Skip to main content
. 2024 Jan 23;10:e1745. doi: 10.7717/peerj-cs.1745

Table 3. Open dataset analysis in predicting helpful reviews.

Performance of technique evaluation in predicting helpful reviews.

Author., year Dataset publicly availability Technique Performance matrices Performance
Olmedilla, Martínez-Torres & Toral (2022) No Convolutional Neural Network Accuracy 66.00%
Son, Kim & Koh (2021) No Convolutional Neural Network Accuracy 70.70%
Woo & Mishra (2021) No Tobit Regression Accuracy 74.00%
Akbarabadi & Hosseini (2020) No Random Forest Accuracy 85.60%
Malik (2020) Yes1 Deep Neural Network MSE 0.06
Anh, Nagai & Nguyen (2019) Yes2 Convolutional Neural Network Accuracy 70.13%
Eslami, Ghasemaghaei & Hassanein (2018) No Artificial Neural Network Accuracy 80.70%
Malik & Hussain (2018) Yes3 Stochastic Gradient Boosting MSE 0.05
Liu et al. (2017) No Unigram Features + Argument-Based Features Accuracy 71.80%
Menner et al. (2016) No Keyword Clustering Accuracy 88.45%
Qazi et al. (2016) No Tobit Regression Efron’s R ˆ2 0.167
Yang, Chen & Bao (2016) No Support Vector Machine Correlation Coefficient 0.665
Huang et al. (2015) No Tobit Regression Efron’s R ˆ2 0.128
Krishnamoorthy (2015) Yes4 Random Forest Accuracy 81.33%
Yang et al. (2015) No Support Vector Machine Correlation Coefficient 0.702
Zhang et al. (2015) No Gain-based Fuzzy Rule-covering Classification Accuracy 72.80%
Martin & Pu (2014) No Random Forest Accuracy 88.00%
Zhang, Qi & Zhu (2014) No Linear Regression Correlation Coefficient 0.712
Zeng et al. (2014) No Support Vector Machine Accuracy 72.82%
Momeni et al. (2013) No Random Forest Accuracy 89.00%
Korfiatis, García-Bariocanal & Sánchez-Alonso (2012) No Tobit Regression Efron’s R ˆ2 0.451
Min & Park (2012) No Rule-Based Classifier Accuracy 83.33%
Wu, Van der Heijden & Korfiatis (2011) No Ordinary Least Square Regression Correlation Coefficient 0.607
Ghose & Ipeirotis (2010) No Support Vector Machine Accuracy 87.68%
O’Mahony & Smyth (2010) No Random Forest AUC Score 0.77
Susan & David (2010) No Tobit Regression Efron’s R ˆ2 0.420
Otterbacher (2009) No Linear Simple Regression Efron’s R ˆ2 0.170
Liu et al. (2008) No Non-Linear Regression F-Measure 71.16%
Weimer & Gurevych (2007) No Support Vector Machine Accuracy 77.39%