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Some properties of subclass 
of multivalent functions associated 
with a generalized differential 
operator
Haewon Byeon 1, Manivannan Balamurugan 2, T. Stalin 2, Vediyappan Govindan 3, 
Junaid Ahmad 4* & Walid Emam 5

In this paper, the new subclass Sn

b,�,δ,p
(α) of a linear differential operator’s N n

�,δ,p
f (ζ ) associated with 

multivalent analytical function has been introduced. Further, the coefficient inequalities, extreme 
points for the extremal function, sharpness of the growth and distortion bounds, partial sums, 
starlikeness, and convexity of the subclass is investigated.

Keywords  Multivalent functions, Convolution, Derivative operators

Assume that U : |ζ | < 1 is the unit circle and that f (ζ ) is an analytical function, as exhibited by the power series.

The sequence {bn} of coefficients in (1) is the basis for the function f (ζ ) , which maps U onto a sub-domain S 
of a Riemann surface.

An attribute of geometry of S is described by the statement that the univalent function f (ζ ) is in U . By defini-
tion, f (ζ ) has the property of being univalent in U if

Briefly, f (ζ ) is said to be univalent in U if it does not take any value more than once for ζ in U.
The image of U creates a simple domain in the w-plane, provided f (ζ ) is univalent.
The multivalent function is a logical consequence of the idea of the univalent function. Assume that p ∈ N  . 

It is said that f (ζ ) = w0 has p roots in U  and that the function f (ζ ) denotes p-valent in U . Meanwhile, the 
constraints

for a certain pair, ensure that i  = j . To put it simply, f (ζ ) is p-valent in U assuming that some value but no value 
exceeds p times.

Typically, 1907 the work of Koebe20 was considered the earliest stages of the concept of univalent functions. 
In 1933 by Montel21 and in 1938 by Biernacki7 were given two credible evaluations of the research on univalent 
and multivalent functions. After that, the volume of information grew rapidly, as usual, making it challenging for 
researchers to ascertain the current situation. Books from Schaeffer and Spencer26, Jenkins19, and others explore 
specialized parts of the topic in great detail. The writings by Hayman18 and Goluzin15 provided a thorough over-
view, and it contained enough unresolved issues for a while. The study of fragments by Bernardi6 and Hayman17 
offered additional direction in the field.

(1)w = f (ζ ) =

∞
∑

ν=0

bnζ
n = b0 + b1ζ + b2ζ

2 + · · · ,

(2)f (ζ1) = f (ζ2), ζ1, ζ2 ∈ U =⇒ ζ1 = ζ2.

(3)f (ζ1) = f (ζ2) = · · · ,= f (ζp+1), ζ1, ζ2, . . . ζp+1 ∈ U =⇒ ζi �= ζj .
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The differential and integral operators of normalized analytic functions have recently gained a lot of popular-
ity. Numerous articles covered the operators and generalizations made by various authors. In 1975, Ruscheweyh24 
introduced the differential operator and it is generalized by Salagean25 in 1985. For a long time, these two opera-
tors were utilized to investigate various subclasses of univalent function by researchers. In the year of 2004 Al-
Oboudi’s2 generalized of the Salagean operator, followed by Shaqsi and Darus3,4 generalized the Ruscheweyh and 
Salagean differential operators in 2008. Following that, several authors began to develop new operators based on 
the Salagean and Ruscheweyh in their own distinctive style. For example, see5,8–10,12,13,16,22,23,27–31. By the help of 
this survey, in this current work, certain properties of subclass of new linear differential operator of multivalent 
functions have been investigated.

Let Ap be called a class of multivalent analytic functions

belongs to U = {ζ : |ζ | < 1}.

For f (ζ ) ∈ Ap , Aghalary et al.1 studied the following multiplier transformation operator

For f (ζ ) ∈ Ap, a new differential operator has defined N n
�,δ,p(f (ζ )) = Ip(n, �) ∗ f (ζ ) by

N 0
�,δ,p = ζ p +

∑∞
ν=p+1 aνζ

ν

N 1
�,δ,p = (1− δ)Ip(1, �)+

δζ
p

(

Ip(1, �)
)′
= ζ p +

∑∞
ν=p+1

[

p(�+ν)+(ν−p)(ν+�)δ

p(p+�)

]

aνζ
ν

N 2
�,δ,p = N�,δ,p

(

N 1
�,δ,p

)

 Similarly,

Remark 1.1  For δ = 0 in (6), the multiplier transformations Ip(n, �) are obtained. It was stated by Aghalary et al.1.
For δ = 0, p = 1 in (6), the operator In

�
 is obtained. It was presented by Cho and Srivastava11.

For δ = 0, p = 1, � = 1 in (6), the differential oprator In was introduced by Uralegaddi et al.32.
The operator Dn is stated by Salagean25 for � = 0, δ = 0, p = 1 in (6).
For � = 0, δ = 0, p = 1, n = −n in (6), the multiplier transformation I−n is obtained; it was introduced by 

Flett14.

The class Sn

b,�,δ,p
(α)

Definition 2.1  Let Sn
b,�,δ,p(φ(ζ )) denote the subclass of f (ζ ) ∈ Ap, in which

Definition 2.2  Let Sn
b,�,δ,p(φ(ζ )) ≡ Sn

b,�,δ,p(α) represents a subclass belonging to
f (ζ ) ∈ Ap, then

where φ(ζ ) = 1+(1−2α)ζ
(1−ζ )

 , n ∈ N0, 0 ≤ α < 1, �, δ ≥ 0, b ∈ C − {0} and all ζ ∈ U .

Estimate the coefficient inequality
The concepts of univalent and multivalent functions are crucial while studying complex analysis. They are usu-
ally defined on the complex plane. It is customary in this context to estimate the coefficients of these functions, 
more precisely, their inequalities. We will gain insight into the branching structure of multivalent functions by 
estimating their coefficients. The coefficient inequalities provide information about how branch points behave 
over the complex plane of the function. In both cases, understanding the coefficients and their inequalities in 
univalent and multivalent functions are essential for various applications in complex analysis, particularly in 
the fields of conformal mapping, complex geometry, and Riemann surfaces. The coefficient estimation provides 
valuable information about the behavior of functions and its geometric properties, helping mathematicians and 
scientists work with them effectively in various contexts.

(4)f (ζ ) = ζ p +

∞
∑

ν=p+1

aνζ
ν
,

(5)Ip(n, �) = ζ p +

∞
∑

ν=p+1

(

ν + �

p+ �

)n

aνζ
ν
, (� ≥ 0).

(6)N
n
�,δ,p = N�,δ,p

(

N
n−1
�,δ,p

)

= ζ p +

∞
∑

ν=p+1

[

p(�+ ν)+ (ν − p)(�+ ν)δ

p(p+ �)

]n

aνζ
ν
, (�, δ ≥ 0, n ∈ N0).

(7)1+
1

b

( ζ
p (N

n
�,δ,p)

′

N n
�,δ,p

− 1

)

≺ φ(ζ ).

(8)Re

(

1+
1

b

( ζ
p (N

n
�,δ,p)

′

N n
�,δ,p

− 1

))

> α.
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Theorem 2.1  Let f (ζ ) ∈ Sn
b,�,δ,p(α) , then

Proof  Let

By the condition of the class,

There exist a schwarz function w(ζ ) , with w(0) = 0 and |w| < 1, such that

This implies that

We know that

Then

The last expression is bounded by 1, if

Which implies that,

where Hence the equation (9) is hold.	�  �

Corollary 2.1  Let f ∈ Sn
b,�,δ,p(α), then

 and the equality is concluded for the function f (ζ ) is given by

(9)
∞
∑

ν=p+1

∣

∣

∣

∣

αbp− ν + p− pb

p

∣

∣

∣

∣

[

p(�+ ν)+ (ν − p)(�+ ν)δ

p(p+ �)

]n

|aν | ≤ (1− α)|b|.

F(ζ ) = 1+
1

b

( ζ
p (N

n
�,δ,p)

′

N n
�,δ,p

− 1

)

− α

= 1+

ζ
p (N

n
�,δ,p)

′ − (1+ αb)N n
�,δ,p

bN n
�,δ,p

F(ζ ) ≺
1+ ζ

1− ζ
.

F(ζ ) =
1+ w(ζ )

1− w(ζ )
.

w(ζ ) =
F(ζ )− 1

F(ζ )+ 1
.

|w(ζ )| =

∣

∣

∣

∣

F(ζ )− 1

F(ζ )+ 1

∣

∣

∣

∣

< 1.

∣

∣

∣

∣

F(ζ )− 1

F(ζ )+ 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ζ
p (N

n
�,δ,p)

′ − (1+ αb)N n
�,δ,p

ζ
p (N

n
�,δ,p)

′ − (1+ αb− 2b)N n
�,δ,p

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ζ p +
∑∞

ν=p+1
ν
p cνaνζ

ν − (1+ αb)ζ p −
∑∞

ν=p+1(1+ αb)cνaνζ
ν

ζ p +
∑∞

ν=p+1
ν
p cνaνζ

ν − (1+ αb− 2b)ζ p −
∑∞

ν=p+1(1+ αb− 2b)cνaνζ ν

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−αb−
∑∞

ν=p+1(1+ αb− ν
p )cνaνζ

ν−p

(2− α)b−
∑∞

ν=p+1(1+ αb− 2b− ν
p )cνaνζ

ν−p

∣

∣

∣

∣

∣

≤
α|b| +

∑∞
ν=p+1

∣

∣

∣(1+ αb− ν
p )

∣

∣

∣cν |aν |
∣

∣ζ ν−p
∣

∣

(2− α)|b| −
∑∞

ν=p+1

∣

∣

∣
(1+ αb− 2b− ν

p )

∣

∣

∣
cν |aν |

∣

∣ζ ν−p
∣

∣

.

α|b| +

∞
∑

ν=p+1

∣

∣

∣

∣

(1+ αb−
ν

p
)

∣

∣

∣

∣

cν |aν | ≤ (2− α)|b| −

∞
∑

ν=p+1

∣

∣

∣

∣

(1+ αb− 2b−
ν

p
)

∣

∣

∣

∣

cν |aν |.

∞
∑

ν=p+1

∣

∣

∣

∣

(

1+ αb− b−
ν

p

)∣

∣

∣

∣

cν |aν | ≤ (1− α)|b|,

(10)|aν | ≤
(1− α)|b|

∣

∣

∣

αbp−ν+p−pb
p

∣

∣

∣

[

p(�+ν)+(ν−p)(�+ν)δ

p(p+�)

]n ,
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Extreme points
Extremal points are analyses in the framework of multivalent functions in order to comprehend branch cuts, 
singularities, and branching behavior. It is essential to comprehending the function of complex structure and 
Riemann surface.

Theorem 2.2  Let

where

Then f ∈ Sn
b,�,δ,p(α) only when it is in the form

where ην ≥ 0 and ηp = 1−
∑∞

ν=p+1 ην .

Proof  Let assume that

Then

Thus,

which demonstrates

Conversely,
Consider this

While

(11)f (ζ ) = ζ p +
(1− α)|b|

∣

∣

∣

αbp−ν+p−pb
p

∣

∣

∣

[

p(�+ν)+(ν−p)(�+ν)δ

p(p+�)

]n ζ
ν
, ν ≥ p+ 1.

fp(ζ ) = ζ p, fν(ζ ) = ζ p + ην
(1− α)|b|

C(�)
ζ ν , ν = p+ 1, p+ 2, . . . ,

C(�) =

∞
∑

ν=p+1

∣

∣

∣

∣

αbp− ν + p− pb

p

∣

∣

∣

∣

[

p(�+ ν)+ (ν − p)(�+ ν)δ

p(p+ �)

]n

.

f (ζ ) = ηpfp(ζ )+

∞
∑

ν=p+1

ην fν(ζ ),

f (ζ ) = ηpfp(ζ )+

∞
∑

ν=p+1

ην fν(ζ ).

f (ζ ) =



1−

∞
�

ν=p+1

ην



ζ p +

∞
�

ν=p+1

ην

�

ζ p +
(1− α)|b|

C(�)
ζ ν

�

= ζ p +

∞
�

ν=p+1

ην
(1− α)|b|

C(�)
ζ ν

= ζ p +

∞
�

ν=p+1

aνζ
ν

∞
∑

ν=p+1

C(�)|aν |

=

∞
∑

ν=p+1

C(�)ην
(1− α)|b|

C(�)

= (1− α)|b|

∞
∑

ν=p+1

ην

= (1− α)|b|(1− ηp)

< (1− α)|b|,

f ∈ S
n
b,�,δ,p(α).

f ∈ S
n
b,�,δ,p(α).
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Let

Thus,

	�  �

Growth and distortion theorems
Growth and distortion theorems are useful tools in the study of univalent and multivalent functions because 
they help to characterize and comprehend the behavior of these functions and how they relate to the geometry 
of the complex plane. According to the growth theorem, a complex-valued function is inherently constant if it is 
entire and bounded. The geometry of curves and regions in the complex plane is influenced by analytic functions, 
as revealed by the distortion theorem. It sets limits on the maximum amount of stretching or distortion that 
can happen when a function transfers a region or curve from one domain to another. By using these theorems, 
mathematicians and researchers can study the behavior of complex analytic functions and how it impacts the 
sizes and shapes of curves and regions in the complex plane.

Theorem 2.3  If f ∈ Sn
b,�,δ,p(α),then

|ζ | = ρ < 1, provided ν ≥ p+ 1. The result called as sharp for

Proof  By making use of the inequality (9) for f ∈ Sn
b,�,δ,p(α) together with

then

By using (12) for the function f (ζ ) = ζ p +
∑∞

ν=p+1 aνζ
ν ∈ Sn

b,�,δ,p(α) , since |ζ | = ρ,

|aν | ≤
(1− α)|b|

C(�)
, ν = p+ 1, p+ 2, . . .

ην ≤
C(�)

(1− α)|b|
aν , ηp = 1−

∞
∑

ν=p+1

ην .

f (ζ ) = ζ p +

∞
∑

ν=p+1

aνζ
ν

f (ζ ) = (ηp +

∞
∑

ν=p+1

ην)ζ
p +

∞
∑

ν=p+1

ην
(1− α)|b|

C(�)
ζ ν

= ηpfp(ζ )+

∞
∑

ν=p+1

ην{ζ
ν +

(1− α)|b|

C(�)
ζ ν}

= ηpfp(ζ )+

∞
∑

ν=p+1

ην fν(ζ ).

ρp −
(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ρ
p+1 ≤

∣

∣f (ζ )
∣

∣ ≤ ρp +
(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ρ
p+1

,

f (ζ ) = ζ p +
(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ζ
p+1

.

∣

∣

∣

∣

αbp− 1− bp

p

∣

∣

∣

∣

(

(p+ 1+ �)(p+ δ)

p(p+ �)

)n

≤

∣

∣

∣

∣

αbp− ν + p− pb

p

∣

∣

∣

∣

(

p(�+ ν)+ (ν − p)(�+ ν)δ

p(p+ �)

)n

,

∣

∣

∣

∣

αbp− 1− bp

p

∣

∣

∣

∣

(

(p+ 1+ �)(p+ δ)

p(p+ �)

)n ∞
∑

ν=p+1

aν

≤

∣

∣

∣

∣

αbp− ν + p− pb

p

∣

∣

∣

∣

(

p(�+ ν)+ (ν − p)(�+ ν)δ

p(p+ �)

)n ∞
∑

ν=p+1

aν ≤ (1− α)|b|.

(12)

∞
∑

ν=p+1

aν ≤
(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n .
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and similarly,

	�  �

Theorem 2.4  If f ∈ Sn
b,�,δ,p(α),then

|ζ | = ρ < 1, provided ν ≥ p+ 1. Clearly, the outcome is sharp for

Proof  By using the inequality (9) for f ∈ Sn
b,�,δ,p(α) , then

By using (12), then

For the function f (ζ ) = ζ p +
∑∞

ν=p+1 aνζ
ν ∈ Sn

b,�,δ,p(α) , then

and similarly,

	�  �

Convexity and starlikeness
The coefficient inequalities of power series functions are frequently caused by starlikeness and convexity. Starlike 
functions fulfill the well-known Bieberbach conjecture, which gives restriction on the coefficients of starlike func-
tion. The geometric shapes can be preserved by mapping functions that are starlike or convex. The starlikeness 
and convexity of multivalent functions maintain specific structures, these qualities are crucial.

Theorem 2.5  Let f ∈ Sn
b,�,δ,p(α), then the subclass claimed as convex .

|f (ζ )| = ρp +

∞
∑

ν=p+1

aνρ
ν

≤ ρp + ρp+1

∞
∑

ν=p+1

aν

≤ ρp +
(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ρ
p+1

,

|f (ζ )| ≥ ρp −
(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ρ
p+1

.

pρp−1 −
(p+ 1)(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ρ
p ≤

∣

∣f ′(ζ )
∣

∣ ≤ pρp−1 +
(p+ 1)(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ρ
p
,

f (ζ ) = ζ p +
(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ζ
p+1

.

∞
∑

ν=p+1

aν ≤
(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n .

∞
∑

ν=p+1

νaν ≤
(p+ 1)(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n .

|f ′(ζ )| = pρp−1 +

∞
∑

ν=p+1

νaνρ
ν−1

≤ pρp−1 + ρp
∞
∑

ν=p+1

νaν

≤ pρp−1 +
(p+ 1)(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ρ
p
,

|f ′(ζ )| ≥ pρp−1 −
(p+ 1)(1− α)|b|

∣

∣

∣

αbp−1−bp
p

∣

∣

∣

(

(p+1+�)(p+δ)

p(p+�)

)n ρ
p
.
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Proof  Let

contains f ∈ Sn
b,�,δ,p(α).

it is necessary to show that

while

which implies that

Thus

Hence Sn
b,�,δ,p(α) called convex. 	�  �

Theorem 2.6  If f ∈ Sn
b,�,δ,p(α) , then according to order ς f is p-valently convex in the disc |ζ | < ρ2 , where

The bound for |ζ | is sharp for each ν,with the form (11) serving as the extreme function.

Proof  If f ∈ Sn
b,�,δ,p(α), and f is claimed orderly convex of ς , then it is required to prove that

Now, the equation (13) gives

From (13) and (14), derive

In the view of (13), it follows that (15) is true if

Setting |ζ | = ρ2 in (16), the result follows. The sharpness can be verified. 	�  �

Theorem 2.7  If f ∈ Sn
b,�,δ,p(α) , then according to order ς ,f is p-valently starlike (0 ≤ ς < p) in the disc |ζ | < ρ3 , 

where

fj(ζ ) = ζ p +

∞
∑

ν=p+1

aν,jζ
ν
, aν,j ≥ 0, j = 1, 2,

h(ζ ) = (τ + 1)f1(ζ )− τ f2(ζ ), 0 ≤ τ ≤ 1.

h(ζ ) = ζ p +

∞
∑

ν=p+1

[

(1+ τ)aν,1 − τaν,2
]

ζ ν ,

∞
∑

ν=p+1

∣

∣

∣

∣

αbp− ν + p− pb

p

∣

∣

∣

∣

[

p(�+ ν)+ (ν − p)(�+ ν)δ

p(p+ �)

]n

(1+ τ)aν,1

−

∣

∣

∣

∣

αbp− ν + p− pb

p

∣

∣

∣

∣

[

p(�+ ν)+ (ν − p)(�+ ν)δ

p(p+ �)

]n

τaν,2

≤ (1+ τ)(1− α)|b| − τ(1− α)|b|

≤ (1− α)|b|,

h ∈ S
n
b,�,δ,p(α).

ρ2 := inf





p(ς − p)
�

pbα−ν+p−pb
p

��

p(�+ν)+(ν−p)(�+ν)δ

p(p+�)

�n

ν(ν − ς)(1− α)|b|





1
ν−p

, (ν ≥ p+ 1).

(13)
∣

∣

∣

∣

1+
ζ f ′′(ζ )

f ′(ζ )
− p

∣

∣

∣

∣

< p− ς for|ζ | < ρ2.

(14)
∣

∣

∣

∣

1+
ζ f ′′(ζ )

f ′(ζ )
− p

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(ζ )+ ζ f ′′(ζ )− pf ′(ζ )

f ′(ζ )

∣

∣

∣

∣

≤

∑∞
ν=p+1 ν(ν − p)aν |ζ |

ν−p

p+
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ν=p+1 νaν |ζ |
ν−p .

(15)
∞
∑

ν=p+1

ν(ν − ς)

p(ς − p)
aν |ζ |

ν−p ≤ 1.

(16)|ζ | ≤





p(ς − p)
�

�

�

αbp−ν+p−pb
p

�

�

�

�

p(�+ν)+(ν−p)(�+ν)δ

p(p+�)

�n

ν(ν − ς)(1− α)|b|





1
ν−p

, (ν ≥ p+ 1).
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The bound for |ζ | is sharp for each ν , with the form (11) serving as the extreme function.

Proof  If f ∈ Sn
b,�,δ,p(α), and f is claimed orderly starlike of ς , then it is required to demonstrate that

Now, the equation (17) gives

From (17) and (18), the following equation obtain

In the view of (17), it follows that (19) is true if

Setting |ζ | = ρ3 in (20), the result follows. The sharpness can be verified. 	�  �

Partial sums
The concept of partial sums is one that is commonly used in the study of infinite series. On the other hand, 
partial sums are useful in complicated analysis and can be used in many other mathematical situations, includ-
ing function analysis. This section looks into the relationship between form (4) and its series of partial sums.

and

when the coefficients are small enough to satisfy the analogous condition

It can be written as

where

Then f ∈ Sn
b,�,δ,p(α).

Theorem 2.8  If f ∈ Sn
b,�,δ,p(α) , satisfying (7),then

Proof  Clearly Xν+1 > Xν > 1, ν = p+ 1, p+ 2, p+ 3, . . .,
Utilising (4), to get

ρ3 := inf





(ς − p)
�

pbα−ν+p−pb
p

��

p(�+ν)+(ν−p)(�+ν)δ

p(p+�)

�n

(ν − ς)(1− α)|b|





1
ν−p

, (ν ≥ p+ 1).

(17)
∣

∣

∣

∣

ζ f ′(ζ )

f (ζ )
− p

∣

∣

∣

∣

< p− ς for|ζ | < ρ3.

(18)
∣

∣

∣

∣

ζ f ′(ζ )

f (ζ )
− p

∣

∣

∣

∣

=

∣

∣

∣

∣

ζ f ′(ζ )− pf (ζ )

f (ζ )

∣

∣

∣

∣

≤

∑∞
ν=p+1(ν − p)aν |ζ |

ν−p

1+
∑∞

ν=p+1 aν |ζ |
ν−p .

(19)
∞
∑

ν=p+1

(ν − ς)

(ς − p)
aν |ζ |

ν−p ≤ 1.

(20)|ζ | ≤





(ς − p)
�

�

�

αbp−ν+p−pb
p

�

�

�

�

p(�+ν)+(ν−p)(�+ν)δ

p(p+�)

�n

(ν − ς)(1− α)|b|





1
ν−p

, (ν ≥ p+ 1).

f (ζ ) = ζ p

fν(ζ ) = ζ p +

n
∑

ν=p+1

aνζ
ν
, ν = p+ 1, p+ 2, p+ 3, . . . ,

∞
∑

ν=p+1

∣

∣

∣

∣

αbp− ν + p− pb

p

∣

∣

∣

∣

[

p(�+ ν)+ (ν − p)(�+ ν)δ

p(p+ �)

]n

|aν | ≤ (1− α)|b|.

∞
∑

ν=p+1

Xν |aν | ≤ 1,

Xν =

(∣

∣

∣

αbp−ν+p−pb
p

∣

∣

∣

[

p(�+ν)+(ν−p)(�+ν)δ

p(p+�)

]n)

(1− α)|b|
.

Re

(

f (ζ )

fν(ζ )

)

≥ 1−
1

Xn+1

.
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Let

Through basic computations, there is

which gives,

Hence f (ζ ) = ζ +
ζ n+1

Xn+1

)

 will give the sharp result. 	�  �

Theorem 2.9  If f ∈ Sn
b,�,δ,p(α) and satisfies (7). Then

Proof  Clearly Xν+1 > Xν > 1, ν = p+ 1, p+ 2, p+ 3, . . ..
Let

Through basic computations, there is

Hence, the result

is sharp for all n. 	�  �

Theorem 2.10  If f ∈ Sn
b,�,δ,p(α) , satisfying (7), then

Proof  Clearly Xν+1 > Xν > 1, ν = p+ 1, p+ 2, p+ 3, . . ..
Let

Through basic computations, there is

n
∑

ν=p+1

|aν | + Xn+1

∞
∑

ν=n+1

|aν | ≤

∞
∑

ν=p+1

Xν |aν | ≤ 1.

�1(ζ ) = Xn+1

[

f (ζ )

fν(ζ )
−

(

1−
1

Xn+1

)]

= 1+
Xn+1

∑∞
ν=n+1 aνζ

ν−1

1+
∑n

ν=p+1 aνζ
ν−1

.

∣

∣

∣

∣

�1(ζ )− 1

�1(ζ )+ 1

∣

∣

∣

∣

≤
Xn+1

∑∞
ν=n+1 |aν |

2+ 2
∑n

ν=p+1 |aν | + Xn+1

∑∞
ν=n+1 |aν |

≤ 1,

Re

(

f (ζ )

fν(ζ )

)

≥ 1−
1

Xn+1

.

Re

(

fν(ζ )

f (ζ )

)

≥
Xn+1

1+ Xn+1

.

�2(ζ ) = (1+ Xn+1)

[

fν(ζ )

f (ζ )
−

(

Xn+1

1+ Xn+1

)]

= 1+
(1+ Xn+1)

∑∞
ν=n+1 aνζ

ν−1

1+
∑n

ν=p+1 aνζ
ν−1

.

∣

∣

∣

∣

�2(ζ )− 1

�2(ζ )+ 1

∣

∣

∣

∣

≤
(1+ Xn+1)

∑∞
ν=n+1 |aν |

2+ 2
∑n

ν=p+1 |aν | + (1+ Xn+1)
∑∞

ν=n+1 |aν |
≤ 1.

Re

(

fν(ζ )

f (ζ )

)

≥
Xn+1

1+ Xn+1

Re

(

f ′(ζ )

f ′ν(ζ )

)

≥ 1−
n+ 1

Xn+1

.

�3(ζ ) = Xn+1

[

f ′(ζ )

f ′ν(ζ )
−

(

1−
n+ 1

Xn+1

)]

= 1+

Xn+1

n+1

∑∞
ν=n+1 νaνζ

ν−1

1+
∑n

ν=p+1 νaνζ
ν−1

.

∣

∣

∣

∣

�3(ζ )− 1

�3(ζ )+ 1

∣

∣

∣

∣

≤

Xn+1

n+1

∑∞
ν=n+1 ν|aν |

2+ 2
∑n

ν=p+1 ν|aν | +
Xn+1

n+1

∑∞
ν=n+1 ν|aν |

≤ 1,
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which gives,

Hence the result is sharp. 	�  �

Theorem 2.11  If f ∈ Sn
b,�,δ,p(α) , satisfying (7), then

Proof  Clearly Xν+1 > Xν > 1, ν = p+ 1, p+ 2, p+ 3, . . ..
Let

Through basic computations, there is

which gives,

Hence the result is sharp. 	�  �

Graphical representation for the function f (ζ )
Functions that operate on Complex numbers are referred to as Complex functions. An extension of the com-
plex functions that accepts a complex number as input and returns a complex number is output. Input has two 
dimensions of information and output another two, giving us a total of four dimensions to fit into our graph. It 
is challenging to draw the graph for complex functions. Even though the Complex functions are often used for 
mapping and transformation, such as conformal mapping in complex analysis. The phase and absolute value 
diagrams help visualize how these mappings and transformations alter the complex plane, preserving angles or 
shapes, which is a fundamental property of conformal mappings. The conformal mappings find applications in 
engineering and physics, where complex numbers describe electrical circuits, waves, and quantum mechan-
ics, among other things. Understanding the phase and magnitude of complex functions is essential for solving 
problems in these domains.

Phase and absolute value diagrams, also known as Argand diagrams or complex plane diagrams, are use-
ful tools for visualizing and analyzing complex functions, whether they are univalent or multivalent. These 
diagrams help us understand the behavior of complex functions in terms of their magnitude (absolute value) 
and phase (argument) at various points in the complex plane. The phase diagram can help identify singularities 
(such as poles and branch points) as they typically manifest as discontinuities or infinite slopes in the diagram. 
The absolute value diagram can show the behavior of the function near these points, indicating if it approaches 
infinity or remains bounded.

In this section, the phase and absolute values of the function f (ζ ) from (11) have been examined (Figs. 1, 2, 3, 
4 and 5) with various parameters and the following graphs (Figs. 1, 2, 3, 4 and 5) are drawn by using MATLAB. 
The phase and absolute values for the figures provide a geometric and intuitive way to understand the behavior 
of complex functions. They are particularly useful when dealing with univalent and multivalent functions, as 
they help identify key features, singularities, and transformations in the complex plane, making complex analysis 
more accessible and insightful.

Conclusions
In this article, the coefficient inequality, extreme points, growth and distortion, starlikeness and convexity, and 
partial sums for a new subclass by using the linear operator have been examined. Furthermore, the graphs of 
extremal functions are analyzed in terms of how it has been expressed while replacing the suitable values of the 
parameters. This work motivates the researchers to extend the results of this article into some new subclasses of 
meromorphic functions and q-calculus.

Re

(

f ′(ζ )

f ′ν(ζ )

)

≥ 1−
n+ 1

Xn+1

.

Re

(

f ′ν(ζ )

f ′(ζ )
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≥
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.

�4(ζ ) = ((n+ 1)+ Xν)
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f ′ν(ζ )

f ′(ζ )
−

(
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∑∞
ν=n+1 νaνζ

ν−1

1+
∑n
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ν−1

.

∣

∣

∣

∣

�4(ζ )− 1

�4(ζ )+ 1

∣

∣

∣

∣
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(

1+
Xn+1

n+1
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∑∞
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∑n

ν=p+1 ν|aν | +
(

1+
Xn+1

n+1

)

∑∞
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≤ 1,
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(
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f ′(ζ )

)

≥
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n+ 1+ Xn+1
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Figure 1.   For α = 0.1; b = 1; ν = 2; n = 1; δ = 1; � = 1; p = 1; −1 ≤ Re(ζ ) ≤ 1;−1 ≤ Im(ζ ) ≤ 1.

Figure 2.   For α = 0.5; b = 1; ν = 2; n = 1; δ = 1; � = 1; p = 10; −1 ≤ Re(ζ ) ≤ 1;−1 ≤ Im(ζ ) ≤ 1.

Figure 3.   For α = 0.1; b = 1; ν = 5; n = 1; δ = 1; � = 1; p = 5; −1 ≤ Re(ζ ) ≤ 1;−1 ≤ Im(ζ ) ≤ 1.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8760  | https://doi.org/10.1038/s41598-024-58781-6

www.nature.com/scientificreports/

Data availibility
No datasets were generated or analysed during the current study.

Received: 1 January 2024; Accepted: 3 April 2024

References
	 1.	 Aghalary, R., Rosihan, M. A., Joshi, S. B. & Ravichandran, V. Inequalities for analytic functions defined by certain linear operators. 

Int. J. Math. Sci. 4(2), 267–274 (2005).
	 2.	 Al-Oboudi, F. M. On univalent functions defined by a generalized Salagean operator. Int. J. Math. Math. Sci. 27, 1429–1436 (2004).
	 3.	 Al-Shaqsi, K. & Darus, M. An operator defined by convolution involving polylogarithms functions. J. Math. Stat. 4(1), 46–50 

(2008).
	 4.	 Al-Shaqsi, K. & Darus, M. Differential Subordination with generalised derivative operator. Int. J. Comp. Math. Sci 2(2), 75–78 

(2008).
	 5.	 Amourah, A. A. & Feras, Y. Some properties of a class of analytic functions involving a new generalized differential operator. Bol. 

Soc. Paran. Mat. 38(6), 33–42 (2020).
	 6.	 Bernardi, S. D. A survey of the development of the theory of schlicht functions. Duke Math. J. 19, 263–287 (1952).
	 7.	 Biernacki, M. Les Fonctions Multivalentes (Hermann, 1938).
	 8.	 Caglar, M., Deniz, E. & Orhan, H. New coefficient inequalities for certain subclasses of p-valent analytic functions. J. Adv. Appl. 

Comput. Math. 1(2), 40–42 (2014).
	 9.	 Caglar, M., Orhan, H. & Deniz, E. Coefficient bounds for certain classes of multivalent functions. Stud. Univ. Babeç-Bolyai Math. 

56(4), 49–63 (2011).

Figure 4.   For α = 0.5; b = 1; ν = 15; n = 1; δ = 1; � = 1; p = 10; −1 ≤ Re(ζ ) ≤ 1;−1 ≤ Im(ζ ) ≤ 1.

Figure 5.   For α = 0.9; b = 4; ν = 5; n = 5; δ = 1; � = 1; p = 20; −1 ≤ Re(ζ ) ≤ 1;−1 ≤ Im(ζ ) ≤ 1.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8760  | https://doi.org/10.1038/s41598-024-58781-6

www.nature.com/scientificreports/

	10.	 Cho, N. E., Patel, J. & Mohapatra, G. P. Argument estimates of certain multivalent functions involving a linear operator. Int. J. 
Math. Math. Sci. 31, 659–673 (2002).

	11.	 Cho, N. E. & Srivastava, H. M. Argument estimates of certain analytic functions defined by a class of multiplier transformations. 
Math. Comput. Model. 203, 39–49 (2003).

	12.	 Deniz, E., Caglar, M. & Orhan, H. Some properties for certain subclasses of analytic functions defined by a general differential 
operator. Asian-Eur. J. Math. 13(7), 1–12 (2020).

	13.	 Eker, S., Sümer, H., Özlem, G. & Shigeyoshi, O. Integral means of certain multivalent functions. Int. J. Math. Math. Sci. 2006, 145 
(2006).

	14.	 Flett, T. M. The dual of an inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl. 38, 746–765 
(1972).

	15.	 Goluzin, G. M. Geometric theory of functions of a complex variable, GITTL, Moscow, 1952; 2nd ed., Nauka; Moscow, 1966; German 
transi., VEB Deutscher Verlag, Berlin (1952).

	16.	 Hadi, S. H., Maslina, D. & Jung, R. L. Some geometric properties of multivalent functions associated with a new generalized 
q-Mittag-Leffler function. AIMS Math. 7(7), 11772–11783 (2022).

	17.	 Hayman, G. Coefficient problems for univalent functions and related function classes. J. Lond. Math. Soc. 40, 385–406 (1965).
	18.	 Hayman, G. Multivalent Functions (Cambridge University Press, 1958).
	19.	 Jenkins, J. A. Univalent Functions and Conformal Mapping (Springer, 1958) ((Russian transi, IL, Moscow, 1962)).
	20.	 Koebe, P. Uber die Uniformisierung beliebiger analytischer Kurven. Nachr Ges. Wiss. Gottingen 1907, 191–210 (1907).
	21.	 Montel, P. Leçons sur les Fonctions Univalentes ou Multivalentes (Gauthier-Villars, 1933).
	22.	 Murugusundaramoorthy, G. Multivalent β-uniformly starlike functions involving the Hurwitz-Lerch Zeta function. Acta Univ. 

Sapientiae 3(2), 152 (2011).
	23.	 Rashid, A. M., Abdul, R. S. J. & Sibel, Y. Subordination properties for classes of analytic univalent involving linear operator. 

Kyungpook Math. J. 63(2), 225–234 (2023).
	24.	 Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 49, 109–115 (1975).
	25.	 Salagean, G. S. Subclasses of univalent functions. Lect. Notes Math. 1013, 362–372 (1983).
	26.	 Schaeffer, A. C. & Spencer, D. C. Coefficient regions for schlicht functions. Am. Math. Soc. Colloq. Publ. Am. Math. Soc. Providence 

R. I. 35, 145 (1950).
	27.	 Bulut, Serap. Coefficient bounds for p-valently close-to-convex functions associated with vertical strip domain. Korean J. Math. 

29(2), 395–407 (2021).
	28.	 Shanmugam, T. N., Sivasubramanian, S. & Shigeyoshi, O. Argument estimates of certain multivalent functions involving Dziok-

Srivastava operator. Gen. Math. 1, 15 (2007).
	29.	 Shi, L., Khan, Q., Srivastava, G., Liu, J.-L. & Arif, M. A study of multivalent q-starlike functions connected with circular domain. 

Mathematics 7(8), 670 (2019).
	30.	 Stalin, T., Thirucheran, M. & Anand, A. Obtain subclass of analytic functions connected with convolution of polylogarithm func-

tion. Adv. Math.: Sci. J. 9(11), 9639–9645 (2020).
	31.	 Thirucheran, M. & Stalin, T. On a new subclass of multivalent functions defined by Al-Oboudi differential operator. Glob. J. Pure 

Appl. Math. 14(5), 733–741 (2018).
	32.	 Uralegaddi, B. A. & Somanatha, C. Certain classes of univalent functions. In Current Topics in Analytic Function Theory (Srivastava, 

H. M. & Owa, S. eds.) 371–374 (World Scientific Publishing Company, 1992).

Acknowledgements
The study was funded by Researchers Supporting Project number (RSPD2024R749), King Saud University, 
Riyadh, Saudi Arabia.

Author contributions
All the equally are equally contributed.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Some properties of subclass of multivalent functions associated with a generalized differential operator
	The class 
	Estimate the coefficient inequality
	Extreme points
	Growth and distortion theorems
	Convexity and starlikeness
	Partial sums

	Graphical representation for the function 
	Conclusions
	References
	Acknowledgements


