Table 6.
Algorithm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Random forest | 90.76 | 90.64 | 90.76 | 90.53 | 90.76 | 90.59 | 90.70 | 90.81 | 90.76 | 89.36 | 89.47 | 88.23 | 87.62 |
Adaboost | 80.84 | 80.84 | 80.84 | 80.84 | 80.84 | 80.84 | 80.84 | 80.84 | 80.84 | 80.84 | 80.84 | 79.27 | 78.66 |
Decision tree | 86.27 | 86.27 | 86.27 | 86.39 | 86.33 | 86.33 | 85.71 | 86.44 | 86.61 | 62.86 | 85.32 | 84.20 | 83.03 |
Experiment with attributes removed from the training set. Performance evaluation results, considering the Training set with the ML—Correctly Classified Instances—Accuracy algorithms. Combination of Attributes in the Training Set Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 Random Forest, Adaboost and Decision Tree. Random Forest showed the best accuracy result (90.81).