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A novel multi‑model estimation 
of phosphorus in coal and its ash 
using FTIR spectroscopy
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The level of phosphorus must be carefully monitored for proper and effective utilization of coal 
and coal ash. The phosphorus content needs to be assessed to optimize combustion efficiency and 
maintenance costs of power plants, ensure quality, and minimize the environmental impact of coal 
and coal ash. The detection of low levels of phosphorus in coal and coal ash is a significant challenge 
due to its complex chemical composition and low concentration levels. Effective monitoring requires 
accurate and sensitive equipment for the detection of phosphorus in coal and coal ash. X‑ray 
fluorescence (XRF) is a commonly used analytical technique for the determination of phosphorus 
content in coal and coal ash samples but proves challenging due to their comparatively weak 
fluorescence intensity. Fourier Transform Infrared spectroscopy (FTIR) emerges as a promising 
alternative that is simple, rapid, and cost‑effective. However, research in this area has been limited. 
Until now, only a limited number of research studies have outlined the estimation of major elements 
in coal, predominantly relying on FTIR spectroscopy. In this article, we explore the potential of FTIR 
spectroscopy combined with machine learning models (piecewise linear regression—PLR, partial least 
square regression—PLSR, random forest—RF, and support vector regression—SVR) for quantifying 
the phosphorus content in coal and coal ash. For model development, the methodology employs the 
mid‑infrared absorption peak intensity levels of phosphorus‑specific functional groups and anionic 
groups of phosphate minerals at various working concentration ranges of coal and coal ash. This 
paper proposes a multi‑model estimation (using PLR, PLSR, and RF) approach based on FTIR spectral 
data to detect and rapidly estimate low levels of phosphorus in coal and its ash (R2 of 0.836, RMSE of 
0.735 ppm, RMSE (%) of 34.801, MBE of − 0.077 ppm, MBE (%) of 5.499, and MAE of 0.528 ppm in coal 
samples and R 2 of 0.803, RMSE of 0.676 ppm, RMSE (%) of 38.050, MBE of − 0.118 ppm, MBE (%) of 
4.501, and MAE of 0.474 ppm in coal ash samples). Our findings suggest that FTIR combined with the 
multi‑model approach combining PLR, PLSR, and RF regression models is a reliable tool for rapid and 
near‑real‑time measurement of phosphorus in coal and coal ash and can be suitably modified to model 
phosphorus content in other natural samples such as soil, shale, etc.
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Coal is one of the most abundant energy sources worldwide, providing reasonable, reliable, and constant power 
available on demand to meet energy consumption and industrial needs. Coal originates from diverse plants, 
accumulation of skeletal fragments, and organic elements within peat  deposits1,2. Over time, coal undergoes 
extended geological and microbiological processes, incorporating multi-elemental  impurities1. These multi-
elemental impurities in coal greatly influence the environmental, economic, and combustion  liability3. The 
elemental composition of coal is an important factor governing the liability of coal to spontaneous combustion, 
which is one of the most dangerous mining  hazards4–6. They also affect the quality and pose deleterious effects 
during coal utilization. In recent years, there has been a growing focus on the determination of elements in coal 
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and coal ash due to their significant role in the local and global energy mix. Phosphorus found in coal plays a 
crucial role in metallurgical processing, as it significantly impacts the quality of the resulting products. The lack 
of commercially viable alternative energy technologies that can significantly replace fossil fuels makes coal vital 
to meeting the global energy demand. Coal generates approximately 40% of the world’s power and heat, despite 
growing decarbonization efforts over the past 40  years7. Hence, there is a critical demand for the advancement 
of efficient, economical, and swift techniques to determine the elemental content in coal and coal ash samples. 
Analyzing the elemental impurities within coal will offer direction for refining coal purification methods, thereby 
enhancing the coal quality. Furthermore, improved knowledge and quantification of the elemental impurities in 
coal and coal ash will play an important role in their effective utilization, as the elemental makeup of the input 
coal significantly impacts the final quality of the products and residues.

Significance of phosphorus content in coal and coal ash
Phosphorus (P), with atomic number 15, is a crucial element for living cells, which, during organic decay in the 
peat bed, is released from the plant structure and re-precipitated elsewhere. Phosphorus-bearing mineral groups 
such as apatite, monazite, xenotime, and crandallite are ubiquitous in  coal8,9. Although most of the phosphorus 
in coal is thought to be in the form of inorganic mineral components, researchers have identified the possibility 
of organic phosphorus in  coal9. The Clarke value of phosphorus is 200 ± 30 ppm for brown coal and 250 ± 10 
ppm for hard  coal10–14. The amount of P in coal varies depending on the location and geological period. Coal 
from the Cretaceous era found in Western Canada and coal from the Permian era found in India and Australia 
have higher levels of P compared to coal from the Carboniferous era found in the United States and  Europe15.

Though present in minor amounts, the presence of phosphorus in coal has garnered considerable attention 
due to its detrimental effect on the marketing and use of coking coals. Phosphorus is crucial for enhancing the 
strength of the metal, but excess can render the final metal product  brittle16. The presence of phosphorus in the 
form of an oxide impurity results in the formation of intergranular segregation during the process of continuous 
casting. This results in a decrease in the ductility and toughness of the steel, which, in turn, results in an increased 
risk of breakage during processing, fabrication, and  use17. In addition to this, phosphorus can cause deposits to 
form in the superheater of boilers and can harm catalysts in the process of  liquefaction11. This reduces the heat 
transfer rate, increases pressure drop, reduces the overall combustion efficiency, and increases the maintenance 
cost of the system. Thus, phosphorus impurities in coal will uncover their grade and value. Phosphorus is also 
significant in the long-term leaching of coal waste  products2,18,19. Hence, it is important to monitor and control 
the quality of coal during various processing stages, such as washing, blending, and pulverization, to estimate 
the likely interactions they may have in different coal utilization processes. This ensures that coal meets all 
regulatory specifications and can help optimize the performance of coal-fired power plants and other industrial 
processes that depend on coal as a fuel source. Accurate quantification of phosphorus content can help power 
plant operators adjust combustion parameters to minimize these effects. Hence, the rapid determination of 
phosphorus in coal is of primary interest, especially for low phosphorus steel or ferro alloy-making processes 
where the input material, like coke, may contribute up to 36% compared to 21% from iron ore and 43% of 
phosphorus from  sinter20–22.

Massive amounts of coal ash produced from coal combustion can release airborne phosphorus compounds, 
contributing to PM10 particulate matter. Concerns over long-term phosphorus supply in nature and its environ-
mental impact have arisen. Coal fly ash, rich in essential nutrients, including phosphorus, holds the potential for 
enhancing plant growth and amending acidic soils. Analyzing the elemental composition of coal ash is crucial 
due to its dual role as a health hazard and industrial  resource23–27. Hence, there is a vital requirement for a fast 
and dependable method to measure and monitor phosphorus levels in coal and coal ash, necessitating the use 
of cost-effective and expeditious multi-element analytical techniques.

Phosphorus detection methods in coal and coal ash
Numerous analytical techniques are available for the elemental determination of coal and coal ash. Techniques 
like traditional wet analysis methods (gravimetric and volumetric) for measuring coal phosphorus are labour-
intensive and destructive. While other advanced techniques like inductively coupled plasma optical emission 
spectroscopy (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), Atomic fluorescence spec-
trometry (AFS), and atomic absorption spectroscopy (AAS) offer efficiency, they involve complex wet digestion 
sample preparation and high operational costs. Sample preparation requires the use of inorganic acids  (HClO4, 
HF,  H2SO4,  H3BO3), which can pose safety risks and negatively impact spectrometric techniques due to matrix 
effects and spectral  interferences28,29. Moreover, wet digestion is prone to systematic errors, including contamina-
tion and analyte losses, exacerbated by operating at low temperatures and atmospheric pressure, leading to poor 
elemental extraction  recoveries30. High carbon concentrations in coal can also cause spectral and non-spectral 
interferences in inductively coupled plasma-based detection techniques. Excessive acid and residual carbon con-
tent alter solution properties, affecting the aerosol formation and analyte transportation to the plasma, resulting 
in signal reduction and high background, affecting detection  limits31,32. AFS is vulnerable to specific elements 
and is impacted by fluorescence and matrix effects, and it may not completely mitigate spectral  interference33.

Non-dispersion detection methods like X-ray diffraction (XRD), X-ray Fluorescence (XRF), and X-ray pho-
toelectron spectroscopy (XPS) are non-destructive alternatives, with XRF being common for phosphorus meas-
urement and requiring minimal sample preparation. This is advantageous, especially for coal samples, which 
are difficult to dissolve due to their complex organic matrices. Above all, direct analysis with non-destructive 
techniques is particularly useful over destructive methods for determining volatile  elements32. Matrix interfer-
ences resulting from major elements comprising the majority of the sample matrix and the need for careful 
standard utilization reduce the sensitivity for minor and trace elements, leading to high detection limits and 
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poor precision in quantitative analysis. Fractionation and spectrometric interference issues can also significantly 
disrupt the accuracy and precision of this analysis  approach32,34,35. Overall, these methods have trade-offs in terms 
of cost, sensitivity, and practicality for handling bulk sample numbers. For the rapid assessment of phosphorus in 
coal and its ash, there is a strong preference for an approach that reduces sample processing time and analytical 
duration, facilitates high sample throughput, and ensures acceptable accuracy.

Until now, a limited number of research studies have outlined the estimation of elements like sulfur and car-
bon, predominantly relying on FTIR spectroscopy and machine learning  techniques36–43. Quantifying phosphorus 
in coal and coal ash using FTIR spectroscopy is challenging due to the element’s extremely low concentration and 
weak signal. Mid-infrared (MIR) spectra of coal and coal ash contain absorbance peaks due to the functional and 
anionic groups of minerals related to phosphorus in coal and coal ash. The objective of this current study was 
to assess the effectiveness of using FTIR spectroscopy in conjunction with multivariate regression techniques 
for the measurement of phosphorus in coal and its ash, compared to traditional analytical methods. Samples 
prepared in different concentration ranges, making a total of 96 FTIR spectra each for coal and its ash, were 
utilized to establish the model. The standard XRF method determined the reference phosphorus concentration 
in each sample. After establishing a model, it becomes feasible to predict the concentrations of phosphorus in 
an unknown sample by analyzing its spectrum in near-real time.

The present method provides the advantage of detecting low levels of phosphorus in coal, which is particu-
larly crucial for the steel-making industry and environmental regulations. Unlike other methods, it requires no 
hazardous chemicals, much less sample size, sample preparation, and measurement time. The proposed method 
using FTIR stands out as a simpler, cost-effective, and rapidly working alternative to measure the phosphorus 
content in coal and coal ash. The approach, methods, and comparative validation analysis conducted in the study 
are summarized in Fig. 1.

Results
Elemental composition of coal and coal ash
The elemental composition of coal and its ash is determined at various stages of the coal mining process, from 
exploration and mining to transportation and combustion. This information is utilized to assess the quality and 
suitability of the coal (for applications such as power generation, steel production, and cement manufacturing) 
and its ash (for applications such as fertilizers, the construction industry, and contaminant removal). In this 
study, WDXRF spectroscopy is employed to quantitatively analyze the phosphorus content in coal and coal ash 
along with sodium, magnesium, aluminium, silicon, potassium, calcium, titanium, manganese, and iron. The 
phosphorus content in coal and coal ash samples is reported as  P2O5 mass percent, which is converted to phos-
phorus mass percent using the conversion factor specific to phosphorus. All the concentrations expressed in 
mass percent were later converted to parts per million (ppm). The phosphorus content analyzed in coal ranges 
from 215.59 ppm in sample J_01 to 569.96 ppm in sample J_14 while that in coal ash ranges from 135.29 ppm in 
sample J_01 to 466.97 ppm in sample J_16. A comprehensive report of the WDXRF analysis conducted on coal 
and coal ash samples is provided in Tables 1 and 2 respectively.

Selection of MIR bands suitable for P determination
FTIR is used to identify, analyze and quantify functional groups and chemical bonds in compounds through its 
ability to measure the absorbance of infrared light at different wavelengths. Phosphorus-containing compounds 
exhibit characteristic IR absorption bands depending on the specific functional groups present. Phosphorus-
containing compounds typically exhibit absorption bands in the IR spectrum at around 1200–950  cm-1, which 
are associated with the stretching vibrations of P–O bonds. Additionally, other functional groups associated 
with phosphorus, like phosphates, phosphonates, phosphines, phosphine oxides, and phosphate esters, and 
their infrared active regions, were identified. Besides that, the IR-sensitive frequency range of the  PO4

3- anionic 
complex common to phosphorus-containing minerals was also identified. A set of 18 peaks was identified and 
utilized for the current  study44–47. The 18 mid-IR sensitive peaks of phosphorus for the coal and ash sample J_03 
(set of 06 pellets with known sample concentrations showing incremental intensity in absorbance) are shown in 
Fig. 2. Using the functional group and chemical bond assignments provided in Table 3, the area under the curve 
(AUC) was determined for all 18 peaks.

Model estimation and assessment
For model estimation, a set of six sample pellets was prepared for each of the sixteen coal (coal + KBr) and its 
ash samples (coal ash + KBr). The six samples were prepared at known dilution factors by fixing the KBr weight 
at 220 mg and the weight of coal in the sample pellet varying in the order of 0.44, 0.66, 0.88, 1.33, 2.22, and 3.12 
mg. The same dilution factors were applied for the preparation of coal ash sample pellets. The spectral response of 
all 96 coal sample pellets and coal ash sample pellets was recorded individually using Bruker FTIR. The recorded 
spectra also contained signatures from the KBr spectra, which were mixed with the samples to create pellets. To 
eliminate the KBr signature from the sample spectra, the spectra of pure KBr pellets were recorded and used as 
a reference spectrum. This reference spectrum was then subtracted from each pellet’s signature, resulting in a 
new spectrum that was used for subsequent analysis.

The quantitative analysis of phosphorus content in coal and coal ash samples through FTIR spectroscopy 
involved the application of piecewise linear regression  (PFTIR_PLR), partial least square regression  (PFTIR_PLSR), 
random forest  (PFTIR_RF) and support vector regression  (PFTIR_SVR) models. All models were established with 
the area under the curve of the eighteen identified absorption peaks associated with the functional groups of 
phosphorus calculated and used as the independent input variable set. For model development and validation, 
the K fold cross-validation technique was utilized to test the performance of the FTIR data-based model in 
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determining the phosphorus content in the sample pellets. This cross-validation technique permits the use of 
samples to build and validate the model using independent sets (“training set” and “test set”) created using a 
15:01 split. The K-Fold divides all the samples into k (k = 16) groups of samples. A total of 96 sample pellets for 
each coal and its ash were used to create 16 groups, where each group had 06 pellets prepared from coal and its 
ash samples individually at known concentrations. One fold is utilized for testing during each run, while the 
other folds (K − 1) are used for training so that during the entire process, each fold will be used for testing at 
least once and is independent of the “training set”.

PFTIR_PLR,  PFTIR_PLSR, and  PFTIR_RF exhibited enhanced robustness, with predicted values closer to the actual 
values in the dataset compared to  PFTIR_SVR. Occasionally, one or more negative values were detected in the PLR 
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Figure 1.  Schematic illustration of the step-by-step procedure used for model development, validation, and 
estimation of phosphorus content in coal used. The same procedure was repeated for the analysis of phosphorus 
in coal ash. (AUC, Area under the curve; PLR, piecewise linear regression; PLSR, partial least square regression; 
RF, random forest, SVR, support vector regression; MME, multi-model estimation).
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and PLSR models, which were replaced by the average of the 3 best performing models. The estimation of phos-
phorus is found to be more reliable and consistent using the multi-model estimation technique  (PFTIR_MME) taking 
the average of the 3 best performing models  (PFTIR_PLR,  PFTIR_PLSR,  PFTIR_RF). The model-estimated phosphorus 
content for 96 coal samples and 96 coal ash samples can be located in Supplementary Table S1 and Supplementary 
Table S2, respectively. The model predicted values were compared to the XRF measured phosphorus content to 
observe the correlation between the two values and the quality of the model (Figs. 3, 4).

Statistical parameters including the mean ( µ ), standard deviation ( σ ), coefficient of determination  (R2), root 
mean squared error (RMSE), mean bias error (MBE), and mean absolute error (MAE) in absolute and percentage 
are chosen as the performance  measures48 of the established models.  PFTIR_MME showed the highest correlation 
with  PXRF with all R-squared  (R2) values exceeding 0.80 for both coal and its ash, suggesting a good fit of the 
model to the data. A comprehensive statistical analysis has been conducted to evaluate the efficacy of the pro-
posed model utilizing the FTIR spectral response of phosphorus functional groups. The comparison between 
model predicted  (PFTIR_PLR,  PFTIR_PLSR,  PFTIR_RF,  PFTIR_SVR,  PFTIR_MME) and XRF measured  (PXRF) phosphorus con-
tent and their correlation for coal and its ash is given in Figs. 3 and 4 respectively. The boxplot representing the 
distribution of phosphorus determined through XRF and using model predicted FTIR spectroscopy in coal and 
its ash (Fig. 5a (i),b (i)) shows no significant difference in means. Similarly, the MBE of the presented models 

Table 1.  XRF spectroscopy analysis report providing the elemental composition of coal.

XRF Spectroscopy (mass %)

Sample Na2O MgO Al2O3 SiO2 P2O5 P (ppm) K2O CaO TiO2 MnO Fe2O3 Total

J_01 0.418 1.428 24.880 43.123 0.049 215.591 0.828 7.240 2.549 0.241 19.243 100.00

J_02 0.000 0.297 21.800 40.473 0.071 308.549 0.439 1.952 2.108 0.144 32.717 100.00

J_03 0.190 1.226 23.819 47.707 0.114 497.520 0.576 10.495 2.680 0.241 12.951 99.99

J_04 0.155 0.424 22.762 55.386 0.087 380.559 0.604 9.829 5.248 0.272 5.233 100.00

J_05 0.159 0.742 19.755 44.277 0.088 385.796 0.405 9.053 2.790 0.333 22.399 100.00

J_06 0.529 0.734 24.213 54.267 0.068 294.584 1.468 7.132 4.460 0.210 6.919 100.00

J_07 0.087 0.614 23.049 62.724 0.103 448.204 1.295 5.578 3.418 0.095 3.038 100.00

J_08 0.065 0.614 21.376 44.862 0.073 318.587 0.555 3.544 2.834 0.254 25.822 99.99

J_09 0.114 0.873 24.418 57.573 0.094 408.926 1.533 5.192 3.885 0.097 6.222 100.00

J_10 0.178 0.374 22.406 59.077 0.090 392.342 0.550 7.935 6.132 0.180 3.078 99.99

J_11 0.122 0.571 20.061 40.503 0.091 397.579 0.308 7.219 2.279 0.263 28.582 100.00

J_12 0.329 1.389 25.293 42.923 0.055 238.286 0.836 6.390 1.975 0.249 20.562 100.00

J_13 0.136 0.892 24.659 56.556 0.102 444.713 0.309 8.598 3.643 0.212 4.895 99.99

J_14 0.289 1.708 23.729 42.479 0.131 569.966 0.695 16.905 3.504 0.373 10.188 99.99

J_15 0.129 0.395 23.431 59.212 0.078 339.099 0.526 7.615 5.511 0.182 2.921 100.00

J_16 0.117 0.809 23.801 52.465 0.126 550.327 0.283 8.355 3.220 0.320 10.504 99.99

Table 2.  XRF spectroscopy analysis report providing the elemental composition of coal ash.

XRF Spectroscopy (mass %)

Sample Na2O MgO Al2O3 SiO2 P2O5 P (ppm) K2O CaO TiO2 MnO Fe2O3 Total

J_01 0.836 2.565 29.685 49.670 0.031 135.290 0.458 4.454 1.867 0.099 7.354 97.02

J_02 0.268 1.130 28.836 58.183 0.077 336.044 0.249 1.522 1.930 0.041 17.681 109.92

J_03 0.482 3.050 27.793 53.232 0.066 288.038 0.289 6.059 1.996 0.048 5.123 98.14

J_04 0.363 0.862 27.993 61.903 0.048 209.482 0.180 3.834 2.751 0.018 1.243 99.20

J_05 0.385 1.784 24.371 56.118 0.092 401.507 0.220 3.789 2.390 0.224 9.367 98.74

J_06 0.710 1.382 31.115 60.211 0.043 187.661 0.772 3.630 2.595 0.024 2.506 102.98

J_07 0.382 1.278 29.170 68.258 0.080 349.137 0.601 2.819 1.933 0.000 1.194 105.71

J_08 0.255 1.424 27.653 57.406 0.066 288.038 0.275 2.239 2.080 0.107 11.301 102.80

J_09 0.347 1.828 28.087 62.636 0.087 379.686 0.787 3.129 2.377 0.000 2.949 102.22

J_10 0.390 0.921 26.924 61.757 0.074 322.951 0.222 4.047 3.127 0.011 1.149 98.62

J_11 0.348 1.372 24.315 52.596 0.100 436.421 0.170 4.135 1.894 0.147 13.360 98.44

J_12 0.749 2.698 30.355 50.874 0.031 135.290 0.480 4.078 1.562 0.100 8.842 99.77

J_13 0.313 1.685 30.759 63.053 0.090 392.779 0.071 4.082 1.600 0.042 2.028 103.72

J_14 0.617 4.751 20.735 40.324 0.055 240.031 0.379 10.040 2.090 0.088 2.839 81.92

J_15 0.347 0.853 27.531 61.009 0.045 196.389 0.161 3.491 2.810 0.001 0.961 97.21

J_16 0.334 1.568 30.020 60.791 0.107 466.970 0.071 4.298 1.454 0.116 4.147 102.90



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13785  | https://doi.org/10.1038/s41598-024-63672-x

www.nature.com/scientificreports/

Figure 2.  Mid-IR absorbance spectra of (a) 06 coal sample pellets and (b) 06 coal ash sample pellets of known 
incremental concentration of sample J_04 showing the identified phosphorus sensitive ranges or peaks as given 
in table 3.

Table 3.  Details of identified MIR absorption peaks of phosphorus compounds and their assigned functional 
and ionic groups used for the  study44–47.

Peak Onset  (cm-1) Offset  (cm-1) Center  (cm-1) Assignment

P_1 419 444 427
 O–P–O (scissors deformation)

P_2 444 495 470

P_3 600 612 607 PO4
3-asymmetric deformation

P_4 730 767 752

P–O (stretch)P_5 767 787 777

P_6 787 833 797

P_7 885 930 912
P–H (bend)

P_8 930 952 939

P_9 990 1022 1009
 P–O–C (asymmetric stretching)

P_10 1022 1065 1032

P_11 1069 1108 1099 PO4
3-asymmetric valence oscillations

P_12 1140 1191 1165

 P=O (stretch)

P_13 1238 1260 1242

P_14 1260 1272 1268

P_15 1272 1288 1275

P_16 1318 1328 1324

P_17 1332 1338 1334

P_18 1430 1445 1441 P–C (stretch)
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was plotted to estimate the average bias in each of the models for coal and ash (Fig. 5a (ii),b (ii)). The MBE of the 
multi-model estimated phosphorus using FTIR  (PFTIR_MME) data is found to be low for coal and its ash (− 0.077 
ppm and − 0.118 ppm), depicting that both the model performance is consistent and unbiased on average.

Standard statistical significance tests were utilized to test if there is any substantial difference between the 
means ( µd) and variance ( σ2) of the phosphorus content obtained from XRF  (PXRF) and model estimated FTIR 
spectroscopy  (PFTIR_MME) of both coal and ash. The paired t-test for means, conducted at a 99% confidence level ( α 
= 0.01), comparing the phosphorus content in coal and its ash measured by XRF and predicted by FTIR yielded 
p-values greater than α=0.01, indicating the inability to reject the null hypothesis (H0: µd = 0). This suggests no 
significant difference between the mean values of  PXRF and  PFTIR_PLR,  PFTIR_PLSR,  PFTIR_RF, PFTIR_SVR, PFTIR_MME, in 
both coal and its ash (Table 4). Similarly, a two-sample F-test for variance at a 99% confidence level also showed 
p value greater than α = 0.01, supporting the acceptance of the null hypothesis (H0: σ0

2 = σp2), indicating no 
significant difference in variance between measured ( σ0

2) and model predicted ( σp
2) phosphorus values for 

both coal and coal ash (Table 5). In conclusion, there is no statistically significant difference in mean or variance 
between measured and predicted phosphorus values at a 99% confidence level for coal and its ash.

Figure 3.  Correlation between phosphorus content in coal measured by XRF  (PXRF) and modeled using FTIR 
(a)  PFTIR_PLR (b)  PFTIR_PLSR (c)  PFTIR_RF (d)  PFTIR_SVR and (e)  PFTIR_MME using independent “test set” (validation set) 
using K fold cross-validation.
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The comparison between the phosphorus content measured by XRF  (PXRF) and predicted using multi-model 
FTIR spectroscopy  (PFTIR_MME) for coal and its ash samples is given in Fig. 6a,b respectively, which clearly depict 
that the multi-model estimated phosphorus content is similar and comparable to the measured phosphorus 
content in both the samples.

All the results collectively suggest that multi-model FTIR spectroscopy is a novel, sensitive, and reliable 
alternative to predict low levels of phosphorus content in coal and its ash.

Discussion
Researchers have investigated several methods to determine the phosphorus content in soils, compound fertiliz-
ers, sludge waste, seafood, etc., using different spectroscopic analytical techniques like laser-induced breakdown 
spectroscopy (LIBS), prompt gamma neutron activation analysis (PGNAA), XRF, X-ray absorption spectros-
copy (XAS), ICP-OES, ICP-MS, near-infrared spectroscopy (NIRS), mid-infrared spectroscopy (MIRS), and 
visible-near infrared spectroscopy (vis-NIRS) (Table 6). PGNAA delivers continuous online monitoring of coal 

Figure 4.  Correlation between phosphorus content in coal ash measured by XRF  (PXRF) and modeled 
using FTIR (a)  PFTIR_PLR (b)  PFTIR_PLSR (c)  PFTIR_RF (d)  PFTIR_SVR and (e)  PFTIR_MME using independent “test set” 
(validation set) using K fold cross-validation.
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composition but comes with a high cost and radiation hazards. XRF offers immediate analysis capabilities but is 
limited to detecting elements with atomic numbers lower than  1149. NIRS is an established technique utilized in 
many industries to ensure quality, but the low dipole moment between the phosphorus and oxygen atoms hinders 
the direct detection of phosphorus or phosphate through NIRS. Nevertheless, the quantification of phosphorus is 
feasible through NIRS if it is organically bound or closely linked to other soil properties. The limited availability 

Figure 5.  Boxplots corresponding to (a) coal i) P content determined in coal by XRF and modeled using FTIR 
in the experiment, (ii) MBE of the modeled P content in coal using FTIR, and (b) coal ash i) phosphorus content 
determined in ash by XRF and modeled using FTIR in the experiment, (ii) MBE of the modeled phosphorus 
content in ash using FTIR.

Table 4.  Results of paired two-sample t-test for means (two-tailed at 99 % CI, α = 0.01) to compare 
the difference in means of measured  (PXRF) and model estimated P content  (PFTIR_PLR,  PFTIR_PLSR, 
 PFTIR_RF, PFTIR_SVR, PFTIR_MME) in (a) coal and (b) coal ash.

Pair µ σ
2 tstat p-value tcritical H0: µd = 0

(a) Coal: t-test: Paired Two Sample for Means, n = 96; df = 95

  PFTIR_PLR (ppm) 2.294 2.446 1.938 0.056 2.629 T

  PFTIR_PLSR (ppm) 2.434 3.034 0.394 0.695 2.629 T

  PFTIR_RF (ppm) 2.428 2.566 0.362 0.718 2.629 T

  PFTIR_SVR (ppm) 2.405 2.181 0.628 0.532 2.629 T

  PFTIR_MME (ppm) 2.385 2.518 1.03 0.305 2.629 T

  PXRF (ppm) 2.462 3.265

(b) Ash: t-test: Paired Two Sample for Means, n = 96; df = 95

  PFTIR_PLR (ppm) 1.757 1.552 2.593 0.011 2.629 T

  PFTIR_PLSR (ppm) 1.745 1.991 2.268 0.026 2.629 T

  PFTIR_RF (ppm) 1.937 1.638 -0.061 0.951 2.629 T

  PFTIR_SVR (ppm) 1.948 1.653 -0.176 0.860 2.629 T

  PFTIR_MME (ppm) 1.813 1.540 1.733 0.086 2.629 T

  PXRF (ppm) 1.931 2.223



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13785  | https://doi.org/10.1038/s41598-024-63672-x

www.nature.com/scientificreports/

and accuracy of NIRS models for predicting phosphorus content in soil can thus be  justified50,51. Researchers have 
employed MIRS to estimate the levels of plant-available  phosphorus50,52,53. Studies show that MIRS outperformed 
NIRS, especially for available phosphorus  analyses52. However, despite these advantages, the calibration functions 
for both IR methods still had relatively low  R2 values. The capacity for minimal invasiveness and high-quality 
soil phosphorus sensing through IR (NIRS and MIRS) spectroscopy is anticipated to improve significantly with 
the incorporation of more efficient mathematical spectra analysis using machine learning  techniques50.

In the field of prediction modeling, several statistical evaluation metrics are commonly used to evaluate the 
quality of these models. These metrics include the correlation between measured and predicted values like  R2, 
RMSE, MBE, and MAE. In general, models with higher  R2 and lower RMSE and MBE values are considered to 
have better prediction quality. It is commonly accepted that models with an  R2 value greater than 0.70 with lower 
MAE and RMSE are deemed to have acceptable predictive power, while models with an  R2 value below 0.50 and 
a relatively higher MAE and RMSE value are considered to have poor prediction  capability50.

It can be noticed from Table 6 that a few models using LIBS with multivariate analysis based on machine 
learning achieve good prediction capability for phosphorus content in the soil compared to other methods. 

Figure 6.  Comparison chart of the P content (ppm) measured by XRF  (PXRF) and by multi-model FTIR 
 (PFTIR_MME) technique for (a) coal, and (b) coal ash samples.

Table 5.  Results of paired two-sample F-test for variance (two-tailed at 99 % CI, α = 0.01) to compare 
the difference in means of measured  (PXRF) and model estimated P content  (PFTIR_PLR,  PFTIR_PLSR, 
 PFTIR_RF, PFTIR_SVR, PFTIR_MME) in (a) coal and (b) coal ash.

Pair µ σ
2 Fstat p-value CI H0: σ0

2 = σp2

(a) Coal: F-test: Two sample for Variances, n = 96; df = 95

P FTIR_PLR (ppm) 2.294 2.446 1.334 0.162 0.783, 2.274 T

  PFTIR_PLSR (ppm) 2.434 3.034 1.076 0.723 0.631, 1.833 T

  PFTIR_RF (ppm) 2.428 2.566 1.271 0.244 0.746, 2.167 T

  PFTIR_SVR (ppm) 2.405 2.181 1.496 0.051 0.878, 2.549 T

  PFTIR_MME (ppm) 2.385 2.518 1.297 0.208 0.761, 2.209 T

  PXRF (ppm) 2.462 3.265

(b) Ash: F-test: Two sample for Variances, n = 96; df = 95

  PFTIR_PLR (ppm) 1.757 1.552 1.433 0.081 0.841, 2.442 T

  PFTIR_PLSR (ppm) 1.745 1.991 1.117 0.591 0.655, 1.903 T

  PFTIR_RF (ppm) 1.937 1.638 1.358 0.138 0.797, 2.314 T

  PFTIR_SVR (ppm) 1.948 1.653 1.344 0.151 0.789, 2.290 T

  PFTIR_MME (ppm) 1.813 1.540 1.444 0.075 0.847, 2.460 T

  PXRF (ppm) 1.931 2.223
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Table 6.  Comparison of the statistical parameter values achieved for models developed in previous studies 
and present model to estimate P content in different samples (ISAM, Improved Standard Addition Method; 
FTIR-PAS, Fourier transform mid-infrared photoacoustic spectroscopy; GA-PLS, Genetic algorithm partial 
least squares; ANN, Artificial neural networks; WET, Water extractable phosphorus; PAP, Plant available 
phosphorus).

Sl. no. Method Nature & sample count R2 RMSE (RMSE%) MBE (MBE%) MAE RSD% Location reference

1 LIBS with linear regression Soil;
N = 90

0.99
NA

NA
NA

NA
NA Denmark74

2 LIBS with PLSR Soil;
N = 30

0.59
NA

NA
NA

NA
NA China33

3 LIBS with SVR Soil;
N = 30

0.99
NA

NA
NA

184.71
0.0006 China33

4 LIBS with linear fitting Soil;
N = 30

0.24
NA

NA
NA

NA
NA China33

5 LIBS with SVM Seafood;
N = 21

0.99
NA

NA
NA

NA
5.18 China54

6 LIBS with linear regression Soil;
N = 10

0.86
NA

NA
NA

0.0068
NA China75

7 ICP-OES with ISAM Soil;
N = 40

NA
NA

NA
NA

NA
1.23 China76

8 LIBS with PLSR Soil;
N = 147

0.76
NA

1.9
NA

NA
NA Denmark55

9 LIBS with linear correlation Fertilizer;
N = 26

0.9
NA

NA
NA

NA
NA Brazil77

10 vis-NIRS with PLSR Soil;
N = 147

0.55
NA

0.54
NA

NA
NA Denmark78

11 LIBS-vis-NIRS with PLSR Soil;
N = 147

0.74
NA

-2.9
NA

NA
NA Denmark55

12 vis-NIRS with PLSR Soil;
N = 60

0.91
0.16

NA
NA

NA
NA China78

13 FTIR-PAS with PLSR
(for WEP)

Soil;
N = 60

0.80
0.78

NA
NA

NA
NA Denmark79

14 FTIR-PAS with PLSR
(for PAP)

Soil;
N = 60

0.7
134.1

NA
NA

NA
NA Denmark79

15 Vis-NIRS with GA-PLS Soil;
N = 103

0.79
NA

NA
NA

NA
NA Japan80

16 Vis-NIRS with ANN Soil;
N = 41

0.81
NA

NA
NA

NA
NA Thailand53

17 FTIR with PLR

Coal;
N = 96

0.777
0.865
(43.972)

− 0.169
(1.30)

0.6
NA

Present study
India

Coal ash;
N = 96

0.810
0.677
(35.821)

− 0.174
(− 0.556)

0.450
NA

18 FTIR with PLSR

Coal;
N = 96

0.849
0.703
(34.695)

− 0.028
(4.420)

0.511
NA

Coal ash;
N = 96

0.718
0.822
(48.980)

− 0.186
(− 5.610)

0.596
NA

19 FTIR with RF

Coal;
N = 96

0.728
0.940
(42.852)

− 0.035
(10.778)

0.701
NA

Coal ash;
N = 96

0.635
0.901
(59.280)

0.006
(19.669)

0.639
NA

20 FTIR with SVR

Coal;
N = 96

0.753
0.900
(46.829)

− 0.058
(13.180)

0.657
NA

Coal ash;
N = 96

0.622
0.918
(60.279)

0.017
(19.985)

0.696
NA

21
FTIR with MME
(multi-model estimation
using PLR,PLSR,RF)

Coal;
N = 96

0.836
0.735
(34.801)

− 0.077
(5.500)

0.528
NA

Coal ash;
N = 96

0.803
0.676
(38.050)

− 0.118
(4.501)

0.474
NA



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13785  | https://doi.org/10.1038/s41598-024-63672-x

www.nature.com/scientificreports/

The literature review shows that LIBS with the SVM prediction model provides the best results in soil samples. 
However, the diverse characteristics of soil samples, including their heterogeneity, roughness, and particle size, 
create uncertainties when implementing LIBS, particularly due to the matrix effect impacting quantification 
 accuracy54,55. LIBS technology has been used to identify and quantify several major elements (C, H, O, S, Si) 
along with very few minor elements (Fe, Ti, Al, Ca, Na, Cu)28,49,56–58. To the best of our knowledge, no substantial 
literature or models estimate the phosphorus content of coal and ash using mid-infrared FTIR spectroscopy. Thus, 
the present attempt to determine the phosphorus content of coal and ash using mid-infrared FTIR spectroscopy 
is a novel method. Table 6 shows that the multi-model estimation of phosphorus proposed in this study using 
FTIR data for coal samples presents a good  R2 of 0.835 and  R2 of 0.803 for the coal ash samples (with relatively 
low RMSE and MBE) and is comparable to other models reviewed. Compared to FTIR, LIBS tends to be rela-
tively more expensive and complex due to its intricate laser systems, leading to higher initial purchase expenses. 
Additionally, maintenance and calibration needs are more frequent in LIBS due to the complexities associated 
with laser operation and plasma generation. Therefore, the proposed model using FTIR with multivariate analysis 
based on machine learning techniques shows promising potential as a real-time, cost-effective alternative ana-
lytical approach for rapidly and accurately quantifying phosphorus in coal and coal ash. The model’s accuracy 
can be further enhanced by incorporating a greater number of samples from other coal field basins. The model 
presented here may be developed further to facilitate improvements in the monitoring and analysis of phospho-
rus content in coal and ash. Phosphorus content in a variety of other natural materials, such as soil, shale, and 
others, can be potentially estimated by making suitable adjustments to the mid-infrared FTIR data-based model.

Methods
Coal and ash samples
All the coal samples used in the study were collected from the Johilla coalfield of the Son-Mahanadi Basin, present 
in the Umaria district of Madhya Pradesh, India. The samples were collected from five underground projects 
at Kundri, Pali, Pinoura, Umaria, Vindhya, and one opencast project at Kanchan in the coalfield, as per ASTM 
D-223459 guidelines. A total of sixteen samples used in this study were collected from each of these locations. 
The collected coal samples were crushed and sieved to a size of 212 µ m following the ASTM D-474960 standard 
procedure for XRF and FTIR analysis. As per the ASTM standard test method, 1 g of the same samples (212 µ m) 
was weighted and combusted at temperatures of 750 ◦

C± 10
◦
C for 1 hour for ash  yield61.

X‑ray fluorescence spectroscopy
The X-ray fluorescence spectroscopy of whole coal samples and their coal ash was conducted in the Rigaku ZSX 
Primus IV Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectroscopy at the Central Research Facility, 
Indian Institute of Technology (Indian School of Mines) Dhanbad (IIT(ISM) Dhanbad), Jharkhand, India. The 
analysis of coal samples has the advantage of being able to detect volatile elements that may be lost during ashing 
or fusion. A tube-above sequential wavelength dispersive X-ray fluorescence (WDXRF) spectrometer is used 
to determine the concentrations of major and minor atomic elements in samples. The accuracy of the WDXRF 
spectrometric measurements of elements depends on various factors such as concentration, particle size, matrix 
effects, surface roughness, and the quality of standard materials. The samples were filled in an aluminium mold 
and pressed for roughly one minute at 200 kN to prepare pellets. In this study, the WDXRF technique was used 
to determine the total phosphorus concentration, which served as the reference for phosphorus levels.

Fourier‑transform infrared (FTIR) spectroscopy
FTIR spectroscopy is the most common form of infrared spectroscopy used for identifying the vibrations of 
functional groups and anionic groups. The FTIR spectra of the coal and coal ash samples were recorded using 
an INVENIO S, BRUKER OPTIK, GmBH (model & make) at the Department of Applied Geology, IIT(ISM) 
Dhanbad, Jharkhand, India. Specimen pellet preparation for FTIR analysis involves weighing and homogenously 
mixing the ground sample powder (212 µ m) with potassium bromide (KBr) powder (IR spectroscopy grade, 
Uvasol, Kaliumbromid, Germany). This composite (coal + KBr & coal ash + KBr) is filled on the anvil surface of 
the KBr die and spread by inserting the plunger. The assembled die was placed on the cover plate of the cylinder of 
the hydraulic press, and pressure was applied ( ̃6 tons for 5 min) to make circular, thin pellets of diameter 1.3 cm. 
To reduce the risk of moisture and other gases affecting the experiment, the FTIR optical bench was purged with 
 N2 gas flowing at 200 l per hour for a duration of 2 h before conducting the analysis. The KBr pellets that had 
been prepared were placed in a quick lock base plate positioned in the FTIR sample chamber. The sample pellets 
were then subjected to infrared radiation, allowing for the measurement of the resulting absorption spectrum. 
Subsequently, the absorbance versus frequency plot (Y–X plot) was generated based on the acquired spectra. For 
the coal samples, the absorption spectra were limited to the wavenumber range of 4000–400  cm-1.

Piecewise linear regression (PLR)
The estimation model has been used to predict the phosphorus content in coal and coal ash by computing the 
relationship between a set of independent variables (derived from the FTIR spectra) and a dependent variable 
(observed P content from XRF). A piecewise linear empirical equation with a breakpoint and quasi-newton 
method, along with a least squares loss function, was used to solve the coefficients of the model using the train-
ing  data42. Through the iterative convergence of an empirical equation that has been predefined, this non-linear 
method can be utilised to achieve the goal of minimizing the least square’s function. The coefficients of the 
empirical equation are typically reliant on the pool of input data that is  available62. To achieve optimal values for 
the coefficients, the process of optimization could involve numerous iterative convergences on the empirical equa-
tion and the data that was chosen. It is possible to compute the loss function in such a way that, at each iteration, 
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the goal is to reduce the square of the difference between the observed and predicted phosphorus content using 
an empirical equation that has been  predefined63. The optimization method utilizes the 1st order derivative of 
a function to determine the function’s slope at a given point and the 2nd order derivative to determine the rate 
and direction of change of the slope. This method evaluates the function at different points during each step to 
approximate the first- and second-order derivatives, further utilized to identify the minimum loss function. By 
minimizing the sum of squared errors between observed data and model predictions, the method can estimate 
statistical model parameters for estimation  problems64.

When analyzing with a breakpoint in the model, two sets of coefficients are produced for the variables 
(QNbp_L and QNbp_R where bp_L and bp_R are model generated with breakpoint corresponding to the left and 
right equations, respectively. A single form of the coefficient (QNnbp) was obtained for the model with no break-
point. QNbp(avg) is also found by averaging the phosphorus content obtained from the left and right equations. 
Notably, the estimated value of phosphorus (ppm) in coal obtained from QNnbp using the no breakpoint is often 
the closest estimate to the actual experimental value. At times, the non-breakpoint estimated phosphorus (ppm) 
values are outside the expected range of ± 1.5 IQR (inter-quartile range). To address this issue, the interquartile 
range (IQR) was determined to identify and eliminate any out-of-range values. The proposed model works on the 
following conditions: the value from the QNnbp model is taken into consideration if the projected phosphorus 
content from QNnbp is between the low and high ranges (Q1 − 1.5 IQR or Q3 + 1.5 IQR, respectively). Else, if 
the modeled phosphorus content in coal from QNnbp is beyond the low or high range (Q1 − 1.5 IQR or Q3 + 
1.5 IQR, respectively), the P value obtained from the QNbp_avg model is taken into consideration.

In the case of ash samples, the model with a breakpoint corresponding to the left equation (QNbp_L) provides 
the closest estimate to the actual experimental value of phosphorus in ash. If the projected phosphorus content 
in ash from QNbp_L is not between the low and high ranges (Q1 − 1.5 IQR or Q3 + 1.5 IQR, respectively), the P 
value obtained from QNnbp model is taken into consideration. The accuracy of phosphorus content estimation 
in coal using PLR is improved by this method of defining a threshold to identify out-of-range results. It helps to 
restrict errors in the estimation of phosphorus content in unknown samples.

Partial least square regression (PLSR)
Partial least squares, also referred to as “projection to Latent Structures,” is a category of learning techniques 
developed to model the relationship of observed variables using latent variables. PLSR calculates components 
by maximizing covariance between feature and response matrices, making it particularly effective for problems 
featuring many highly correlated features and multiple responses. Developed for predicting, PLSR finds applica-
tion in various spectroscopies, such as near-infrared reflectance (NIR) spectroscopy, Fourier transform infrared 
(FTIR) spectroscopy, and Fourier transform-Raman (FT-Raman)  spectroscopy65.

Implementation of PLSR involves simultaneous decomposition of the spectral matrix and concentration 
matrix to eliminate redundant information, fully considering their relationship to derive an optimized calibration 
model. The outcome is a linear relationship establishing the basis for quantitative analysis of material  elements66. 
PLSR resembles principal component regression but differs in using target variables to identify scores highly 
covariant with predictor variables. PLSR excels with datasets demonstrating the multicollinearity of predictor 
variables, and its advantage over PCR lies in the reduced optimal number of  components67,68. The model is cre-
ated using the cross_decomposition module of the scikit-learn library in the Python programming environment.

Random forest (RF)
Random forest is a supervised ensemble learning method employed for both regression and classification tasks. 
Ensemble learning integrates predictions from multiple models to yield more accurate results than a single model. 
It produces numerous decision trees and develops their predictions to make final predictions. Decision trees are 
fundamental models that predict outcomes by executing splits based on predictors that maximally reduce mean 
squared  error69. The approach is rooted in integrating multiple decision trees, offering robustness to non-linearity, 
and is best suited for modeling nonlinear data. The combination of individual decision trees mitigates their high 
variance, addressing the overfitting issue without requiring  pruning70,71. In this study, a random forest regressor 
model from the ensemble module of the scikit-learn library in the Python programming environment is utilized. 
Hyperparameter tuning is conducted through RandomizedSearchCV and GridSearchCV. After comparing with 
the default hyperparameter settings, the best estimator is selected for modeling.

Support vector regression (SVR)
Support Vector Machine (SVM) is a robust supervised machine learning paradigm rooted in a multivariate 
nonlinear correction approach introduced in the 1990s with a problem-solving capacity involving nonlinearity 
and high dimensionality. SVM has evolved through ongoing algorithmic optimization, showcasing impressive 
learning performance in nonlinear regression and function approximation, leading to widespread adoption in 
quantitative research, especially in spectral analysis, and the development of support vector  regression33,65. The 
model simplifies conventional regression processes by efficiently predicting outcomes on training data using a 
technique known as “transduction inference”72. Its core function involves identifying the optimal hyperplane 
that separates data in a multi-dimensional space, minimizing errors across all training  samples73. For model 
optimization and training, the GridSearchCV function and the SVM module within the scikit-learn library in 
the Python programming environment were employed.
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Conclusions
Accurate and rapid measurement of phosphorus content in coal and coal ash is crucial for efficient and sustain-
able utilization. In this investigation, we evaluated the ability of Fourier transform infrared spectroscopy (FTIR) 
in conjunction with machine learning models like piecewise linear regression (PLR), partial least square regres-
sion (PLSR), random forest (RF), and support vector regression (SVR) for quantifying the phosphorus content 
in coal and coal ash. The study proposes a novel FTIR-based multi-model approach combining PLR, PLSR, and 
RF regression models to be a reliable alternative to traditional analytical methods for the rapid and near real-time 
measurement of phosphorus in coal and coal ash. The major findings of the study are:

• The FTIR-based model is sensitive enough to estimate very low levels of phosphorus in both coal and coal 
ash samples.

• PLR, PLSR, and RF methods exhibited enhanced robustness compared to the SVR method. The estimation 
of phosphorus is found to be more consistent using a multi-model estimation technique (FTIR_MME), tak-
ing the average of the three best-performing models. The accuracy of the proposed model to estimate the 
phosphorus content in coal and ash is relatively good (R2 of 0.836, RMSE of 0.735 ppm, RMSE (%) of 34.801, 
MBE of − 0.077 ppm, MBE (%) of 5.499, and MAE of 0.528 ppm in coal samples, and R 2 of 0.803, RMSE of 
0.676 ppm, RMSE (%) of 38.050, MBE of − 0.118 ppm, MBE (%) of 4.501, and MAE of 0.474 ppm in coal 
ash samples).

• The determination of phosphorus in coal and coal ash using mid-infrared FTIR  (PFTIR_MME) is a promising 
cost-effective alternative compared to conventional methods such as XRF  (PXRF).

• Statistical tests of significance using two-tailed paired t-test for means and F-test for variances prove that there 
is no difference in means and variances, respectively, between XRF measured phosphorus content  (PXRF) and 
multi-model-estimated phosphorus content  (PFTIR_MME) in coal and coal ash.

The model’s accuracy can be further enhanced by incorporating a greater number of samples from other coal 
field basins. The model presented here may be developed further to facilitate improvements in the monitoring 
and analysis of phosphorus content in coal and ash. Phosphorus content in a variety of other natural materials, 
such as soil, shale, and others, can be potentially estimated by making suitable adjustments to the mid-infrared 
FTIR-data based model.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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