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Abstract
Objectives: The prior event rate ratio (PERR) is a recently developed approach for controlling confounding by measured and unmea-
sured covariates in real-world evidence research and observational studies. Despite its rising popularity in studies of safety and effectiveness
of biopharmaceutical products, there is no guidance on how to empirically evaluate its model assumptions. We propose two methods to
evaluate two of the assumptions required by the PERR, specifically, the assumptions that occurrence of outcome events does not alter
the likelihood of receiving treatment, and that earlier event rate does not affect later event rate.

Study Design and Setting: We propose using self-controlled case series (SCCS) and dynamic random intercept modeling (DRIM),
respectively, to evaluate the two aforementioned assumptions. A nonmathematical introduction of the methods and their application to
evaluate the assumptions are provided. We illustrate the evaluation with secondary analysis of deidentified data on pneumococcal vacci-
nation and clinical pneumonia in The Gambia, West Africa.

Results: SCCS analysis of data on 12,901 vaccinated Gambian infants did not reject the assumption of clinical pneumonia episodes had
no influence on the likelihood of pneumococcal vaccination. DRIM analysis of 14,325 infants with a total of 1719 episodes of clinical
pneumonia did not reject the assumption of earlier episodes of clinical pneumonia had no influence on later incidence of the disease.

Conclusion: The SCCS and DRIM methods can facilitate appropriate use of the PERR approach to control confounding. � 2024 The
Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords: Confounding; Dynamic random intercept model; Observational studies; Prior event rate ratio; Self-controlled case series; Real-world evidence
Plain Language Summary

The prior event rate ratio is a promising approach for analysis of real-world data and observational studies. We pro-
pose two statistical methods to evaluate the validity of two assumptions it is based on. They can facilitate appropriate
use of the prior even rate ratio.
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1. Introduction

The prior event rate ratio (PERR) approach has been
proposed to control measured or unmeasured confounders
in analysis of real-world data and observational studies in
which the outcomes are nonterminal events [1,2]. Tannen
et al applied the PERR to estimate the efficacy of several
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What is new?

Key findings
� The self-control case series and dynamic random

intercept modeling methods can be used to eval-
uate two assumptions of the prior event rate ratio
method, specifically, the assumption that occur-
rence of outcome events does not alter the likeli-
hood of receiving treatment, and the assumption
that earlier event rate does not affect later event
rate.

What this adds to what was known?
� The prior event rate ratio method has a potential to

control confounding in observational studies and
real-world evidence research, but its validity relies
on a series of assumptions and there has been no
guidance on how to empirically evaluate them.

What is the implication and what should change
now?
� The proposed methods should be used to evaluate

the assumptions prior to application of the prior
event rate ratio method.

drugs on the incidence of cardiovascular events using elec-
tronic health records [1]. They designed the studies such
that the treatments were comparable to randomized
controlled trials of the same or similar treatments. They
compared the PERR with multivariable regression and pro-
pensity score methods for controlling confounding. Using
previously published efficacy estimates from randomized
controlled trials as the gold standard, they found that PERR
out-performed the other methods in terms of producing ef-
ficacy estimates that were close to the gold standard esti-
mates. Two other observational studies similarly found
PERR superior to alternative methods for controlling con-
founding [3,4]. This approach has also been applied to
study the safety and efficacy of a variety of other biophar-
maceutical products [5e11].

The core idea of the PERR is to partition person-time of
persons who have been treated with the product under
investigation during an observation period into two
sections: prior to and after initiation of treatment. Each
treated person is matched to K (K � 1) control persons
who never received the treatment. The treated person’s date
of treatment initiation is the index date for partitioning the
matched control’s person-time into prior and postperiods.
The matching procedure is to ensure that the untreated
controls have index dates that are commensurate with the
treatment dates of the treated persons. The hazard of the
outcome event is then compared between the two groups
of people separately in the prior period and in the
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postperiod, generating two hazard ratios (HRs), HRprior

and HRpost, respectively. The PERR aims to cancel out con-
founding by estimating treatment effect as the ratio of the
two HRs:
HRPERR 5 HRpost

�
HRprior
Despite promising findings from previous studies and
rising popularity, validity of the PERR depends on a series
of assumptions [1,5,12,13]. Previous studies have relied on
prior knowledge to determine the validity of the assump-
tions. There is a lack of strategy to empirically evaluate
the validity of these assumptions.

This article focuses on two of the assumptions about the
relationship of events over time: (1) occurrence of the
outcome event does not alter the probability of receiving
treatment and (2) outcome event rate in the prior period
does not affect outcome event rate in the postperiod. We
propose that the self-controlled case series (SCCS) method
and dynamic random intercept modeling (DRIM) can be
used to assess the plausibility of these two assumptions,
respectively. We will use data on pneumococcal vaccination
and clinical pneumonia in Gambian children to illustrate.
2. Materials and methods

2.1. Self-controlled case series

The SCCS is commonly used in the monitoring of drug
and vaccine safety. Whitaker et al gave an excellent intro-
duction to the method [14]. Further details and R packages
can be found in Farrington et al [15] Briefly, the SCCS
analyzes data from cases only, that is, people who have
experienced the outcome event. It uses conditional Poisson
regression to compare the incidence of the outcome event
between time intervals defined in relation to the timing of
treatment, such as the first 28 days postvaccination being
a risk window vs. time before and over 28 days after vacci-
nation as a reference period. Exponentiation of the regres-
sion coefficients gives relative incidence in the risk window
as compared to the reference period. Since the conditional
Poisson regression makes comparison between time inter-
vals within persons, it automatically prevents confounding
by all time-constant covariates such as ethnicity. The
method requires appropriate model specification to adjust
for time-varying covariates such as age [14]. In the pres-
ence of time-varying covariates, cases that never received
the treatment can also be included into the analysis, which
improves the precision of the estimates [16]. If a case had
multiple episodes of the outcome event during the study
period, the typical recommendation is to include only the
first episode in the analysis. Otherwise an additional
assumption of absence of event dependence is required
[14,15]. The method was originally developed for rare
events, but unbiased estimation of the relative incidence
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of nonrare events can be achieved by adjustment for age or
time intervals as time-varying covariates [17,18].

In SCCS studies of vaccine safety, a person may be
treated multiple times, that is, multiple doses of the
vaccine. The outcome is an episode of an adverse event.
To evaluate the PERR method’s assumption that occurrence
of prior events does not affect the probability of treatment,
we reverse the role of ‘‘treatment’’ and ‘‘outcome’’. For
example, in the study of pneumococcal vaccination in
Gambian infants that we will discuss shortly, we defined
pneumococcal vaccination as the outcome and clinical
pneumonia episodes as the treatment. As with typical SCCS
analysis, the treatment (now clinical pneumonia episodes)
may occur multiple times, while only the first episode of
the outcome event (first dose of pneumococcal vaccine) is
included.
2.2. Dynamic random intercept model

An excellent review of dynamic random intercept
modelling (DRIM) was given by Skrondal and Rabe-
Hesketh [19]. Examples of DRIM in medical research
include evaluation of whether wheezing affected the chance
of future wheezing [19], and persistence of a child’s adher-
ence to an immunization schedule [20]. An important issue
to note is that standard random intercept models with a
lagged response (ie, outcome in the previous time interval)
as a time-varying independent variable can suffer serious
bias due to the ‘‘initial conditions problem’’. Skrondal
and Rabe-Hesketh called this a na€ıve model [19]. The
initial conditions problem arises when the first response
observed during a study period is affected by the random
intercept and unobserved responses prior to the start of
the study. The na€ıve model tends to bias toward underesti-
mating the variance of the random intercept and overesti-
mating the coefficient for the lagged response, generating
a false impression that the prior events affect later event
rate. An uncommon situation in which the initial conditions
problem is absent occurs when the study period starts from
birth such that there are no unobserved prior responses. In
this case the degree of bias for the na€ıve model is affected
by the proportion of positive response among the first
observations and the degree of association between the first
and later responses [21,22].

Unbiased methods for studying lagged response in the
presence of the initial conditions problem are well-
established for continuous and binary outcomes. To eval-
uate whether prior event rate affects later event rate, we
propose to partition follow-up time into equal length inter-
vals and define the outcome (clinical pneumonia in our
example) in each interval as either no event (yi;j 5 0) or
at least one event (yi;j 5 1), where subscripts i and j index
the i-th person and j-th time interval ðj 5 0;1;2;.Þ, respec-
tively. A lagged response that represents past occurrence of
the outcome is lagðyi;jÞ5 yi;j�1, which is not defined for the
first interval ðj 5 0Þ. We propose to apply the first-order
autoregressive (AR1) dynamic random intercept model of
Aitkin and Alfo [23], which was recommended by the
review of Skrondal and Rabe-Hesketh [19]. Briefly, it is a
generalized linear latent and mixed model that jointly
models the first ðyi;0Þ and subsequent responses ðyi;j; j �
1Þ. It requires a minimum of three intervals. It can be
estimated using, for example, Stata’s gllamm or gsem com-
mands. Exponentiation of the regression coefficient for the
lagged response gives the odds ratio for the magnitude of
association between outcomes in the previous and present
time intervals. Details of the DRIM model and Stata gsem
codes for the example study are given in Appendix 1.
2.3. Pneumococcal vaccination and clinical pneumonia
in Gambian children

Pneumococcal conjugate vaccine (PCV) is efficacious
in reducing the incidence of invasive pneumococcal dis-
ease and radiological pneumonia with consolidation
[24]. It has a smaller level of efficacy in reducing the
incidence of clinical pneumonia defined according to
clinical signs and age-specific respiratory rate cut-offs
[25,26]. In low-income settings where laboratory and x-
ray facilities are limited, data on clinical pneumonia are
likely more available for real-world studies. For illustra-
tion purposes, we will analyze data of infants up to the
age of 12 months from a population-based demographic
and disease surveillance system in Upper River Region,
The Gambia, West Africa. The country started to deliver
13-valent PCV in May 2011. This illustration included
infants born between June 2011 and December 2013. De-
tails of the surveillance system have been previously pub-
lished [26,27].

While infants with severe illness are usually discouraged
from vaccination until they recover, they may receive PCV
if they only have mild illness according to clinical judg-
ment [28,29]. Therefore it is uncertain whether clinical
pneumonia might have a short-term impact in reducing
the chance of receiving PCV. On the other hand, parents
of children who have suffered pneumonia may have stron-
ger motivation to have their children vaccinated after recov-
ery. We illustrated the use of SCCS to evaluate whether
clinical pneumonia affected the likelihood of receiving
PCV. Clinical pneumonia was as defined in previous publi-
cations [25,26]. Receipt of the first dose of PCV (PCV1)
was the outcome in the analysis. We defined two risk
windows: 1-14 days and 15-42 days after the date of diag-
nosis of clinical pneumonia. Times before and at least
42 days after an episode of clinical pneumonia formed
the reference period. The first 14-day window was chosen
to assess whether there was a short-term reduction of the
chance of vaccination. The next 28-day window was chosen
to assess whether clinical pneumonia would promote PCV
uptake after recovery, assuming that such motivation would
not last longer. If a child had two episodes of clinical pneu-
monia within a period less than 42 days, the overlapping
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duration of the 15e42 day interval after the earlier episode
and 1e14 day interval after the later episode was counted
only as under the influence of the later episode. Age was
adjusted for as a time-varying covariate, in 2-month
intervals.

Episodes of infectious diseases may induce acquired
immunity and therefore reduce subsequent disease inci-
dence. But clinical pneumonia has a diverse etiology and
this relationship is uncertain. We illustrated the use of
DRIM (and na€ıve model) to evaluate whether occurrence
of clinical pneumonia in one time interval might affect
the chance of clinical pneumonia in the next interval. We
partitioned the observation time from birth through infancy
into six 60-day intervals, each with a binary response of
whether there was no episode ðyi;j 50Þ or at least one
episode ðyi;j 51Þ of clinical pneumonia. The lagged
response was lagðyi;jÞ5 yi;j�1. Gender and mother’s educa-
tion were time-constant covariates. Age (in months) and
distance from residence to nearest health center (km) were
time-varying covariates as per their values at the beginning
of intervals.

To illustrate the impact of the problem in more general
situations that the first true response may be unobserved
and caution against the use of the na€ıve model, we also
analyzed the data after exclusion of the first 60-day
interval.

To illustrate PERR estimation, we used having received
at least one dose of PCVas the exposure. One-to-one match
by gender, mother’s education and distance to nearest
health center (tertiles) was used to generate pairs of
exposed and unexposed infants and index dates for the
latter. In matching for mother’s education, we combined
Basic and Secondary as one category and Madrassa/Qu-
ranic and Other as another. We used age as the time-scale
in the Cox models for estimation of HRprior and HRpost,
and bootstrapping with 1000 replicates to generate
confidence interval for HRPERR.

To avoid repeated counting of a disease episode, it
is common that infectious disease research requires a
certain number of days since diagnosis of the previous
disease episode to pass before a new episode can be
counted. Previous studies of pneumonia defined this
period as 30 days [25,26], which we followed. The bi-
nary responses yi;j indicated the outcome in a 60-day
interval. If an episode of clinical pneumonia occurred
within the first 30 days of the 60-day interval, the
30-day gap would not affect the data structure. Other-
wise, there must be some duration of time free of new
episodes after this 60-day interval. In this case, we
define the next 60-day interval as starting from the
end of the 30-day gap. We did not allow the next
60-day interval to include the unfinished part of the
30-day gap because that would imply a smaller odds
of the outcome in the next interval due to less time
to observe it, which would induce a negative associa-
tion between yi;j�1 and yi;j.
3. Results

There were 15,304 infants born during the study period.
Table 1 shows the descriptive characteristics of the infants
and subsets of them to be included in the SCCS, DRIM, and
PERR analyses.

3.1. Self-controlled case series

Among the 15,304 infants, 12,902 received PCV1.
Distribution of the age at PCV1 was positively skewed,
with median 2.7 months, and 1st and 99th percentiles 1.2
and 9.0 months, respectively. One of the 12,902 vaccinated
infants had no variation in exposure (ie, no record of
clinical pneumonia and entered and exited the surveillance
system within the same age interval). This observation was
not informative in the SCCS analysis and was excluded.
Among the 12,901, 1385 had at least one episode of clinical
pneumonia during infancy. SCCS analysis adjusted for age
effect estimated the relative incidence of receiving PCV1 as
1.14 (95% CI 5 0.89 to 1.46; P 5 .313) and 0.88 (0.69 to
1.12; P 5 .301) during the 1-14 days and 15-42 days risk
windows, respectively. There was no evidence of clinical
pneumonia affecting PCV uptake.

3.2. Dynamic random intercept modeling

Among the 15,304 infants, 14,325 had complete obser-
vations (six 60-day observations). Among them, 1,275,
167 and 34 had 1, 2, and �3 episodes of clinical pneu-
monia. Table 2 shows the results of DRIM and na€ıve model
analysis. Using longitudinal data from birth, having
adjusted for covariates, clinical pneumonia in the previous
interval had little association with that in the present inter-
val, with odds ratios exp (0.08) 5 1.08 (0.81 to 1.42;
P 5 .599) and exp (0.10) 5 1.11 (0.84 to 1.48;
P 5 .477) estimated from the DRIM and na€ıve model,
respectively. There was no evidence of association of
clinical pneumonia over time.

There were only 32 cases (0.22%) in the first interval as
opposed to about 300 cases in each of the subsequent inter-
vals. The tetrachoric correlation between each response and
its immediate next response, corrðyi;j; yi;jþ1Þ, were similar
across all j ( j 5 0,1,2,3,4), in the range of 0.22 to 0.28
(Table 3). However, the tetrachoric correlation between
the first and later responses, corrðyi;0; yi;jþkÞ; k � 2, was
much weaker than that among the other responses. This
indicates that the determinants of clinical pneumonia in
the earliest period were likely different from the later
periods. In this data pattern, the bias in the na€ıve model
is limited [21,22].

To highlight the pitfall of na€ıve analysis in the presence
of the initial conditions problem, we also analyzed the
data after exclusion of the first 60-day interval, to mimic
situations in which there are unobserved responses prior
to study onset. The DRIM gave results similar to the anal-
ysis of the complete data. The na€ıve model showed the



Table 1. Descriptive statistics of Gambian infants, Upper River Division, June 2011 to December 2013

Variables All (N [ 15,304) SCCS subset (N [ 12,901) DRIM subset (N [ 14,325) PERR subset (N [ 4038)

Gender

Male 7763 (50.7%) 6541 (50.7%) 7258 (50.7%) 2020 (50.0%)

Mother’s education

None 2271 (14.8%) 1873 (14.5%) 2141 (15.0%) 686 (17.0%)

Basic 1208 (7.9%) 1049 (8.1%) 1143 (8.0%) 259 (6.4%)

Secondary 365 (2.4%) 328 (2.5%) 333 (2.3%) 59 (1.5%)

College/university 1701 (11.1%) 1489 (11.5%) 1635 (11.4%) 348 (8.6%)

Madrassa/Quranic 8912 (58.2%) 7708 (59.8%) 8433 (58.9%) 2266 (56.1%)

Other 847 (5.5%) 454 (3.5%) 640 (4.5%) 420 (10.4%)

Distancea

Mean (SD) 6.08 (5.99) 6.10 (6.05) 6.12 (6.00) 6.23 (5.94)

PERR, prior event rate ratio.
a Distance to nearest health center (km) is a time-varying covariate due to movement; value at baseline is shown.
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expected bias of overestimation of the odds ratio, exp
(0.58) 5 1.79 (1.22e2.63; P 5 .003), and underestima-
tion of the variance of the random intercepts, leading to
a false conclusion that earlier events increased later event
rate.
3.3. Prior event rate ratio

Among the 15,304 infants, 350 had less than 2 months’
observation time in the surveillance system due to out-
migration or death. They were excluded from PERR
analysis. Among those eligible for the analysis, 12,935
Table 2. Illustration of naive modelling and dynamic random intercept modell
60-day intervals) and excluding the first interval (to generate initial conditi

Parameters

Complete data

DRIM coef. (95% CI) Na€ıve coef. (95

Lagged response 0.08 (�0.21, 0.36) 0.10 (�0.18, 0

Gender

Male 0.32 (0.21, 0.44) 0.32 (0.21, 0.

Mother’s education

None 0 0

Basic 0.20 (�0.04, 0.44) 0.20 (�0.04, 0

Secondary 0.06 (�0.32, 0.45) 0.07 (�0.32, 0

College/university �0.25 (�0.49, �0.01) �0.25 (�0.49, �
Madrassa/Quranic 0.07 (�0.10, 0.24) 0.07 (�0.10, 0

Other �0.22 (�0.54, 0.11) �0.21 (�0.54, 0

Agea

(months) �0.04 (�0.05, �0.02) �0.04 (�0.05, �
Distancea

(km) �0.07 (�0.08, �0.06) �0.07 (�0.08,-0

Intercept �4.32 (�4.61, �4.03) �4.32 (�4.61, �
Varianceb 1.33 (1.06, 1.67) 1.31 (1.04, 1.

a Age and distance to nearest health center are time-varying covariate w
b Variance of random intercepts.
did and 2019 did not receive PCV. The matching proced-
ure described in Section 2.3 formed 2019 pairs of infants.
Median age at vaccination and index age for partitioning
prior- and postperiods were 2.7 months. Table 4 shows
the number of clinical pneumonia and person-years by
groups and periods. HRpost was 1.01 (0.83e1.24), indi-
cating no difference between vaccination groups in the
postperiod. However, HRprior was 2.20 (1.30e3.71),
showing that infants who would later be vaccinated were
at higher risk of pneumonia to begin with. The PERR es-
timate were 1.01/2.20 5 0.46 (0.25e0.79; P 5 .006),
indicating PCV effectiveness.
ing (DRIM) with logit link function, using complete data from birth (six
ons problem); clinical pneumonia in Gambian infants

Exclude first interval

% CI) DRIM coef. (95% CI) Na€ıve coef. (95% CI)

.39) 0.08 (�0.22, 0.38) 0.58 (0.20, 0.97)

44) 0.28 (0.16, 0.41) 0.27 (0.15, 0.39)

0 0

.44) 0.25 (�0.01, 0.51) 0.24 (0.02, 0.49)

.46) �0.01 (�0.45, 0.43) �0.01 (�0.44, 0.42)

0.01) �0.24 (�0.50, 0.02) �0.23 (�0.48, 0.02)

.24) 0.04 (�0.15, 0.23) 0.03 (�0.15, 0.21)

.11) �0.32 (�0.71, 0.07) �0.32 (�0.69, 0.06)

0.02) �0.03 (�0.05, 0.00) �0.03 (�0.05, 0.00)

.06) �0.07 (�0.08, �0.06) �0.06 (�0.08, �0.05)

4.02) �4.27 (�4.62, �3.91) �4.11 (�4.47, �3.74)

66) 1.30 (0.96, 1.76) 0.88 (0.54, 1.44)

ith values defined as at the start of each time interval.



Table 3. Tetrachoric correlation between responses in the six 60-day
intervals

Interval yi;0 yi;1 yi;2 yi;3 yi;4 yi;5

yi;0 1.00

yi;1 0.26 1.00

yi;2 0.14 0.28 1.00

yi;3 0.15 0.24 0.26 1.00

yi;4 0.23 0.26 0.27 0.28 1.00

yi;5 0.17 0.22 0.24 0.20 0.22 1.00
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4. Discussion

The PERR is a promising approach to control confound-
ing. Nonetheless, its validity relies on a series of assump-
tions, two of which have been discussed here. We
propose using the SCCS and DRIM to evaluate these two
assumptions.

The strength of our proposal is that the SCCS and DRIM
are well-established methods which can be implemented
using existing software [14,15,19].

The main limitation of our proposal is that the SCCS
and DRIM require specifications according to the
research context and themselves involve assumptions.
For example, SCCS requires specification of the number
and width of risk windows after the exposure. In the
case study of clinical pneumonia (exposure) and PCV
(outcome) we set risk windows up to 42 days after
exposure, assuming that the impact of the exposure
would not last long, if any. Careful consideration of
such specifications according to the research context
is needed. The DRIM in the current literature only al-
lows for a first-order lagged response, assuming that
yi;j�k ðk � 2Þ have no association with yi;j. Methodolog-
ical research to generalize the method to allow for k �
2 is needed.

Furthermore, to be precise, the second PERR assump-
tion that we considered is that event rate in the prior
period does not affect event rate in the postperiod in both
the treatment and control groups. The DRIM does not
directly test this assumption. Instead, it evaluates the as-
sociation of outcomes across at least three time intervals;
the model is not estimable if there are only two intervals
[19]. Hypothetically, we may imagine a situation in
which there are multiple time intervals in the prior period
and multiple time intervals in the postperiod. Also
Table 4. Numbers of clinical pneumonia episodes (numerator) and
person-years (denominator) by groups and periods, and hazard
ratios by periods

Period Vaccinated Unvaccinated HR (95% CI)

Prior 46/506 20/504 2.20 (1.30 to 3.71)

Post 220/1508 184/1357 1.01 (0.83 to 1.24)

HR, hazard ratio; CI, confidence interval.
imagine that both within the prior period and within
the postperiod there is significant association between
the lagged and present response, but there is no such as-
sociation across the prior and postperiods. In this hypo-
thetical situation the DRIM may show significant
association between responses in the intervals although
the PERR assumption is not violated. However, such a
situation is implausible at least in the untreated controls
because the separation of the prior and postperiods
among the untreated controls occurs only in data anal-
ysis, not in real-life. As such, while the DRIM does
not directly test this assumption, we maintain that it
can evaluate the plausibility of this assumption.

No evidence of assumption violation does not equal ev-
idence of validity of assumptions. In the case study,
considering that the point estimates concerned were fairly
close to the null value and their confidence intervals
excluded strong association, we consider the two assump-
tions no barrier to the use of PERR. As with any statistical
research, careful interpretation of the analytic results is
important.

For completeness of illustration we applied the PERR
to estimate PCV effect on clinical pneumonia. We caution
against a substantive interpretation of this PERR result.
This is because there is still uncertainty in not only the
evaluation of other assumptions of PERR, such as time-
varying confounding, but also how to implement some
of the PERR procedures, such as how best to perform
matching without losing many persons due to failure to
identify a match or more treated than untreated persons.
Matching has been an essential procedure in previously
published work on PERR for generating index dates for
the untreated group. Whether it is always required is a
question worthy of investigation. These are areas for
future research.
5. Conclusion

The PERR is a promising approach for controlling
confounding in observational studies and real-world
evidence research. The SCCS and DRIM methods can eval-
uate the plausibility of two of the major assumptions of the
PERR and thus facilitate the appropriate use of this
approach. However, SCCS and DRIM themselves involve
assumptions and should be used with care. Furthermore,
there are other assumptions and implementation procedures
required by the PERR, for which currently there is a
paucity of guidance in the literature.
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