mortalities from air pollution sources, finding that half of
all air pollution deaths in the U.S. are attributed to just five
sources, including electricity generation and passenger vehicle
use.44 Tessum et al.15 explore economy-wide exposure
disparities for different sources of fine particulate matter
(PM2.5) in five racial−ethnic groups. Their work found that
racial−ethnic minorities are exposed to higher levels of PM2.5
in nearly all of the major emission categories.

Notably, these studies do not explore how future policy
instruments might change future distributional impacts, but a
growing body of work is dedicated to understanding this
question. Several U.S.-based analyses assess future changes to
air pollution exposure driven by policy change. Goforth and
Nock explore future equity impacts from the energy transition,
finding that national mandates requiring more than 80%
deployment of low-carbon technologies in the power sector
achieve equality of air pollution concentrations across
demographic groups.45 Polonik et al. quantify air pollution-
related equity outcomes from climate policy using five heuristic
pathways consistent with the U.S. NDC but do not simulate
explicit technology changes.46 Picciano et al. assess whether
scenarios that achieve the same CO2 reduction (∼50%) can
better reduce PM2.5 disparities, finding that limited oppor-
tunities exist to further mitigate disparities without deeper
decarbonization.47

Some studies additionally assess equity outcomes either for
global emission changes or changes within a specific region of
the U.S. Huang et al. use a coupled climate-energy-health
model to simulate the impact of climate policy on air pollution
globally, focusing on cross-country inequity.48 Zhu et al. use
annual air quality simulations to assess environmental justice
outcomes in California under an 80% CO2 reduction policy

case, finding that the distribution of benefits changes
depending on technology deployment and fuel use in
individual end-use sectors.49 Wang et al. and Li et al. both
explore the impact of low-carbon transportation policy on air
pollution exposure in California.50,51 Yu et al. found that zero-
emission vehicle adoption in California resulted in reduced air
pollution exposure but that traffic-related air pollution
disparities remain.52

The present study explores air pollution-driven distribution-
al equity outcomes in the U.S. under a range of forward-
looking decarbonization policies in multiple economic sectors
while explicitly modeling policy-driven changes in technology
deployment. In addition to a current policy baseline, we model
a clean electricity standard, a ban on new internal combustion
engine (ICE) vehicles, a carbon tax, and a scenario that reaches
net-zero emissions of GHGs in 2050. We simulate changes in
air pollution exposure in the U.S. transportation and electric
sectors based on the need to decarbonize these sectors in
tandem, as addressed in the prior literature.41,53,54

2. MATERIALS AND METHODS
In this study, we use an energy system optimization model to
simulate six policy scenarios: a current policy baseline (that
includes the U.S. Inflation Reduction Act), a ban on new, on-
road internal combustion engine vehicles, a clean electricity
standard, a combined ICE ban and clean electricity standard, a
carbon tax, and a scenario in which GHG emissions decrease
linearly from 2020 levels to net zero in 2050. We then
downscale the simulated NOx, SO2, and PM2.5 emissions from
nine U.S. regions to U.S. counties and run the downscaled
emissions through the air pollution module of an integrated
assessment model. We assess exposure to air pollution and
avoided deaths by race−ethnicity under each of the modeled
scenarios.
2.1. Model Structure. This work uses the Tools for

Energy Model Optimization and Analysis (Temoa), a bottom-
up energy system optimization model.55 Temoa is well-suited
to answering questions about decarbonizing the energy system,
as it endogenously optimizes fuel use and technology
deployment across the energy economy, representing elec-
tricity generation, transportation, commercial and residential
buildings, heavy industry, and fuel production and supply.
Bottom-up models represent technology-explicit choices and
require robust techno-economic characterizations of technol-
ogies in all end-use sectors, including capital costs, fixed and
variable costs, efficiencies, and emission activities.56 Temoa is a
linear optimization model that considers particular technolo-
gies’ interactions within a defined system. Temoa finds the
least-cost solution by optimizing installed capacity and the
associated activity while ensuring that the energy produced
equals or exceeds the energy consumed. Temoa is similar in
functionality to the suite of MARKAL/TIMES models,
OSeMOSYS, and MESSAGE.57−59 Several studies have
identified Temoa as a top open-source macro-energy system
model.60−62 Some examples of previous work using Temoa
include quantifying U.S. energy-related GHGs in the absence
of federal climate policy,29 exploring the impacts of the U.S.
Inflation Reduction Act,63 and assessing diverse, near cost-
optimal pathways to deep decarbonization in the U.S.64 Our
GitHub repository contains all model codes.65

2.2. Database. The database used in this work represents
the continental U.S. as nine regions. The modeled time
horizon extends from 2020 to 2050 and runs in five-year
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increments, optimizing the first year in a set and applying the
result to each year in a five-year period. The model employs a
representative day temporal framework, utilizing hourly
resolution for eight representative days in each model year.
It includes emission factors for GHGs, SO2, NOx, and PM2.5,
which vary based on fuel and technology combination.

The Temoa database includes representations of many
existing state and federal policies, including up-to-date CAFE
standards, California’s zero-emission vehicle standard, the
mercury and air toxics standards, state-level renewable
portfolio standards, and key provisions of the Inflation
Reduction Act (IRA), including tax credits for zero-emission
vehicles, zero-emission power generation, carbon capture, and
clean hydrogen production. Detailed, sector-level documenta-
tion can be found in our GitHub repository.65

2.3. Downscaling. There are three well-defined methods
to spatially downscale power plant siting in the literature.66

The first is statistical downscaling, which uses scaling,
interpolation, and regression.67 Another commonly used
method, grow-in-place, assumes that new power plants are
constructed where old plants were sited.68−70 Last, funda-
mental-based downscaling, or site-and-grow, uses detailed
land-use data sets to understand siting decision processes,
including their economic and technical drivers.66 Site-and-
grow is a more computationally intensive method than grow-
in-place, requiring detailed land-use data and additional time
and computational power. In this study, we implement a
modified grow-in-place algorithm for electricity generation
units (EGUs). We follow a similar method for vehicles but
combine the model results with a spatial surrogate.

Temoa represents the United States in nine geographic
regions, meaning that in its current form, it is ill-suited to
understanding the equity implications of technology and policy
changes. This work implements a postprocessing algorithm to
downscale NOx, SO2, and PM2.5 emissions from electricity
generation and on-road vehicles. We subsequently run the
downscaled results through the atmospheric modeling
component of the AP3 integrated assessment model71 to
quantify changes in emission exposure at the county scale.
Temoa simulates NOx, SO2, and primary PM2.5 emissions from
power plants and on-road vehicles. NOx and SO2 are
precursors to ambient PM2.5, which increases mortality risk.72

AP3 calculates damages from ambient PM2.5 formed by
primary PM2.5, as well as from NOx and SO2. We then map
these results to racial groups to understand the future
distribution of air quality and public health changes under
different policy instruments. We develop separate electric and
transportation emission algorithms, which we detail below.
2.3.1. Electric Sector Emissions. We draw techno-economic

parameters for existing EGUs in the Temoa database from
PowerGenome,73 which compiles data from the Public Utilities
Data Liberation (PUDL) Project.74 Temoa does not model
individual electric generators; instead, we implement clusters
of power plants created by PowerGenome based on the plant
heat rate. However, we retain the EIA plant ID and the PUDL
unit ID for each EGU in each cluster. We used PUDL, EIA,
and eGrid data to map the PowerGenome EGUs to actual
EGUs. While this tells us the location of each EGU, Temoa
does not report the percent of generation in a cluster that
comes from each EGU. We therefore use the aforementioned
data sources to determine PUDL unit-level 2020 electric
generation data. We sum actual generation by Temoa cluster
and then determine the percent of generation attributable to

each unit. We assume that the percent of generation from each
unit stays constant over time, even if Temoa reports total
generation from the cluster increasing or decreasing.

To determine the location of the future capacity, we
implement a grow-in-place heuristic. We use data on planned
EGUs and EGUs that have retired since 2002 from December
2021’s Form EIA-860 M “Monthly Update to Annual Electric
Generator Report” to map existing and planned facilities to
Temoa’s capacity.75 Additional details on downscaling can be
found in the Supporting Information.

2.3.2. Transportation Sector Emissions. While Temoa
retains information about the exact location of the electric
sector technologies, the same is not true for the transportation
sector. As such, we map regional vehicle miles traveled (VMT)
to county-level VMT using data from the EPA’s MOtor
Vehicle Emission Simulator (MOVES), which estimates
county-level VMT by vehicle type for 2023, 2026, and 2032.
We map MOVES VMT estimates to Temoa’s 2020−2024,
2025−2029, and 2030−2034 time periods, respectively. For
the remaining time periods (2035−2050), we implement
MOVES-provided national scaling factors by vehicle type,
relative to 2032. For a given technology (i) and county (j)
within a region (k), we calculate VMT as

i

k
jjjjjjj

y

{
zzzzzzz= ×VMT

MOVES County VMT

MOVES County VMT
Temoa VMTij

ij

j ij
ik

Transportation emissions are then calculated using Temoa’s
emissions factors. Temoa considers only emissions from
transportation fuel combustion. As a result, our results will
underestimate damages from primary PM2.5, as non-exhaust
sources (i.e., brake- and tire-wear) are not modeled. While this
is a limitation of the study, recent work from Arter et al.76

estimates that >70% of premature mortalities from light- and
heavy-duty vehicles in the U.S. are attributable to NOx.
2.4. Integrated Assessment Modeling. 2.4.1. Air

Pollution Modeling. We use the atmospheric modeling
component of the AP3 IAM77,78 to connect SO2, NOx, and
primary PM2.5 emissions from EGUs and on-road trans-
portation vehicles to ambient PM2.5 concentrations on the
margin (i.e., atop the existing baseline). AP3 employs a
reduced-complexity framework to model ambient PM2.5 in
every contiguous U.S. county based on emissions from all
domestic sources. These data are provided for 2017 in the
EPA’s National Emissions Inventory (NEI).79 As such, AP3's
nonlinear atmospheric chemistry module relies on relative
concentrations based on the 2017 baseline for all years
modeled in Temoa. Although future changes in the relative
concentrations of relevant pollutants may increase the marginal
concentrations associated with SO2 and NOx emissions, the
current state and expected trajectory of emissions suggest that
these changes are likely to be limited. See the Supporting
Information for a detailed discussion of this topic.

Gaussian plume-based atmospheric modeling predicts
speciated pollution concentrations in each receptor location
(population-weighted county centroids) from each source
location’s emissions. Transportation and EGU emissions are
both modeled as being discharged from their county’s
population-weighted centroid. However, their effective release
heights differ: emissions from the transportation sector are
modeled at the ground level, while those from EGUs are
modeled using AP3's point source bin for facilities with
effective heights (stack height plus plume rise) between 250
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and 500 m.78 (See the Supporting Information for a discussion
of AP3’s modeling based on facility effective heights. Facilities
are categorized into three bins based on their effective heights:
low (x < 250 m), medium (250 m < x < 500 m), and tall (x >
500 m). Approximately two-thirds of 2017 EGU emissions
came from those falling into the medium bin. Because AP3’s
tall bin inventory has remained unchanged since the
development of the Air Pollution Emission Experiments and
Policy analysis model�AP3’s predecessor, along with AP2�
most EGUs that would fall into the tall bin default to the
medium bin. Relatively few emissions are associated with
EGUs in the low bin.) AP3 then models interpollutant
chemistry processes, which account for the equilibrium
between ammonium, nitrates, and sulfates, to estimate and
subsequently aggregate all subspecies of PM2.5. The modeled
PM2.5 concentrations are calibrated using data from the EPA’s
Air Quality System monitors.80

Using AP3, we estimate the impacts from electric generation
and transportation vehicles’ SO2, NOx, and PM2.5 emissions for
each year from 2020 to 2050. We employ the model to
compute marginal concentrations (annual average μg/m3 per
short ton in every contiguous U.S. county) for each source and
pollutant. AP3 adds 1 ton of emissions to the baseline for each
source−pollutant pair and estimates marginal impacts by
subtracting baseline concentrations from the new concen-
trations with the marginal ton added. Then, the model is reset
to the baseline. This algorithm is repeated for each source and
pollutant, and the results of each run differ in where the
impacts occur. Last, we multiply total emissions from each
source by the respective marginal concentrations for total
PM2.5 impacts in every county. See the Supporting Information
for more details on AP3.
2.4.2. Health Impact Modeling. Temoa provides changes in

emissions, and AP3's atmospheric modeling provides changes
in exposures, but policymakers and laypeople may find changes
in mortality to be a more salient metric. Moreover,
susceptibility to the adverse effects of PM2.5 varies by
subpopulation,81 and incorporating health impacts and
associated inequities allows us to more holistically examine
environmental justice across relevant attributes. Exposures to
various pollutants drive several negative health outcomes, but
we focus on premature mortality linked to PM2.5, which
accounts for the majority of local air pollution health
damages.82 We employ methods from AP3 using a
concentration−response function (eq 1) to associate increased
PM2.5 concentrations with increased mortality risk:

i

k

jjjjjjjjj

y

{

zzzzzzzzz
=

×
×

( )
yMort 1

1

exp PM
Popj,a,r 0a,r

a,r j
j,a,r

(1)

y0 is the baseline mortality rate for each race (r) and age
(a).83 β is a measure for relative risk associated with a change
in PM2.5 exposure (ΔPM) in a given county (j).84 The
function’s output, ΔMort, is the expected premature mortality
for each population group driven by the evaluated change in
PM2.5. Pop is the group-specific population.

Baseline mortality and relative risk are the key health-related
inputs to the concentration−response function. There is
substantial evidence that people of color experience elevated
risk from PM2.5 exposure,15,16,45,85,86 but data and empirical
studies informing our modeling come with caveats and
uncertainty. We use 2017 CDC age- and race-specific baseline
mortality rates,83 but these data are characterized by complex
trends such as the Hispanic Paradox. (The Hispanic Paradox is
the observation of lower all-cause mortality rates in Hispanic
Americans than in non-Hispanic Whites.) Hence, we run
sensitivity using all-person age-specific baseline mortality rates,
ignoring variation by race. Additionally, the literature conflicts
with whether relative risk differs by racial group. Pope et al.
find that differences in air pollution-related mortality by race−
ethnicity are not statistically significant.87 Contrarily, Di et al.
find statistically significant differences in risk between racial
groups.81 Importantly, Di et al.’s analysis is limited to
individuals ages 65 and older, but we apply their values to
the population of adults aged 30+. To test what these
differences would imply for the remainder of the population at
risk from PM2.5 exposure, we use Di et al.’s estimates of relative
risk in one scenario due to the strong relationship they quantify
between race−ethnicity and air pollution-related mortality.
Otherwise, we simulate mortalities using Krewski et al.’s
relative risk estimate, which is constant for all race−
ethnicities.84 We provide details of these assumptions in the
Supporting Information.

As mentioned above, this work simulates emissions of only
NOx, SO2, and PM2.5. Other pollutants, including ammonia
and volatile organic compounds, are not represented in Temoa
in its current form. As a result, our estimates of damages and
changes to mortality are conservative.

We used population projections from the Socioeconomic
Data and Applications Center. This data set provides county-
level population projections by sex, race, and age out to
2100.88 This data set projects U.S. population according to the

Table 1. Modeled Policies

policy description

current
policy

Only existing policies modeled, including the Inflation Reduction Act

clean
electricity
standard

Requires 80% clean electricity by 2030.90 We allow wind, solar, hydroelectric, nuclear, and fossil generation with carbon capture and storage to
contribute to the standard. The CES rises linearly from 80% in 2030 to 100% in 2050 in our simulations.

carbon tax Carbon tax based on the White House’s estimate of the social cost of carbon.91 Rises from approximately $50 to $80 per metric ton CO2 over the
modeled time horizon.

ICE ban Ban on light-duty internal combustion engine (ICE) vehicle sales (passenger vehicles, commercial trucks, buses, and medium- and heavy-duty trucks).
Requires that at least 80% of light-duty vehicle sales are zero-emission by 2030 and 100% by 2035 and that at least 35% of medium and heavy-duty
vehicle (short- and long-haul class 8 trucks, school, passenger, and transit buses) sales are zero-emission by 2030, rising linearly to 100% by 2045.
Vehicles already on the road are not affected by this policy.

ICE ban +
CES

Clean electricity standard + ICE ban

net-zero Linear decrease from 2020 GHG emissions to net-zero GHG emissions in 2050. Net zero allows for positive GHG emissions as long as they are offset
by carbon dioxide removal technologies, such as direct air capture.
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shared socioeconomic pathways (SSPs). The SSPs are
scenarios that describe alternative socio-economic trajectories
out to 2100.89 SSP2 is the most consistent with our input data;
therefore, we only use population projections under this
pathway.

In the population data set, the U.S. population increases 20%
from 2020 to 2050 to ∼402,000,000 people. The population
density increases primarily in the eastern and western U.S.,
with fewer changes in the density in the central states. The
country becomes more racially diverse, with the population of
white non-Hispanic individuals falling from 60 to 48% of the
population by 2050. The Hispanic population increases from
18 to 25%, and the Black non-Hispanic population increases
from 13 to 14% of the population. The population of other
racial groups increases from 7 to 11%.
2.5. Modeled Policies. We explore a range of politically

salient policies designed to focus on the transportation and
electric sectors, which are highly emitting and increasingly
coupled due to vehicle electrification. We compare each policy
scenario outlined in Table 1 to a baseline “current policy”,
which includes only existing policies, including key provisions
from the IRA.

3. RESULTS
The six scenarios evaluated led to different trajectories in
energy production and use, as shown in Figures S.2−S.4. These
technology deployment differences drive differences in
emissions, exposure, and disparity outcomes. For example,
Figure S.2 shows that fossil-based electricity generation totals
480 TWh in 2030 in the net-zero scenario, while coal and
natural gas account for 690 TWh that year in the current policy
scenario.
3.1. Exposure. In the first time period (2020−2024), the

exposure disparity is higher for on-road transportation vehicles
than for electricity generation, as illustrated in Figure 1.
Disparity is defined as the difference between the population-
weighted race−ethnicity-specific exposure and the total
population-weighted exposure in a given county. White non-
Hispanics are exposed to an average of 0.34, 1.26, and 2.72 μg/
m3 less pollution from on-road transportation than Black non-

Hispanics, Hispanics, and other racial groups, respectively. For
EGUs, Hispanics have the lowest population-weighted average
exposure, with 0.11, 0.08, and 0.05 μg/m3 lower than those of
Black non-Hispanics, White non-Hispanics, and other racial
groups, respectively. These baseline results largely agree with
the broader exposure literature.92,93

Figure 1 demonstrates existing disparities in population-
weighted exposure, particularly for Hispanic and Other
Americans, driven by on-road transportation emissions. Over
time, exposure decreases under all modeled policies, as
demonstrated in Figure 2. Figure 2 plots the population-
weighted exposure and disparity in every modeled time period
for each population group. Several trends are evident. First, for
all groups and all policies, population-weighted exposure
decreases over time. For Hispanic and Other Americans,
disparity similarly decreases. For Black and White non-
Hispanic Americans, the trends are opposite. The disparity
for White non-Hispanic Americans trends toward zero, just as
Other and Hispanic disparities, but because the initial disparity
for White non-Hispanics is negative, this appears as an increase
on the plot. Thus, despite the trendline moving in the opposite
direction as the Other and Hispanic lines, the White non-
Hispanic subplot still indicates progress toward equity. For all
racial groups, exposure remains the highest under the current
policy and ICE ban scenarios by 2050.

This is not the case for Black non-Hispanic Americans,
however. For this group, the exposure disparity in 2020 is zero.
While exposure decreases for this group, it does so at a slower
rate than for Hispanics and Other Americans, leading to an
increase in disparity relative to 2020. The net-zero and ICE
ban + CES policies see a return to approximately zero disparity
by 2050, but disparity remains under the other modeled
policies.

While Figure 2 clearly demonstrates the overall trends in
exposure and disparity for the different racial groups, the steep
decline in emissions from 2020 to 2030 makes the comparison
between scenarios in later years more difficult. Figure 3 shows
weighted average PM2.5 exposure from on-road vehicles and
EGUs by scenario and race in 2030, 2035, 2040, and 2050.
The figure displays several key trends. First, by 2050, under net
zero and a clean electricity standard combined with a ban on
on-road vehicles, weighted average exposure from EGUs and
on-road vehicles is near zero for all racial groups. Under the
current policy, disparities remain. Despite emission reductions
driven by the IRA and the falling costs of clean energy
technologies, Black non-Hispanics have a higher population
weighted-average exposure than all other racial groups in this
baseline scenario: They are exposed to 13% higher PM2.5
concentrations from on-road vehicles and EGUs than the
average American in 2050 barring additional policy measures.
This is particularly notable because in the first time period, the
average PM2.5-equivalent exposure for Black non-Hispanic
Americans is equivalent to the total population average
exposure, meaning that population-weighted exposure disparity
is zero. Steep reductions in emissions from on-road vehicles
primarily benefit Hispanic and Other groups (Figure 1),
creating a disparity for Black non-Hispanic Americans, despite
the fact that exposure decreases for all groups. This trend is
true under other policies as well; in 2040, Black non-Hispanics
are exposed to higher levels of PM2.5 equivalents than any
other racial group in four of the six modeled policies.

Hispanic Americans have the lowest population-weighted
average exposure in 2050 under the current policy, with

Figure 1. 2020 population-weighted average PM2.5 exposure by race
and source. The “total” lines indicate the overall population-weighted
average exposure by source.
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exposures 8% lower than that of the average American. This is
driven primarily by the high fraction of Hispanics living in
California and other western states with aggressive clean
energy and zero-emission vehicle targets.

When the policy targets only electricity emissions (CES),
White non-Hispanic Americans have the lowest PM2.5
exposure of any racial group in every time period as they are
disproportionately unaffected by on-road transportation
emissions. This is not the case when the policy only targets
transportation emissions (ICE ban); in that case, Hispanics
have the lowest exposure by 2040. The CES leads to a 2040
U.S. population average exposure of 0.26 μg/m3 compared to
0.41 μg/m3 under the ICE ban. Figure 3 also demonstrates the
importance of policy timing. The CES and vehicle bans do not
start until 2030, while the carbon tax goes into effect in 2025.
This leads to earlier reductions in net exposure and disparity.
Despite early reductions, exposure under the carbon tax does
not decrease as much in the later time periods relative to 2025
and 2030. The tax level is insufficiently high to spur large
changes in emissions beyond what is achieved in the late
2030s, so concentrations stay approximately constant in the
last four modeled time periods.

Figure 4 illustrates the distribution of 2050 population-
weighted average exposure. The current policy has the largest
range between the highest and lowest exposures for all racial
groups, indicating more heterogeneity across counties in the
absence of climate policy. The median and population-

weighted average exposure values displayed in Figures 2 and
3 do not capture the fact that there are clear winners and losers
within racial groups, especially in the current policy. Black non-
Hispanic Americans living in counties on the right-hand tail of
the distribution end up exposed to concentrations 0.3 μg/m3

greater than those in counties exposed to the median level of
air pollution. This primarily results from coal- and natural gas-
fired power plants that remain online. These remaining point
sources disproportionately affect a small number of counties
and are particularly harmful for Black non-Hispanic Americans.
The 90th percentile value for Black non-Hispanic Americans in
the current policy is 0.12 μg/m3 higher than the 90th
percentile for the population as a whole.

By 2050, the current policy and ICE ban have the highest
remaining disparities. Under the ICE ban (current policy), the
median exposure for Black non-Hispanics is 0.03 (0.04) μg/m3

higher than that for the population as a whole. For Hispanics,
median exposure across all years under the ICE ban (current
policy) is 0.06 (0.03) μg/m3 lower than the population as a
whole. Figures 3 and 4 also demonstrate that the CES scenario
leads to greater emission reduction than the ban on new ICE
vehicles. This is driven by the turnover rate of existing vehicles
and by a slight increase in electricity sector emissions under an
ICE ban in the absence of stricter clean electricity policy.
3.2. Mortality. The discussion thus far has focused on

disparities in the PM2.5-equivalent exposure. However, this may
underestimate disparities in health outcomes.81,83 As discussed

Figure 2. Disparity (left y-axis) and population-weighted exposure (right y-axis) over time by racial group and policy.
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in Section 2.4.2, we estimate a range of deaths due to emissions
from EGUs and transportation vehicles using different relative
risks and baseline mortality rates by race. We calculate three
distinct estimates for deaths for each racial group. All estimates
are calculated across the full modeled time horizon (2020−
2050). The first estimate assumes a constant relative risk and
age-specific mortality rate, eliminating any variation in health
outcomes by race. The second implements a constant relative
risk but uses age- and race-specific mortality rates. The third
assumes a race-specific relative risk and age- and race-specific
mortality rates. There is still considerable uncertainty over how
relative risk values may vary among demographic groups.
Hence, we view this calculation as an illustrative exploration of
how differential relative risks may influence future policy
outcomes.

All scenarios reduce cumulative air pollution-related deaths
from 2020 to 2050 relative to the current policy, as shown in
Table 2. The carbon tax avoids the most deaths (164,700−
236,800). Importantly, the net-zero and carbon tax scenarios
would also avoid air pollution-related deaths from other sectors
of the economy, as the policies apply system-wide, but we
quantify deaths only from transportation and electricity
generation. Despite the net-zero scenario reaching lower
emissions by 2050, the carbon tax avoids more cumulative

deaths, again highlighting the importance of near-term
emissions reduction.

The ICE ban avoids fewer deaths than any other scenario,
partially resulting from increased electricity emissions in some
years from electric vehicles without additional clean electricity
policy. There are 65 unique U.S. counties where, in at least one
modeled year, deaths are higher under the ICE ban than under
the current policy due to increased emissions from electricity
generation.

Cumulative avoided deaths illustrate the national impact of
each policy. We also quantify per capita deaths by race. Figure
5 shows deaths per 100,000 individuals due to air pollution
from on-road transportation and EGUs by race and scenario in
2030. The figure displays that for Black non-Hispanics per
capita deaths change drastically when we use race-specific
relative risks. We display results in 2030 as enough time has
passed to highlight heterogeneity between the policy scenarios,
but emissions remain high enough to emphasize the
importance of relative risk selection. In all scenarios, race-
specific relative risk for Black non-Hispanics leads to a 3-fold
increase in estimated per capita deaths relative to the constant
relative risk case. Institutionalized practices such as redlining,
discriminatory neighborhood classification by mortgage lend-
ers, and the placement of power plants and industrial facilities
in economically disadvantaged neighborhoods with higher

Figure 3. Population-weighted average PM2.5-equivalent exposure by race and scenario over time. Emissions are from both on-road transportation
and EGUs.
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fractions of people of color have all resulted in non-White
Americans being exposed to systematically higher levels of air
pollution.94,95 Further, disadvantaged communities have less
healthcare coverage and reduced access to healthcare, meaning
that when these individuals do get sick, they are more
susceptible to adverse outcomes.94

When examined alongside Figure S.1, Figure 5 also
demonstrates the importance of age-specific mortality rates.
Although White non-Hispanics have the lowest weighted-
average exposure across all years in every scenario, this
population does not always have the lowest per capita deaths.
This can be attributed to the age distribution. White non-
Hispanics are, on average, much older than other populations,
and older individuals have higher mortality rates.

4. DISCUSSION
This work adds to the growing discourse on equitable
decarbonization pathways. Our results demonstrate that
disparities between White non-Hispanics and other racial
groups persist until at least 2040, even under aggressive
decarbonization policies, although exposure and exposure
disparity both decrease markedly over time. In the absence
of climate policy, disparities exist, even in 2050. While we
observe this trend under the current policy, disparity and

exposure are lower under policies, such as a carbon tax, net-
zero targets, an ICE ban, and a clean electricity standard. By
2050, only the ICE ban combined with a clean electricity
standard completely eliminates exposure disparities. The
current policy and ICE ban lead to the highest remaining
disparities by 2050, especially for Black non-Hispanics,
emphasizing the need for additional policy measures to address
inequities. Policy scope plays a crucial role, as demonstrated by
the difference in disparity outcomes between scenarios
targeting only transportation emissions (ICE ban) or electricity
emissions (CES) and those addressing both transportation and
electricity emissions (ICE ban + CES and net-zero carbon tax).
The timing of policy implementation also influences exposure
outcomes, highlighting the importance of early emission
reductions for achieving equity goals.

Our mortality risk analysis reveals the carbon tax as a
particularly impactful strategy, avoiding the highest number of
cumulative deaths. However, the ICE ban lags in avoided
deaths due to increased electricity emissions in some years,
supporting results found in other recent research.96 Per capita
deaths by race reveal a nuanced picture of equity outcomes
from decarbonization. Calculating mortalities with a race-
specific relative risk results in substantially higher per capita
deaths for Black non-Hispanics across all scenarios relative to
all other racial groups, highlighting the importance of
additional research to decrease uncertainty surrounding health
risk by race.

Our results come with caveats due to parametric and
structural uncertainty in each analysis step. Temoa’s modeling
framework includes techno-economic parameters for technol-
ogies out to 2050. While we derive data from reputable sources
such as government research laboratories and peer-reviewed
literature, it is impossible to forecast these parameters exactly.
The model structure also does not account for the real-world

Figure 4. Population-weighted exposure distributions (25th percentile, median, and 50th percentile) across races and policy scenarios. The error
bars represent the 10th and 90th percentile values. Values are reported only for 2050. “Total” displays trends for the U.S. population as a whole. In
2020, the modeled median exposures for Black non-Hispanics, White non-Hispanics, Hispanics, and other racial groups are 2.14, 1.76, 2.98, and
3.20, respectively.

Table 2. Cumulative Avoided Deaths from 2020 to 2050
due to Air Pollution from On-Road Transportation and
Electricity Generation

scenario cumulative avoided deaths

ICE ban 40,900−62,700
clean electricity standard 92,000−133,300
ICE ban + CES 108,300−161,400
net-zero 135,500−197,300
carbon tax 164,700−236,800
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stakeholder heterogeneity in the energy system, the political
landscape, and non-economic drivers of energy system
decisions.97 In the downscaling algorithm, the population
data set contains uncertainties about the precise demographic
makeup of the U.S. Further, our model serves only as a
simulation of possible future outcomes, not as a prediction.
AP3's reduced-complexity dispersion and chemistry modeling
approximates the fate and transport of emissions, and while the
EPA directly monitors some emission sources, many NEI data
observations are estimated.

Concentration−response also contributes to uncertainty,
although we attempt to account for this by estimating
mortalities with multiple relative risk and mortality rate
estimates. Finally, our work does not consider any modeled
policy’s cost burden distribution. While Temoa reports cost
differences between the different scenarios, it does so at a
regional level and from a system-planner perspective.
Estimating downscaled cost impacts is beyond the scope of
this analysis.

The spatial resolution of our analysis is limited to the county
level by our downscaled data inputs. For example, we are
unaware of any population projection data that are more
granular than the county level. While it would theoretically be
possible to use census-tract population estimates for the
present-day population due to differing birth and death rates
by race and projected immigration trends, it would not be
reliable to assume that present-day census tract population
estimates will hold out to 2050. Furthermore, the spatial
surrogate that we use to downscale transportation emissions
(EPA’s MOVES) is reported at the U.S. county level. These
limitations of data necessarily mean that our analysis will miss
near-source disparities. While these disparities are critical to
understand, they are beyond the scope of this analysis and
would be better assessed in a study with a more limited
temporal and regional scope.

Despite model limitations, our results add to the literature,
demonstrating the benefits of emissions beyond climate goals.

By tying an ESOM to an IAM, we can estimate future equity
outcomes resulting from the energy transition in multiple
sectors, which are critical to ensuring an equitable transition to
clean energy. If a particular policy reduces exposure but not
disparity, then a policymaker could consider additional
legislation preferentially targeting emission sources located in
proximity to marginalized communities. Our modeling frame-
work can serve as a guide for policymakers to achieve their
equity-minded goals. When equity is a policy goal, it is
necessary to consider the total exposure, exposure disparity
across groups, and the distribution of outcomes within groups.
While air pollution exposure is only one way to quantify equity
outcomes, the direct connection between air pollution and
increased mortality makes it an important one.
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