Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Feb 1;201(2):405–410. doi: 10.1042/bj2010405

Bis-(5'-guanosyl) tetraphosphatase in rat tissues.

J C Cameselle, M J Costas, M A Sillero, A Sillero
PMCID: PMC1163657  PMID: 6282267

Abstract

The occurrence and distribution of bis-(5'-guanosyl) tetraphosphatase activity towards dinucleoside tetraphosphates between the 27 000 g supernatant and sedimented fraction were studied in liver, kidney, brain, muscle and intestinal mucosa from rat. The p1p4-bis-(5'-guanosyl) tetraphosphate-hydrolysing activities found in total homogenates were 0.77, 1.44, 0.39, 0.36 and 2.14 units (mumol/min)/g respectively. The activities found in the 27000 g-sedimented fractions were 74, 49, 11, 4 and 96% of those present in the homogenates respectively. The properties of the soluble enzymes were investigated. All of them have low Km values for p1p4-bis-(5'-guanosyl) tetraphosphate (from 2 to 50 microM), are competitively inhibited by guanosine 5'-tetraphosphate with K1 values from 10 to 160 nM, have molecular weights of about 21 000, require Mg2+ or Mn2+ and are inhibited by Ca2+. These properties show that bis-(5'-guanosyl) tetraphosphatase (EC 3.6.1.17), an enzyme previously characterized in Artemia salina and rat liver [Warner & Finamore (1965) Biochemistry 4, 1568-1575; Vallejo, Sillero & Sillero (1974) Biochim, Biophys. Acta 358, 117-125; Lobatón, Vallejo, Sillero & Sillero (1975) Eur. J. Biochem. 50, 495-501], is present in all the rat tissues examined. The inhibition of the enzyme by Ca2+ could be related to the effect of p1p4-bis-(5'-adenosyl) tetraphosphate as a trigger of DNA synthesis [Grummt, Waltl, Jantzen, Hamprecht, Huebscher & Kuenzle (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 6081-6085].

Full text

PDF
405

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dedman J. R., Brinkley B. R., Means A. R. Regulation of microfilaments and microtubules by calcium and cyclic AMP. Adv Cyclic Nucleotide Res. 1979;11:131–174. [PubMed] [Google Scholar]
  2. FINAMORE F. J., WARNER A. H. The occurrence of P1, P4-diguanosine 5'-tetraphosphate in brine shrimp eggs. J Biol Chem. 1963 Jan;238:344–348. [PubMed] [Google Scholar]
  3. Grummt F. Diadenosine 5',5'''-P1,P4-tetraphosphate triggers initiation of in vitro DNA replication in baby hamster kidney cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):371–375. doi: 10.1073/pnas.75.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grummt F., Waltl G., Jantzen H. M., Hamprecht K., Huebscher U., Kuenzle C. C. Diadenosine 5',5'''-P1,P4-tetraphosphate, a ligand of the 57-kilodalton subunit of DNA polymerase alpha. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6081–6085. doi: 10.1073/pnas.76.12.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lobatón C. D., Vallejo C. G., Sillero A., Sillero M. A. Diguanosinetetraphosphatase from rat liver: Acitivity on diadenosine tetraphosphate and inhibition by adenosine tetraphosphate. Eur J Biochem. 1975 Jan 15;50(3):495–501. doi: 10.1111/j.1432-1033.1975.tb09888.x. [DOI] [PubMed] [Google Scholar]
  6. Means A. R., Dedman J. R. Calmodulin--an intracellular calcium receptor. Nature. 1980 May 8;285(5760):73–77. doi: 10.1038/285073a0. [DOI] [PubMed] [Google Scholar]
  7. Peck E. J., Jr, Ray W. J., Jr Metal complexes of phosphoglucomutase in vivo. Alterations induced by insulin. J Biol Chem. 1971 Feb 25;246(4):1160–1167. [PubMed] [Google Scholar]
  8. Rapaport E., Zamecnik P. C. Presence of diadenosine 5',5''' -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Proc Natl Acad Sci U S A. 1976 Nov;73(11):3984–3988. doi: 10.1073/pnas.73.11.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Renart M. F., Renart J., Sillero M. A., Sillero A. Guanosine monophosphate reductase from Artemia salina: Inhibition by xanthosine monophosphate and activation by diguanosine tetraphosphate. Biochemistry. 1976 Nov 16;15(23):4962–4966. doi: 10.1021/bi00668a003. [DOI] [PubMed] [Google Scholar]
  10. Sillero A., Ochoa S. Nuclear localization of diguanosine polyphosphates in Artemia embryos. Arch Biochem Biophys. 1971 Apr;143(2):548–552. doi: 10.1016/0003-9861(71)90239-6. [DOI] [PubMed] [Google Scholar]
  11. Spector T., Jones T. E., Miller R. L. Reaction mechanism and specificity of human GMP reductase. Substrates, inhibitors, activators, and inactivators. J Biol Chem. 1979 Apr 10;254(7):2308–2315. [PubMed] [Google Scholar]
  12. Vallejo C. G., Lobaton C. D., Quintanilla M., Sillero A., Sillero M. A. Dinucleosidasetetraphosphatase in rat liver and Artemia salina. Biochim Biophys Acta. 1976 Jun 7;438(1):304–309. doi: 10.1016/0005-2744(76)90246-1. [DOI] [PubMed] [Google Scholar]
  13. Vallejo C. G., Sillero M. A., Sillero A. Diguanosinetetraphosphate guanylohydrolase in Artemia salina. Biochim Biophys Acta. 1974 Jul 17;358(1):117–125. doi: 10.1016/0005-2744(74)90264-2. [DOI] [PubMed] [Google Scholar]
  14. Warner A. H., Finamore F. J. Isolation, purification, and characterization of P1,P4-diguanosine 5'-tetraphosphate asymmetrical-pyrophosphohydrolase from brine shrimp eggs. Biochemistry. 1965 Aug;4(8):1568–1575. doi: 10.1021/bi00884a016. [DOI] [PubMed] [Google Scholar]
  15. Williams R. J. Calcium ions: their ligands and their functions. Biochem Soc Symp. 1974;(39):133–138. [PubMed] [Google Scholar]
  16. Zamecnik P. C. An historical account of protein synthesis, with current overtones--a personalized view. Cold Spring Harb Symp Quant Biol. 1969;34:1–16. doi: 10.1101/sqb.1969.034.01.005. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES