Abstract
The occurrence and distribution of bis-(5'-guanosyl) tetraphosphatase activity towards dinucleoside tetraphosphates between the 27 000 g supernatant and sedimented fraction were studied in liver, kidney, brain, muscle and intestinal mucosa from rat. The p1p4-bis-(5'-guanosyl) tetraphosphate-hydrolysing activities found in total homogenates were 0.77, 1.44, 0.39, 0.36 and 2.14 units (mumol/min)/g respectively. The activities found in the 27000 g-sedimented fractions were 74, 49, 11, 4 and 96% of those present in the homogenates respectively. The properties of the soluble enzymes were investigated. All of them have low Km values for p1p4-bis-(5'-guanosyl) tetraphosphate (from 2 to 50 microM), are competitively inhibited by guanosine 5'-tetraphosphate with K1 values from 10 to 160 nM, have molecular weights of about 21 000, require Mg2+ or Mn2+ and are inhibited by Ca2+. These properties show that bis-(5'-guanosyl) tetraphosphatase (EC 3.6.1.17), an enzyme previously characterized in Artemia salina and rat liver [Warner & Finamore (1965) Biochemistry 4, 1568-1575; Vallejo, Sillero & Sillero (1974) Biochim, Biophys. Acta 358, 117-125; Lobatón, Vallejo, Sillero & Sillero (1975) Eur. J. Biochem. 50, 495-501], is present in all the rat tissues examined. The inhibition of the enzyme by Ca2+ could be related to the effect of p1p4-bis-(5'-adenosyl) tetraphosphate as a trigger of DNA synthesis [Grummt, Waltl, Jantzen, Hamprecht, Huebscher & Kuenzle (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 6081-6085].
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dedman J. R., Brinkley B. R., Means A. R. Regulation of microfilaments and microtubules by calcium and cyclic AMP. Adv Cyclic Nucleotide Res. 1979;11:131–174. [PubMed] [Google Scholar]
- FINAMORE F. J., WARNER A. H. The occurrence of P1, P4-diguanosine 5'-tetraphosphate in brine shrimp eggs. J Biol Chem. 1963 Jan;238:344–348. [PubMed] [Google Scholar]
- Grummt F. Diadenosine 5',5'''-P1,P4-tetraphosphate triggers initiation of in vitro DNA replication in baby hamster kidney cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):371–375. doi: 10.1073/pnas.75.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grummt F., Waltl G., Jantzen H. M., Hamprecht K., Huebscher U., Kuenzle C. C. Diadenosine 5',5'''-P1,P4-tetraphosphate, a ligand of the 57-kilodalton subunit of DNA polymerase alpha. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6081–6085. doi: 10.1073/pnas.76.12.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobatón C. D., Vallejo C. G., Sillero A., Sillero M. A. Diguanosinetetraphosphatase from rat liver: Acitivity on diadenosine tetraphosphate and inhibition by adenosine tetraphosphate. Eur J Biochem. 1975 Jan 15;50(3):495–501. doi: 10.1111/j.1432-1033.1975.tb09888.x. [DOI] [PubMed] [Google Scholar]
- Means A. R., Dedman J. R. Calmodulin--an intracellular calcium receptor. Nature. 1980 May 8;285(5760):73–77. doi: 10.1038/285073a0. [DOI] [PubMed] [Google Scholar]
- Peck E. J., Jr, Ray W. J., Jr Metal complexes of phosphoglucomutase in vivo. Alterations induced by insulin. J Biol Chem. 1971 Feb 25;246(4):1160–1167. [PubMed] [Google Scholar]
- Rapaport E., Zamecnik P. C. Presence of diadenosine 5',5''' -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Proc Natl Acad Sci U S A. 1976 Nov;73(11):3984–3988. doi: 10.1073/pnas.73.11.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renart M. F., Renart J., Sillero M. A., Sillero A. Guanosine monophosphate reductase from Artemia salina: Inhibition by xanthosine monophosphate and activation by diguanosine tetraphosphate. Biochemistry. 1976 Nov 16;15(23):4962–4966. doi: 10.1021/bi00668a003. [DOI] [PubMed] [Google Scholar]
- Sillero A., Ochoa S. Nuclear localization of diguanosine polyphosphates in Artemia embryos. Arch Biochem Biophys. 1971 Apr;143(2):548–552. doi: 10.1016/0003-9861(71)90239-6. [DOI] [PubMed] [Google Scholar]
- Spector T., Jones T. E., Miller R. L. Reaction mechanism and specificity of human GMP reductase. Substrates, inhibitors, activators, and inactivators. J Biol Chem. 1979 Apr 10;254(7):2308–2315. [PubMed] [Google Scholar]
- Vallejo C. G., Lobaton C. D., Quintanilla M., Sillero A., Sillero M. A. Dinucleosidasetetraphosphatase in rat liver and Artemia salina. Biochim Biophys Acta. 1976 Jun 7;438(1):304–309. doi: 10.1016/0005-2744(76)90246-1. [DOI] [PubMed] [Google Scholar]
- Vallejo C. G., Sillero M. A., Sillero A. Diguanosinetetraphosphate guanylohydrolase in Artemia salina. Biochim Biophys Acta. 1974 Jul 17;358(1):117–125. doi: 10.1016/0005-2744(74)90264-2. [DOI] [PubMed] [Google Scholar]
- Warner A. H., Finamore F. J. Isolation, purification, and characterization of P1,P4-diguanosine 5'-tetraphosphate asymmetrical-pyrophosphohydrolase from brine shrimp eggs. Biochemistry. 1965 Aug;4(8):1568–1575. doi: 10.1021/bi00884a016. [DOI] [PubMed] [Google Scholar]
- Williams R. J. Calcium ions: their ligands and their functions. Biochem Soc Symp. 1974;(39):133–138. [PubMed] [Google Scholar]
- Zamecnik P. C. An historical account of protein synthesis, with current overtones--a personalized view. Cold Spring Harb Symp Quant Biol. 1969;34:1–16. doi: 10.1101/sqb.1969.034.01.005. [DOI] [PubMed] [Google Scholar]
