
Submitted 1 August 2023
Accepted 25 October 2023
Published 31 January 2024

Corresponding author
Muhammad Asif, asif@ntu.edu.pk

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.1704

Copyright
2024 Nazir et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Machine learning based framework for
fine-grained word segmentation and
enhanced text normalization for low
resourced language
Shahzad Nazir1, Muhammad Asif1, Mariam Rehman2 and Shahbaz Ahmad1

1Department of Computer Science, National Textile University, Faisalabad, Pakistan
2Department of Information Technology, Government College University, Faisalabad, Faisalabad, Pakistan

ABSTRACT
In text applications, pre-processing is deemed as a significant parameter to enhance the
outcomes of natural language processing (NLP) chores. Text normalization and tok-
enization are two pivotal procedures of text pre-processing that cannot be overstated.
Text normalization refers to transforming raw text into scriptural standardized text,
while word tokenization splits the text into tokens orwords.Well defined normalization
and tokenization approaches exist for most spoken languages in world. However,
the world’s 10th most widely spoken language has been overlooked by the research
community. This research presents improved text normalization and tokenization
techniques for the Urdu language. For Urdu text normalization, multiple regular
expressions and rules are proposed, including removing diuretics, normalizing single
characters, separating digits, etc. While for word tokenization, core features are defined
and extracted against each character of text. Machine learningmodel is considered with
specified handcrafted rules to predict the space and to tokenize the text. This experiment
is performed, while creating the largest human-annotated dataset composed in Urdu
script covering five different domains. The results have been evaluated using precision,
recall, F-measure, and accuracy. Further, the results are compared with state-of-the-art.
The normalization approach produced 20% and tokenization approach achieved 6%
improvement.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Emerging Technologies,
Social Computing
Keywords Word segmentation, Text normalization, Machine learning, Low resourced languages

INTRODUCTION
The natural language processing models (Zhou et al., 2020) require the input in a
specific format to perform tasks such as text summarization (Allahyari et al., 2017),
text simplification (Nisioi et al., 2017), word embedding (Nazir et al., 2022), topic
modeling (Vayansky & Kumar, 2020) etc. Pre-processing is considered to be the key
phase in NLP tasks (Srividhya & Anitha, 2010) and embodies two essential modules
(1) normalization (Bollmann, 2019) and (2) tokenization (Hassler & Fliedl, 2006). Text
normalization is a process of converting the text into scriptural standardized form of
a language. While, tokenization splits the text into words or tokens. Languages such

How to cite this article Nazir S, Asif M, Rehman M, Ahmad S. 2024. Machine learning based framework for fine-grained word segmenta-
tion and enhanced text normalization for low resourced language. PeerJ Comput. Sci. 10:e1704 http://doi.org/10.7717/peerj-cs.1704

https://peerj.com/computer-science
mailto:asif@ntu.edu.pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1704
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1704

as English uses white spaces to separate the words. However, in most Asian languages,
including Chinese, Thai, Urdu, and Lao, white space does not define the boundary of
words (Akram & Hussain, 2010), which makes the text manipulation difficult to perform.

Urdu is an Indo-Aryan language, and previously little attention has been paid towards
carrying out the natural language processing tasks for Urdu text (Daud, Khan & Che,
2017). The characters of Urdu are used to write with different variations. Similar to Arabic
script (Naz, Umar & Razzak, 2016), diacritics are widely utilized in text writing. White
spaces are not adequately used to separate the words. The native readers can effortlessly
understand the text without spaces. However, the text processing models would not be
able to recognize the boundaries of typescript. However, different normalization and
tokenization approaches exist (Sharf & Rahman, 2017; Khan et al., 2022; Khan et al., 2018)
to cope with such issues.

Researchers have presented different models and techniques for Urdu normalization
and tokenization. The UrduHack normalization (Abbas, Mughal & Haider, 2022) serves as
the state-of-the-art to normalize the Urdu text. UrduHack introduced different regular
expressions for text normalization. However, the produced normalized text still lacks in
tackling different aspects e.g multiple white spaces, and Urdu special characters. Likewise,
for Urdu text tokenization state-of-the-art approach was introduced by Shafi et al. (2022)
for text tokenization. However, the produced results are insignificant in conducting NLP
experiments. This research prevails over the issues of current approaches by instigating
the indispensable NLP techniques of normalization and tokenization for Urdu text. The
objective of this reserach is to propose fine-grain text normalization and tokenization
models for Urdu. A human-annotated large-scale dataset comprising of text from five
different domains was created. For normalization, multiple regular expressions and rules
were handcrafted. These rules and regular expressions addressed different aspects of text
such as diacritics, normalizing characters, separating punctuation, etc. While to perform
the cardinal task of tokenization supervised machine learning model was utilized with
specified textual rules. The proposed normalization was evaluated using produced correct
and incorrect changes in text by the approach. While, evaluation of tokenization was
performed using precision, recall, F-measure, and accuracy. The produced results were
compared with state-of-the-art. The normalization results were improved by 20%, while
the tokenization gained 6% improvement. The language models immensely relies upon the
preprocessing procedures. Ill-defined normalization and tokenization can lead to trivial
results. While the explicit approaches can significantly enhance the outcomes of natural
language text processing models. Therefore, the proposed text normalization and word
tokenization approaches can be utilized in natural language processing tasks such as text
summarization, text generation, word prediction etc. for producing high accuracy results.

LITERATURE REVIEW
Pre-processing serves as the key procedure to execute the text processing functions. It
can be categorized into text normalization and text tokenization. For normalization and
tokenization multiple approaches exist that possess their strengths and weaknesses (Shafi et
al., 2022; Bollmann, 2019). These approaches are briefly described in subsequent sections.

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 2/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1704

Table 1 Urdu alphabets and numbers.

Text normalization
The text collected from different sources can have different formats. Text normalization is
deemed to transform the text into a standardized form. The pioneering approach for text
normalization was proposed by Baron & Rayson (2008) dealing with spelling variations.
The authors presented the Variant Detector tool for identifying different spellings for the
same word and served as a pre-processor. The Urdu alphabet and numeric characters are
presented in Table 1.

An approach for the normalization of the text of two Asian languages, such as Urdu and
Hindi, was proposed by Mehmood et al. (2020). The authors focused on Roman Urdu and
Roman Hindi language as their writing script is very much similar. The author performed
lexical normalization on text, and this process involved mapping spelling variations to a
specific word that can be considered a standard form. This improved the performance
of text mining and natural language processing tasks while reducing the sparsity of data
instances.

Further, to convert the words into a standardized form, Sproat & Jaitly (2016) proposed
different approaches based on RNN (Khaldi et al., 2023) for normalizing the text. The
dataset collected for this research consisted of 290 million words in the Russian language
and 1.1 billion words in the English language, which were extracted fromWikipedia. From
the test dataset, manual analysis was performed on 1000 examples, and approximately the
error rate for the English language was observed as 0.1%. The error rate for the Russian
language was 2.1%, which was more than the error rate for English. For the English
language, 1,000 unique tokens were permitted, while for the Russian language, 2,000 words
were allowed. The model LSTM used the RNN model with single input and output layers.
The language model and channel outputs were combined at the time of decoding. The
model achieved 99% accuracy for the English language and 98% accuracy for the Russian
language.

Clark & Araki (2011) proposed an approach for text normalization that normalizes the
text on social media. With a rapid increase in the usage of social media platforms, vast
amounts of data are being generated daily. This form of data is usually in amorphous
form, and natural languages processing processes such as information retrieval, machine
translation, and opinionmining are not feasible to apply directly. The error word represents
the simple English word, and the regular word is the corresponding word in the English
dictionary. The phase matching rules were applied to the text, which is essential for text
analysis. For Urdu text normalization, the Urdu Hack (Abbas, Mughal & Haider, 2022)
library is considered as the state-of-the-art for performing such a task. It has been utilized

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 3/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1704

Figure 1 Joiners and non-joiners urdu alphabets.
Full-size DOI: 10.7717/peerjcs.1704/fig-1

in significant research works. However, this work lacks in multiple aspects as it does not
handle multiple white spaces, Urdu special characters, i.e., Therefore, there is need to
enhance the existing work.

Text tokenization
Tokenize the text is a pivotal phase, as the reader needs to be split into separate words so the
machine can understand the language (Grefenstette, 1999). Similarly, for the tokenization
process, there are different approaches as well. To solve the tokenization problem, Hassler
& Fliedl (2006) proposed a rule base model that extended the tokenization from splitting
to domain knowledge preservation. The key features were identifying linguistical markers
and their disambiguation, identifying and converting abbreviations into their full form,
and tackling different formats. To improve text mining quality, tokenization based on
linguistics was proposed as a compulsory text processing job.

A tokenizer was introduced by Zhang, Li & Li (2021). The authors proposed A Multi-
grained BERT (AMBERT) based on coarse-grained and fine-grained tokenization of text.
The parameters were shared between the encoders, and the output of both encoders
was combined to form the final result for tokens and phrases. To tokenize the Urdu text,
Durrani & Hussain (2010) proposed a model based on linguistic and orthographic features.
The author stated that in the Urdu language, space is not compulsory for separating words.
Instead, the readers can identify the boundaries of words even without the presence of
proper space among words. Space is considered for assigning appropriate shapes to words.
Such as (cells tissues) are two words and contain a space between them. However,
by removing space between the words , these words would still be readable and
visually correct. While (proper quantity) is valid with the presence of white
space, however, if we omit the white space, the words would be merged and would
become visually incorrect. A character based on shape can have four different variants such
as (1) at the start of a word, (2) in the middle of a word, (3) at the end of a word, and (4)
isolated. The characters of the Urdu language can be categorized into two classes, joiners,
and non-joiners. The joiners and non-joiners for the Urdu language are presented in Fig. 1.

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 4/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1704/fig-1
http://dx.doi.org/10.7717/peerj-cs.1704

Table 2 Space omission with Urdu text.

The issues faced during the tokenization of Urdu text are (1) space omission (Lehal,
2010), (2) space insertion (Lehal, 2009), (3) affixation (Khan, 2013), and (4) reduplication
(Afraz, 2012). Table 2 presents the space omission problem.

A sentence is a stream of words that convey some thought and contains a predicate and
subject. A subject can be a single word or a compound word. It provides information about
whom or what in a sentence. However, in the Urdu language, challenges exist because of its
ambiguous sentence boundary. A hybrid approach was introduced by Shafi et al. (2022).
The authors proposed two different methods to the tokenization of Urdu text. The first
approach was based on rules. The author used five different rules for the identification
of Urdu word boundaries. Another method based on a machine learning model was
also proposed, considering the support vector machine algorithm. Various features were
considered for incorporation in the support vector machine algorithm. The accuracy
achieved by the model was 0.92. While the recall value was 0.87, the precision was 0.91,
and the achieved F-measure was 0.89. However, the results produced by state-of-the-art
are not significant for performing NLP tasks.

METHODOLOGY
This research is conducted to propose Urdu text normalization and tokenization models.
The key phases are dataset creation, defining normalization rules and regular expressions,
defining tokenization features, classifying features, predicting character sequences,
evaluating results, and results comparison. The overall methodology is presented in
Fig. 2.

Dataset creation
This experiment is performedwith contents from five domainswritten in theUrdu language
were considered, such as (1) biology, (2) physics, (3) chemistry, (4) Urdu literature, and
(5) social studies. However, the contents were in scanned form instead of text. The text
extraction was performed by utilizing Google Lens, a powerful application for extracting
text from images (Shapovalov et al., 2019). While the extracted text was partially broken,
incomplete, and altered. To annotate the dataset, three domain experts were hired. The
annotators reconstructed the incomplete and broken words and introduced proper spacing
between the words and other symbols. The text of all five domains was further combined
to form the final dataset. The dataset sample is presented in Fig. 3. It can be observed from

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1704

Figure 2 Overall proposed methodology.
Full-size DOI: 10.7717/peerjcs.1704/fig-2

Figure 3 Urdu dataset.
Full-size DOI: 10.7717/peerjcs.1704/fig-3

the figure that words are properly spaced. The other symbols are also separated from the
text.

The statistics of the dataset are presented in Table 3. The combined dataset is consisted of
158,351 words. This is the largest dataset that is created with proper spacing for performing
NLP tasks till now.

Urdu text normalization
Normalization is an essential phase to perform NLP tasks for the Urdu language. The
basic issues while performing language-based experiments are coped with normalization.
It converts the input text into its basic and original form and enhances the efficiency of
machine learning jobs. For normalization, we introduce the following rules.

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 6/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1704/fig-2
https://doi.org/10.7717/peerjcs.1704/fig-3
http://dx.doi.org/10.7717/peerj-cs.1704

Table 3 Statistics of all datasets.

Sr# Domains Words

1 Social studies 25,763
2 Urdu literature 27,684
3 Biology 37,176
4 Physics 35,763
5 Chemistry 31,965
6 Combined dataset 158,351

Removing diacritics
In NLP models, the diacritics can reduce the output to some extent. The word with
a diacritic and the same without a diacritic would be considered different. Therefore, to
remove the diacritics fromUrdu text, we brought the characters in the range 0x0600–0x06ff
(Khan et al., 2021). Equations (1)–(2), presents the rule for removing the diacritics.

text ={sentencefromcorpus} (1)

new_text =′ .join[t for t in text iff t not in [unichr(x)]] for x in

range(0x0600, 0x06ff) iff unicodedata.category(unichr(x)) ==
′

Mn
′

(2)

Separating punctuation and sentence ending characters
For this purpose, we utilized the string library and downloaded the set of punctuation
characters (Martín-del Campo-Rodríguez et al., 2019). To standardize Urdu text, we
introduced a white space after each punctuation mark and removed the white space
before punctuation. The rule for separating punctuation and sentence ending characters is
given in Eqs. (3) and (4).

s={set of Urdu punctuation/sentence ending characters} (3)

∀ x ∈ s ,iff x in text ;new_text = text .replace(x,x +
′
′

) (4)

Similarly, the a set of ending sentence ending characters was created and if that specific
character occurred in text space before it was removed and single space after such character
was introduced.

Separating digits
The digits should be separated from the text; otherwise, the natural language processing
models would consider the digits and joined text as a single word. Therefore, we placed a
white space before and after the digits. We have also incorporated the ‘.’ symbol between
the digits. If it appears between the digits, no white space will be placed.

new_text = re.sub(r
′

([0−9]+ (.[0−9]+)?)
′

,r
′

1",text) (5)

In Eq. (5), regular expression has been provided for separating digits from other text.

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 7/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1704

Separating special, mathematical and greek symbols
In Urdu text, mathematical and Greek symbols are also widespread. To separate these
symbols from the text, we introduced white spaces before and after such characters as
presented in Eqs. (6) and (7). A rule was also developed to separate special that are
explicitly used in the poetic text.

s={set of special/mathematical/greek characters} (6)

∀ x ∈ s ,iff x in text ;new_text = text .replace(x,
′
′

+x+
′
′

) (7)

Separating English words
In Urdu texts, English words are commonly observed. These words can convey meaning
whether they are separate from Urdu text. However, in text processing, this can affect the
final results. Therefore, white spaces were placed before and after English words.

new_text = re.sub
′

[A−Za−z]+
′

,lambdaele:
′
′

+ele[0]+
′
′

,text (8)

The Eq. (8) represents the regular expression for separating the English words from
other text.

Standardizing characters
Urdu writing script is complex to analyze. A single character can have different shapes of
writing, such as are various shapes of the same character. This can negatively
affect the results. We converted the variations into standardized forms by developing the
appropriate rule presented in Eqs. (9)–(11).

s_set ={standardized Urdu characters} (9)

v_set ={sets of Urdu character variations} (10)

∀ s ∈ s_set , v ∈ v_set iff v[i]intext : replace(vwiths) (11)

Removing extra spaces
Urdu text can contain extrawhite spaces during composition; similarly, while implementing
prior rules and regular expressions, extra spaces are possible in the text. To tackle this issue,
we developed a regular expression to remove extra white spaces. Using regular expression
as presented in Eq. (12), more than white spaces would be removed from text.

new_text =
′

re.sub(\s\ s+
′

,
′
′

, text) (12)

The proposed rules and regular expressions with possible outcomes are presented in
Table 4. The regular expressions and rules were created to normalize the text and convert it
into standard Urdu text. The rules were manually extracted (Shafi et al., 2022) with the help
of domain experts. These expressions can significantly increase the effective manipulation
of text while reducing the computation complexity if we do not remove the diacritics. The
model will consider both words differently.

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1704

Table 4 Proposed rules and regular expressions for Urdu text normalization.

Tokenization
Text tokenization is the task of identifying the word streams in a written corpus (Webster
& Kit, 1992). It splits the text into tokens or words. It is a compulsory job for any language
processing experiment, such as speech tagging, machine translation, information extraction
or retrieval, etc. Tokenization can be reflected in the following phases.

Defining key features
After performing manual annotation, the next phase would be based on feature extraction.
These tasks need input written text with clear boundaries. Sentence splitting is separating
sentences based on punctuation in the text. Tokenization and sentence splitting are complex
tasks when it comes to theUrdu language, as there are irregular white spaces betweenwords.
The features useful for tokenization would be extracted from the text corpus and forwarded
to the machine learning algorithm. The features can be the following:
1. Current character of text
2. Previous seven characters from the current character
3. Next seven characters from the current character
4. Identification, if the current character is non-joiner
5. Identification, if the current character is a joiner
6. Identification, if the current character is a digit
7. Identification, if the current character is a Greek letter
8. Identification, if the current character is a mathematical character
9. Identification, if the current character is a symbol
10. Identification, if the current character is from the English language
11. Unicode class of the current character

Feature classification
The native speaker can identify the word boundaries. However, for machines, it is difficult.
The characters in Urdu text can adopt different shapes when joined based on context. A
character can be categorized as (1) starting, (2) ending, (3) middle, and (4) separated. Such
characters are termed a joiner, while on the other hand, if a character canmake a posse, only

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1704

two forms, ending and separation, are referred to as non-joiners. When two morphemes
join while forming a word, the writer would like inert a space for better visualization if the
initial morpheme ends with a joiner. On the other hand, if the first morpheme ends with
a non-joiner, the writer would not inset white space because there would be no effect on
shape or word. The sub-words are separated with zero-width non-joiner.

For accurately performing the tokenization of Urdu text, we utilized the conditional
random field (CRF) algorithm (Lafferty, McCallum & Pereira, 2001), which used different
linguistic features for the identification of white space as the boundary of a word and
zero-width non-joiner (ZWNJ) as a boundary of sub-word. CRF is a type of probabilistic
graph model that considers the neighboring context for performing different tasks such
as classification. In CRF the dependencies are implemented between the predictions. CRF
was considered to specify the word boundaries. However, We have also developed rules for
separating punctuation, mathematical symbols, special characters, and English words and
removing more than single spaces. The linear chain CRF can be expressed with Eq. (13).

P(y|x)=
∑
h

P(y|h,x)P(h|x) (13)

where the observations are x= x1,x2.... xn and labels are y= y1, y2, yn. The set of latent
variables is presented by h. The complete code of normalization and tokenization with
dataset have been uploaded on GitHub (https://github.com/Shahzad-Nazir/Normalization-
and-Tokenization). The research community popularly uses this model for conducting
NLP experiments (Geng, 2021). For training, the model, 60% dataset, and for testing, 40%
dataset was utilized (Nazir et al., 2020).

Predicting sequence of character
To accurately perform the tokenization, the CRF linear model was trained on a given set of
features against each character of text. The stream of characters was converted into 0s and
1s. If the current character is the last character of a word, it was assigned a label 1, and for
other characters, 0 was assigned. The label 1 denotes that the next would be white space,
while 0 indicates that the next would be a non-space character. After training, the model
could predict the appropriate sequence of characters of words.

Evaluation metrics
The normalization is evaluated by computing the correct and incorrect changes introduced
by the model. The correct changes would be the alterations necessary to normalize the
text. Conversely, the incorrect changes would be erroneous alterations in normalization of
text. While, for evaluating word tokenization, the performance measures such as precision,
recall, F-measure and accuracy would be considered (Sokolova, Japkowicz & Szpakowicz,
2006). These measures can be calculated as shown in Eqs. (14)–(17).

Precision=
TP

TP+FP
(14)

Recall =
TP

TP+FN
(15)

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 10/19

https://peerj.com
https://github.com/Shahzad-Nazir/Normalization-and-Tokenization
https://github.com/Shahzad-Nazir/Normalization-and-Tokenization
http://dx.doi.org/10.7717/peerj-cs.1704

F .measure= 2∗
Precision∗Recall
Precision+Recall

(16)

Accuracy =
TP+TN

total instances
. (17)

Precision is considered as a key measuring to examine the quality of classification. The
higher precision value indicates that the algorithm has returned less irrelevant and more
relevant results. While the completeness is represented by the value of recall. The value of
precision is computed with ratio of the retrieved relevant articles and all number of articles.
In contrast, the value of recall is calculated through dividing the retrieved relevant articles
by the total articles. Further, such measures are computed through (1) true positive (TP),
(2) true negative (TN) (3) false positive (FP) and (4) false negative (FN).

Here, TP would be the character in a word that was a non-ending and model predict it
correctly. FP would be the character that was ending character but predicted as non-ending
character. Likewise, TN refers to the ending character which was predicted as ending
character. While FN would be the ending character but predicted as non-ending.

RESULTS AND DISCUSSIONS
Pre-processing on textual data is considered as a significant task while performing NLP
research works (García et al., 2016). Normalization and tokenization are two imperative
actions of pre-processing phase. The normalization converts the text into the standardized
script, and for Urdu normalization we proposed ten regular expressions such as (1)
separating punctuations, (2) removing diacritics, (3) separating digits, (4) separating
English words from Urdu text, (5) converting varying character shapes into standardized,
(6) separating Greek characters, (7) separating mathematical symbols, (8) separating Urdu
digits, (9) separating specific poetic letters, (10) removing uneven spaces. The separation of
punctuation and other symbols is a basic need. If any punctuation numeric text is without a
space with Urdu words, the punctuation, and the word would be considered a single word.
In NLP ‘ ’ are two different words as a single space is present between them. If we
remove the space between the words ‘ ’’ both words would be considered as a single
entity. The proposed expressions were applied to five Urdu domain contents separately.
The normalization results produced by expressions are presented in following Table 5.

The proposed rules and regular expressions made 1,922 correct changes, 12 incorrect
changes, and converted the Biology text into the normalized form. Similarly, correct
changes were made for physics and chemistry (2,213 and 1,798, respectively). For Urdu
literature and social studies, 2,079 and 1,548, respectively, changes occurred. While for the
combined dataset, the changes in text were observed to be 9,560. The proposed rules and
regular expressions covered all the normalization aspects; therefore, the remaining changes
were 0 in all datasets. However, incorrect changes were observed. These incorrect changes
occurred due to the existence of commas between numeric values. As the spaces were
inserted before and after numeric data, the commas between the digits were not properly

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 11/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1704

Table 5 Normalization results achieved by proposed rules and regular expressions.

Dataset Correct
changes

Incorrect
changes

Remained
changes

Biology 1,922 12 0
Physics 2,213 3 0
Chemistry 1,798 22 0
Urdu literature 2,079 27 0
Social studies 1,548 40 0
Combined dataset 9,560 104 0

Table 6 Evaluationmeasures for each dataset.

Domain/Dataset Precision Recall F-measure Accuracy

Physics 0.9976 0.9965 0.9971 0.9958
Biology 0.9947 0.9946 0.9947 0.9921
Chemistry 0.997 0.996 0.9965 0.9948
Urdu literature 0.9876 0.9886 0.9881 0.9835
Social studies 0.992 0.9906 0.9913 0.9872
Combined data 0.9942 0.9946 0.9944 0.9919

normalized. For example, in normalized form, the consecutive digits appeared as ‘‘24, 28,
29’’ instead of ‘‘24, 28, 29’’. Similarly, the punctuation after closing small parenthesis were
not normalized. The proposed regular expressions converted the text into the normalized
form.

Likewise, word tokenization is the key process in text manipulation. This procedure
splits the whole text into words termed as tokens. These tokens are further fed into machine
learning models such as BERT, Transformer, Encoder-Decoder, etc. for performing NLP
tasks. The dataset of five different domains was used for Urdu tokenization, containing
properly spaced Urdu text. Against each character 11 features were identified. From the
current character, different window sizes were investigated and high results producing
window size of seven next and previous characters was selected. Further, the stream of
text was labeled with 0’s and 1’s. If the character is initial or middle, it was labeled with 0,
while the ending character was labeled as 1. Here, 1 depicts that after this character a white
space exists. The whole dataset was split into 60% and 40% for training and testing. The
conditional random field (CRF) linear model was trained on 60% of the dataset. The model
learned to introduce the white space where it is required. The trained model was tested on
40% of the data. Specifically, in testing the model itself predicted and introduced the white
spaces. The results were evaluated using precision, recall, F-measure, and accuracy (Goutte
& Gaussier, 2005) and other measures that are presented in Table 6.

For biology, physics, and chemistry, the model achieved 0.99 accuracy, while for
Urdu literature and social studies, the model achieved 0.98 accuracy. Similarly, for the
combined dataset, 0.98 accuracy was achieved. These results are based on actual positive,

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 12/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1704

Table 7 Evaluation of results for urdu text tokenization on datasets.

Sr# Books/Dataset True
positive

False
positive

True
negative

False
negative

1 Physics 88,941 212 34,772 313
2 Chemistry 86,260 262 31,072 348
3 Biology 101,731 541 35,849 549
4 Social studies 68,591 556 24,533 653
5 Urdu literature 61,417 771 26,510 707
6 Combined dataset 407,052 2,370 152,910 2,219

Figure 4 Fine-grained tokenization of Urdu text.
Full-size DOI: 10.7717/peerjcs.1704/fig-4

true negative, false positive, and false negative values. These values for each dataset are
presented in Table 7.

The table presents the predicted labels for each character in the datasets. It can be
observed that most of the predicted labels are true positives or true negatives. The values
of false positives and false negatives are very avoidable. The combined dataset contains
407,053 true positive labels, 2,370 false negative labels, 152,910 true negative, and 2,219
false negative labels. The model can significantly tokenize the Urdu text and precisely
predict the text’s white space. It can tokenize text that is not readable by native individuals.

The tokenization model is presented in Fig. 4, where it can be observed that the model
can appropriately introduce the white space in the text where it is needed. The first line in
the figure is the text without any space and was fed to the model, and the proposed model
perfectly tokenized the whole unreadable text.

Comparison
To conduct the normalization process, we introduced 10 rules and regular expressions to
normalized the Urdu text. While the state-of-the-art approach is rule-based that proposed
six regular expressions for the normalization of Urdu text and is termed UrduHack
normalization (Abbas, Mughal & Haider, 2022). The proposed six rules by the state-of-
the-art are (1) removing diacritics, (2) normalizing single characters, (3) normalizing
compound characters, (4) placing space after punctuations, (5) placing space before and
after English words, (6) placing space before and after digits. The datasets of five domains
were fed to a state-of-the-art approach, and UrduHack normalization for biology was able
to make 1,598 correct changes, 150 incorrect changes, and 162 remaining changes. The
maximum number of correct changes were produced for a dataset of physics, covering

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 13/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1704/fig-4
http://dx.doi.org/10.7717/peerj-cs.1704

Table 8 Results achieved by urduhack on all datasets.

Dataset Correct
changes

Incorrect
changes

Remained
changes

Biology 1,598 150 162
Physics 2,115 52 43
Chemistry 1,596 101 79
Urdu literature 1,709 117 226
Social studies 910 281 317
Combined dataset 7,928 701 827

Figure 5 Results comparison for correct changes.
Full-size DOI: 10.7717/peerjcs.1704/fig-5

2,115 correct changes, 52 incorrect changes, and 43 remaining. However, for the combined
dataset total of 7,928 correct changes were made, incorrect changes were 701, and the
remaining changes were observed to be 827. Table 8 illustrates the results of UrduHack.
The comparison of UrduHack and the proposed model is presented in Figs. 5 and 6.

The proposed regular expressions performed better as compared to the state-of-the-art
approach. The state-of-the-art approach could not accommodate essential characters, such
as simple quotation marks, double quotation marks, numeric operators, etc. Similarly,
special characters were also not considered. A major drawback of UrduHack is not
handling irregular spaces. If a white space is present with punctuation, it will insert one
more white space. The proposed approach produced 20% better results than the recent
state-of-the-art approach.

Multiple supervised and unsupervised approaches exist for word tokenization. The
state-of-the-art UNLT-WT approach was introduced by Shafi et al. (2022), which utilized
59,000 tokens and produced 0.92 accuracy using SVM with grammatical rule. Therefore,

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 14/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1704/fig-5
http://dx.doi.org/10.7717/peerj-cs.1704

Figure 6 Results comparison for incorrect changes.
Full-size DOI: 10.7717/peerjcs.1704/fig-6

Figure 7 Results comparison for tokenization.
Full-size DOI: 10.7717/peerjcs.1704/fig-7

we also considered the dataset of state-of-the-art used for word tokenizer and was fed to
our model. The model produced 0.98 accuracy, as presented in Fig. 7.

The results of Shafi et al. (2022) were further explored, and the confusion matrix was
obtained. The true positives were 202,729, the false positives were 2,530, the false negative
were 933, and the true negative characters were observed to be 2,581. The proposed model

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 15/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1704/fig-6
https://doi.org/10.7717/peerjcs.1704/fig-7
http://dx.doi.org/10.7717/peerj-cs.1704

obtained higher results as compared to the state-of-the-art. The proposed approach can be
utilized for Urdu text tokenization.

CONCLUSION
The text preprocessing is considered as the key phase in NLP tasks such as text
summarization, next word prediction, text generation, etc. Text normalization and word
tokenization are two essential modules, while performing text preprocessing. There exist
well developed preprocessing models for most spoken languages. However, towards
low-resourced languages such as Urdu, researchers have paid minor attention. This
research presents two text pre-processing modules: normalization and tokenization for
low-resourced Urdu. A dataset consisting of contents form five domains in Urdu script
was created to perform this research. The raw text was normalized with 10 rules, and
regular expressions, such as standardizing single characters, removing diacritics, separating
punctuation, separating digits, etc. While, to tokenize the text, we utilized the conditional
random field (CRF) linear model with specified grammatical rules. For word tokenization,
the dataset was split into training and testing datasets. Training was performed on 60%
dataset. While for testing, 40% dataset was considered. Against each character of text 11
features were extracted and fed into the machine learning model CRF. Further, specific
rules were applied. Precision, recall, F-measure, and accuracy were considered for results
evaluation. The normalization results were improved by 20%. The word tokenization
model was able to achieve 0.98 accuracy score. The tokenization results were improved by
6% as compared to the state-of-the-art approach.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Muhammad Asif is an Academic Editor for PeerJ Computer Science.

Author Contributions
• Shahzad Nazir conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Muhammad Asif conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Mariam Rehman conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 16/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1704

• Shahbaz Ahmad conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The complete project code along with data set is available at GitHub and Zenodo:
- https://github.com/Shahzad-Nazir/Normalization-and-Tokenization
- Shahzad Nazir. (2023). Urdu Text Normalization and Tokenization Dataset (1.0)

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.8372388.

REFERENCES
Afraz F. 2012. Reduplication in English and Urdu. PhD thesis, University of Management

and Technology, Arlington, VA, USA.
AkramM, Hussain S. 2010.Word segmentation for Urdu OCR system. In: Proceedings of

the eighth workshop on Asian language resouces. 88–94.
Abbas SZ, Mughal AB, Haider SM. 2022. Urdu news article recommendation model

using natural language processing techniques. ArXiv arXiv:2206.11862.
Allahyari M, Pouriyeh S, Assefi M, Safaei S, Trippe ED, Gutierrez JB, Kochut K. 2017.

Text summarization techniques: a brief survey. ArXiv arXiv:1707.02268.
Baron A, Rayson P. 2008. Vard2: a tool for dealing with spelling variation in historical

corpora. In: Postgraduate conference in corpus linguistics.
BollmannM. 2019. A large-scale comparison of historical text normalization systems.

ArXiv arXiv:1904.02036.
Martín-del Campo-Rodríguez C, Alvarez DAP, Sifuentes CEM, Sidorov G, Batyrshin

I, Gelbukh A. 2019. Authorship attribution through punctuation n-grams and
averaged combination of svm. In: Proceedings of the CLEF, Lugano, Switzerland. 9–12.

Clark E, Araki K. 2011. Text normalization in social media: progress, problems and
applications for a pre-processing system of casual english. Procedia—Social and
Behavioral Sciences 27:2–11 DOI 10.1016/j.sbspro.2011.10.577.

Daud A, KhanW, Che D. 2017. Urdu language processing: a survey. Artificial Intelligence
Review 47:279–311 DOI 10.1007/s10462-016-9482-x.

Durrani N, Hussain S. 2010. Urdu word segmentation. In: Human language technologies:
the 2010 annual conference of the North American chapter of the association for
computational linguistics. 528–536.

García S, Ramírez-Gallego S, Luengo J, Benítez JM, Herrera F. 2016. Big data prepro-
cessing: methods and prospects. Big Data Analytics 1(1):1–22
DOI 10.1186/s41044-016-0001-5.

Geng B. 2021. Text segmentation for patent claim simplification via bidirectional long-
short term memory and conditional random field. Computational Intelligence
38(1):205–215 DOI 10.1111/coin.12455.

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 17/19

https://peerj.com
https://github.com/Shahzad-Nazir/Normalization-and-Tokenization
https://doi.org/10.5281/zenodo.8372388
http://arXiv.org/abs/2206.11862
http://arXiv.org/abs/1707.02268
http://arXiv.org/abs/1904.02036
http://dx.doi.org/10.1016/j.sbspro.2011.10.577
http://dx.doi.org/10.1007/s10462-016-9482-x
http://dx.doi.org/10.1186/s41044-016-0001-5
http://dx.doi.org/10.1111/coin.12455
http://dx.doi.org/10.7717/peerj-cs.1704

Goutte C, Gaussier E. 2005. A probabilistic interpretation of precision, recall and f-score,
with implication for evaluation. In: Advances in information retrieval: 27th European
conference on IR research, ECIR 2005, Santiago de Compostela, Spain, March (2005),
21–23. Proceedings 27. Cham: Springer, 345–359.

Grefenstette G. 1999. Tokenization. In: van Halteren H, ed. Syntactic wordclass tagging.
Vol. 9. Springer Science & Business Media, 117–133 DOI 10.1007/978-94-015-9273-4_9.

Hassler M, Fliedl G. 2006. Text preparation through extended tokenization. In: Data
mining VII: data, text and web mining and their business applications. WIT Press
DOI 10.2495/DATA060021.

Khaldi R, El Afia A, Chiheb R, Tabik S. 2023.What is the best rnn-cell structure to
forecast each time series behavior? Expert Systems with Applications 215:119140
DOI 10.1016/j.eswa.2022.119140.

Khan AR, Karim A, Sajjad H, Kamiran F, Xu J. 2022. A clustering framework for
lexical normalization of roman urdu. Natural Language Engineering 28(1):93–123
DOI 10.1017/S1351324920000285.

Khan L, Amjad A, Ashraf N, Chang H-T, Gelbukh A. 2021. Urdu sentiment analysis with
deep learning methods. IEEE Access 9:97803–97812
DOI 10.1109/ACCESS.2021.3093078.

KhanM. 2013. Neologisms in Urdu a linguistic investigation of urdu media. Language in
India 13(6).

Khan SN, Khan K, Khan A, Khan A, Khan AU, Ullah B. 2018. Urdu word segmentation
using machine learning approaches. International Journal of Advanced Computer
Science and Applications 9(6):193–200 DOI 10.14569/IJACSA.2018.090628.

Lafferty J, McCallum A, Pereira FC. 2001. Conditional random fields: probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the eighteenth
international conference on machine learning. San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc, 282–289.

Lehal GS. 2009. A two stage word segmentation system for handling space insertion
problem in Urdu script.World Academy of Science, Engineering and Technology
60:321–324.

Lehal GS. 2010. A word segmentation system for handling space omission problem in
urdu script. In: Proceedings of the 1st workshop on South and Southeast Asian natural
language processing. 43–50.

Mehmood K, EssamD, Shafi K, Malik MK. 2020. An unsupervised lexical normalization
for roman hindi and urdu sentiment analysis. Information Processing & Management
57(6):102368 DOI 10.1016/j.ipm.2020.102368.

Naz S, Umar AI, RazzakMI. 2016. Lexicon reduction for Urdu/Arabic script based
character recognition: a multilingual OCR.Mehran University Research Journal of
Engineering & Technology 35(2):209–216.

Nazir S, Asif M, Ahmad S, Bukhari F, Afzal MT, Aljuaid H. 2020. Important citation
identification by exploiting content and section-wise in-text citation count. PLOS
ONE 15(3):e0228885 DOI 10.1371/journal.pone.0228885.

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 18/19

https://peerj.com
http://dx.doi.org/10.1007/978-94-015-9273-4_9
http://dx.doi.org/10.2495/DATA060021
http://dx.doi.org/10.1016/j.eswa.2022.119140
http://dx.doi.org/10.1017/S1351324920000285
http://dx.doi.org/10.1109/ACCESS.2021.3093078
http://dx.doi.org/10.14569/IJACSA.2018.090628
http://dx.doi.org/10.1016/j.ipm.2020.102368
http://dx.doi.org/10.1371/journal.pone.0228885
http://dx.doi.org/10.7717/peerj-cs.1704

Nazir S, Asif M, Sahi SA, Ahmad S, Ghadi YY, Aziz MH. 2022. Toward the devel-
opment of large-scale word embedding for low-resourced language. IEEE Access
10:54091–54097 DOI 10.1109/ACCESS.2022.3173259.

Nisioi S, Štajner S, Ponzetto SP, Dinu LP. 2017. Exploring neural text simplification
models. In: Proceedings of the 55th annual meeting of the association for computational
linguistics (volume 2: Short papers). 85–91 DOI 10.18653/v1/P17-2014.

Shafi J, Iqbal HR, Nawab RMA, Rayson P. 2022. Unlt: Urdu natural language toolkit. In:
Natural language engineering. 1–36.

Shapovalov V, Shapovalov Y, Bilyk Z, Megalinska A, Muzyka I. 2019. The Google lens
analyzing quality: an analysis of the possibility to use in the educational process.
Educational Dimension 1:219–234 DOI 10.31812/educdim.v53i1.3844.

Sharf Z, Rahman SU. 2017. Lexical normalization of roman Urdu text. International
Journal of Computer Science and Network Security 17(12):213–221.

SokolovaM, Japkowicz N, Szpakowicz S. 2006. Beyond accuracy, f-score and roc: a
family of discriminant measures for performance evaluation. In: AI 2006: advances in
artificial intelligence: 19th Australian joint conference on artificial intelligence, Hobart,
Australia, December (2006) 4–8. Proceedings 19. Cham: Springer, 1015–1021.

Sproat R, Jaitly N. 2016. Rnn approaches to text normalization: a challenge. ArXiv
arXiv:1611.00068.

Srividhya V, Anitha R. 2010. Evaluating preprocessing techniques in text categorization.
International Journal of Computer Science and Application 47(11):49–51.

Vayansky I, Kumar SA. 2020. A review of topic modeling methods. Information Systems
94:101582 DOI 10.1016/j.is.2020.101582.

Webster JJ, Kit C. 1992. Tokenization as the initial phase in nlp. In: COLING 1992
volume 4: the 14th international conference on computational linguistics.

Zhang X, Li P, Li H. 2021. AMBERT: a pre-trained language model with multi-grained
tokenization. In: Findings of the association for computational linguistics: ACL-IJCNLP
2021. Association for Computational Linguistics.

ZhouM, Duan N, Liu S, ShumH-Y. 2020. Progress in neural nlp: modeling, learning,
and reasoning. Engineering 6(3):275–290 DOI 10.1016/j.eng.2019.12.014.

Nazir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1704 19/19

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2022.3173259
http://dx.doi.org/10.18653/v1/P17-2014
http://dx.doi.org/10.31812/educdim.v53i1.3844
http://arXiv.org/abs/1611.00068
http://dx.doi.org/10.1016/j.is.2020.101582
http://dx.doi.org/10.1016/j.eng.2019.12.014
http://dx.doi.org/10.7717/peerj-cs.1704

