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Measles, a highly contagious airborne disease, remains endemic in many developing countries with 
low vaccination coverage. In this paper, we present a deterministic mathematical compartmental 
model to analyze the dynamics of measles. We establish global stability conditions for both disease-

free and endemic equilibria using the Lyapunov functional stability method. By using arbitrary 
parameters, we find that the proposed model exhibits forward bifurcation. To simulate the solution 
of the model for the forward problem, we perform numerical integration using MATLAB software. 
Moreover, we calibrate the model with real data from Ethiopia and estimate the parameters along 
with a 95 percent confidence interval (CI) by formulating an inverse problem. It is noteworthy 
that our model fits well with the actual data from Ethiopia. The estimated basic reproduction 
number (𝑅0) is determined to be 𝑅0 = 1.3973, demonstrating the endemic status of the disease. 
Additionally, our local sensitivity analysis indicates that reducing the transmission rate and 
increasing vaccination coverage can effectively minimize 𝑅0.

1. Introduction

Measles is an acute viral illness caused by the pathogen Morbillivirus whose only reservoir is the human host. Despite an extensive 
vaccination against measles, it is still endemic in many countries and is the main cause of morbidity and mortality in developing 
regions [1,2]. Clinical symptoms of measles include: cough, runny nose, red eyes, sore throat, fever, and a widespread skin rash. If the 
virus is transmitted to the susceptible ones, they become exposed and pass the latent period within the first 6 to 9 days of exposure; 
after that, the infectious period follows and they are able to transmit the disease for 6 to 7 days [3,4]. An individual once infected 
with measles becomes lifelong immune after running its entire course.
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Mathematical modelling has been broadly used as a tool to understand the mechanisms by which infectious diseases spread, to 
decide on how to control the spread, and to minimize expenses in controlling disease outbreaks. [5–14]. The predictive nature of 
these epidemic models, which aid in decision-making, is one of their key strengths. An optimal control theory plays an important 
role in epidemiological models. Authors in [14,15] consider infectious disease models with optimal control strategies. Some other 
authors [16–18] studied disease models using fractional orders. One of the challenges in epidemic modelling is the analysis of the 
global stability of disease-free and endemic equilibria. So far, the most powerful method for global stability analyses of infectious 
diseases is the direct Lyapunov and the geometric methods [19–24]. The authors [20,21] studied the global stability analyses of 𝑆𝐼𝑆 , 
𝑆𝐼𝑅, and 𝑆𝐼𝑅𝑆 epidemic models with constant recruitment, disease-induced death, and standard incidence rate using Lyapunov 
functions. However, constructing a Lyapunov function to establish the global stability of an 𝑆𝐸𝐼𝑅 system with constant recruitment, 
standard incidence, and disease-induced death is still difficult. Moreover, an epidemic model must be validated to check if it is to be 
actually used [12,25–30], which contains comparing the real data with the model solutions in order to evaluate if the model proposed 
corresponds to reality. In most cases, the first model solutions fail to agree with the observed real data, probably due to the wrong 
choice of the initial parameters and a lack of adequate model assumptions. Even though the first model solution fails to agree with 
the observed real data, it can be adjusted through a process known as model calibration. Model calibration is the process whereby 
parameter values that promote a good agreement between the model solutions and observed real data are estimated.

Quite recently, studying the dynamics of the measles disease in the context of mathematics has become an important issue. 
[4,16,17,19,28,30–39]. In [39] work, the global sensitivity analysis of the model parameters relative to the basic reproduction number 
and variables of the model has been investigated. This was performed using the partial rank correlation coefficient (PRCC). The result 
shows that individual protection, together with efficient treatment, could reduce the burden of the disease. Moreover, they further 
extend their model from integer to fractional-order derivatives. Some authors, such as [33,35,36] have studied the dynamics using 
constant and continuous controls. They have studied the global stability analyses of the disease-free and endemic equilibria. Other 
authors, for instance, [32] investigated the global stability analysis of the disease dynamics but failed to predict the disease dynamics 
in the context of a particular situation. There are also others, such as [34] who proposed a mathematical model of measles and 
predicted the disease situation in Bangladesh using double vaccination doses. However, the majority of previous 𝑆𝐸𝐼𝑅 model studies 
have overlooked the assumption of standard incidence rates in disease transmission and have neglected to consider disease-induced 
death rates in their examination of disease dynamics. The study of the global stability of the disease-free and endemic equilibria 
using Lyapunov functions for this type of model is computationally difficult and quite rare. Furthermore, only a few researchers have 
delved into the estimation of parameters for the proposed model using real-world data. Consequently, it is crucial to investigate the 
global dynamics of the measles model by incorporating standard incidence assumptions in disease transmission and by estimating 
the model’s parameters. Additionally, this research explores the impact of the transfer of exposed individuals to the infected class on 
the disease spread, which has not been previously investigated in the existing literature.

This work aims to propose a deterministic compartmental mathematical model for the dynamics of measles disease and calibrate 
the model to real data of measles outbreaks in Ethiopia. Particularly, we study the long-term global stability analyses of the disease-

free and endemic equilibria using the Lyapunov stability method. We also investigate the bifurcation analysis. Next, the model is 
extended by assuming a fraction of the individuals recruited due to birth or immigration are vaccinated, and then model predictions 
are made to compare the model solutions with the real data using some plausible parameters as initial values. Then, a rigorous 
process of model calibration is done through the solution of an inverse problem to find the best parameter estimates. Finally, the 
local sensitivity analysis of the basic reproduction number to the estimated parameter values is done to check the robustness of the 
system proposed.

The work has seven sections: The measles model is formulated in Section 2. In Section 3, we study the mathematical analysis: 
The basic reproduction number, existence of equilibria, the local and global stability analysis of the equilibria, and following this, 
the bifurcation analysis is done in Section 4. The system parameters are estimated in Section 5. In Section 6, numerical simulation of 
the system is performed. Finally, we conclude the work in Section 7.

2. Mathematical model formulation

To formulate the mathematical model of measles, the population is divided into four mutually exclusive classes, with each class 
representing the health condition of an individual. Susceptible individuals (𝑆), individuals carrying the pathogen transmitting the 
disease but showing no clinical symptoms of measles (𝐸), individuals infected with measles, show the symptoms and can spread 
the disease (𝐼). Finally, the members who recovered from measles (𝑅) are not infected. The total human population is denoted by 
𝑁 = 𝑆 +𝐸 + 𝐼 +𝑅.

Some of the main assumptions made in the formulation of the deterministic system (1) are: The population is homogeneously 
mixed. All susceptible individuals have the same probability of being infected. The incidence is assumed to be standard incidence 
based on the assumption that the rate of contact is constant. An individual infected with measles will either die or recover. There is 
life-long immunity for the measles disease survivors, and hence the model proposed is a 𝑆𝐸𝐼𝑅. Diseases induced death rates exist 
for the members of the infected group. All parameters are non-negative.

The class of susceptible individuals is recruited by immigration or birth at a per capita rate Λ and decreased following infection 
with measles at a rate of 𝛽𝐼

𝑆+𝐸+𝐼+𝑅
. These populations are also decreased by natural death at a rate 𝜇 which is assumed to be the same 

for all classes. Hence, the first equation of system (1) is proposed. The population of humans exposed to measles (𝐸) is generated at 
the rate 𝛽𝐼

𝑆+𝐸+𝐼+𝑅
. It is also decreased by the rate of progression to the infected class at a rate of ε and the natural death rate. Hence, 
2

the second equation of system (1) is proposed. The time elapsed in the exposed class is called the latent (or incubation) period. The 
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Table 1

Description of parameters of system (1).

Parameters Interpretation Units

Λ Recruitment rate of susceptible population by immigration or birth [Humans][week]−1

𝛽 Effective contact rate of measles [week]−1

𝜇 Natural death rate of humans [week]−1

ε Rate of progress from exposed to infectious class [week]−1

𝑑 Disease induced death rate of measles [week]−1

𝛾 Natural recovery rate from measles [week]−1

population of humans infected with measles (𝐼) is increasing at the rate of ε. These individuals recover naturally at a rate of 𝛾 . It is 
further diminished by the disease-induced death rate at a rate of 𝑑 and the natural death rate. Hence, the third equation of system 
(1) is proposed. The population of measles recovered individuals (𝑅) is generated at a rate of 𝛾 . It is also decreased by the natural 
death rate. Hence, the fourth equation of system (1) is developed.

The system model dynamics for the measles is given by the following deterministic system of nonlinear differential equations, and 
the parameter descriptions are given in Table 1, respectively.

𝑑𝑆

𝑑𝑡
= Λ−

( 𝛽𝐼

𝑆 +𝐸 + 𝐼 +𝑅
+ 𝜇

)
𝑆,

𝑑𝐸

𝑑𝑡
= 𝛽𝐼𝑆

𝑆 +𝐸 + 𝐼 +𝑅
− (𝜇 + ε)𝐸,

𝑑𝐼

𝑑𝑡
= ε𝐸 −

(
𝜇 + 𝑑 + 𝛾

)
𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅,

𝑑𝑁

𝑑𝑡
= Λ− 𝜇𝑁 − 𝑑𝐼,

𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0.

(1)

3. Model analysis

In this section, we examine the basic qualitative features which are useful in the subsequent sections.

3.1. Nonnegativity of solutions and the feasible region

Lemma 3.1. The solutions of system (1) with nonnegative initial data remain positive for all 𝑡 > 0.

Proof. Let 𝑇 = sup{𝑡 > 0 ∶ 𝑆 > 0,𝐸 > 0, 𝐼 > 0,𝑅 > 0} ∈ [0, 𝑡]. The first equation of system (1) can be written as

𝑑𝑆

𝑑𝑡
=Λ−

(
𝜆+ 𝜇

)
𝑆, where 𝜆 = 𝛽𝐼

𝑆 +𝐸 + 𝐼 +𝑅
. (2)

Eq. (2) is an initial value problem (IVP) with variable coefficients. It has a unique positive solution 𝑆(𝑡) given by

𝑆(𝑡) = 𝑆(0) exp{−𝐴(𝑡)} + exp{−𝐴(𝑡)}

𝑡

∫
0

Λexp{𝐴(𝑠)} 𝑑𝑠,

where the function 𝐴(𝑡) = ∫ 𝑡

0 (𝜆(𝑠) + 𝜇) 𝑑𝑠 is a particular antiderivative of the function (𝜆(𝑠) + 𝜇).
Since 𝑇 is the maximum of all the time in [0, 𝑡], we have that 𝐴(𝑇 ) = ∫ 𝑇

0 (𝜆(𝑠) + 𝜇) 𝑑𝑠. So that the solution 𝑆(𝑇 ) is

𝑆(𝑇 ) = 𝑆(0) exp{−𝐴(𝑇 )} + exp{−𝐴(𝑇 )}

𝑇

∫
0

Λexp{𝐴(𝑠)} 𝑑𝑠 > 0.

Likewise, it is easy to show that all other state variables of the system model remain positive for all 𝑡 > 0. □

Lemma 3.2. Every non-negative solution is bounded in 𝐿1-norm by 𝑚𝑎𝑥 
{

𝑁(0), Λ
𝜇

}
.

Proof. The total dynamics of the system model obtained by adding all the equations of system (1) is:

𝑑𝑁 =Λ− 𝜇𝑁 − 𝑑𝐼. (3)
3

𝑑𝑡
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Consequently, the total population 𝑁(𝑡) may vary in time. From Eq. (3), we also have 𝑑𝑁

𝑑𝑡
≤Λ − 𝜇𝑁 . It is easy to show that

0 ≤ 𝑁(𝑡) ≤
(

𝑁(0) − Λ
𝜇

)
𝑒−𝜇𝑡 + Λ

𝜇
. (4)

Taking 𝑡 →∞ in Eq. (4), we observe that 0 < 𝑁(𝑡) → Λ
𝜇

.

The 𝐿1-norm of each non-negative solution is 𝑁 and satisfies 𝑁 ′ ≤Λ − 𝜇𝑁 where 𝑁 ′ represents the derivative of 𝑁 . Consider a 
comparison differential equation 𝑁 ′

1 = Λ − 𝜇𝑁1 where 𝑁 ′ ≤ 𝑁 ′
1. Consider the solutions to the equation 𝑁 ′

1 = Λ − 𝜇𝑁1. If 𝑁1(0) ≤ Λ
𝜇

then lim𝑡→∞ 𝑁1(𝑡) =
Λ
𝜇

and Λ
𝜇

is the upper bound. If 𝑁1(0) >
Λ
𝜇

, then the solution will decrease to Λ
𝜇

as 𝑡 →∞ and 𝑁1(0) = 𝑁10 is 
the upper bound of 𝑁1. Since 𝑁 ′ ≤ 𝑁 ′

1 the claim follows for 𝑁(𝑡) [40]. □

The biological feasible region for the system model (1) is given by

Ω=
{(

𝑆,𝐸, 𝐼,𝑅
)
∈ ℝ4

+
|||0 ≤ 𝑆 +𝐸 + 𝐼 +𝑅 ≤ Λ

𝜇

}
. (5)

In the next subsection, we prove the positively invariant and attracting behavior of Eq. (5) with respect to system (1).

3.2. Positively invariant

Theorem 3.1. The non-negative orthant ℝ4
+ is positively invariant for the system model (1).

Proof. To prove this theorem, we first write the system (1) in the form 𝑌 ′ = M𝑌 + K, where

M =
⎡⎢⎢⎢⎣
−(𝜆+ 𝜇) 0 0 0

𝜆 −(𝜇 + ε) 0 0
0 ε −(𝜇 + 𝑑 + 𝛾) 0
0 0 𝛾 −𝜇

⎤⎥⎥⎥⎦ and K =
⎡⎢⎢⎢⎣
Λ
0
0
0

⎤⎥⎥⎥⎦ .

Clearly, the column vector K ≥ 0 and the matrix M have the properties of a Metzler matrix (all the off diagonal entries of M are 
non-negative). Following the results in [40], the system (1) is positively invariant in ℝ4

+. □

3.3. Equilibria and the basic reproduction number

System (1) has a disease-free equilibrium 𝐸0 = (Λ
𝜇

, 0, 0, 0). In the study of disease dynamics mathematically, the basic reproduction 
number 𝑅0 is the most important parameter to determine disease transmissibility. It determines the spread or die out of the infection 
with time [12]. Based on the next generation matrix approach developed by [41], the basic reproduction number of system (1) is 
given as:

𝑅0 =
𝛽ε

(𝜇 + ε)(𝜇 + 𝑑 + 𝛾)
.

It could be easily noticed that the basic reproduction number 𝑅0 is independent of the fraction Λ
𝜇

. The endemic equilibrium is given 
as 𝐸1 = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) with coordinates:

𝑆∗ = Λ(𝜇 (𝜇 + 𝛾 + 𝑑) + ε (𝜇 + 𝛾))
𝜇ε(𝛽 − 𝑑)

, 𝐸∗ =
Λ(𝜇 + 𝛾 + 𝑑)(𝑅0 − 1)

ε(𝛽 − 𝑑)
,

𝐼∗ =
Λ(𝑅0 − 1)

𝛽 − 𝑑
, 𝑅∗ =

𝛾Λ(𝑅0 − 1)
𝜇(𝛽 − 𝑑)

. (6)

It can be easily observed from Eq. (6) that the susceptible (𝑆∗) is feasible only if 𝛽 > 𝑑. So in what follows, we will assume that the 
effective contact rate (𝛽) is always greater than the disease induced death rate (𝑑).

3.4. Local stability analysis of disease-free equilibrium

Theorem 3.2. The disease-free equilibrium 𝐸0 of the system (1) is locally asymptotically stable when 𝑅0 < 1, and unstable if 𝑅0 > 1.

Proof. The proof involves the evaluation of the Jacobian matrix of the system (1) at 𝐸0, which is given by

𝐽 (𝐸0) =
⎡⎢⎢⎢⎣
−𝜇 0 −𝛽 0
0 −(𝜇 + ε) 𝛽 0
0 ε −(𝜇 + 𝑑 + 𝛾) 0
0 0 𝛾 −𝜇

⎤⎥⎥⎥⎦ .
4

The two negative eigenvalues are 𝜆1 = 𝜆2 = −𝜇, and the other eigenvalues are found from the submatrix:
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𝐴 =
[
−(𝜇 + ε) 𝛽

ε −(𝜇 + 𝑑 + 𝛾)

]
.

Correspondingly, the other eigenvalues are the solutions of the quadratic equation

𝜆2 − trace(𝐴)𝜆+ det(𝐴) = 0,

where

trace(𝐴) = −(2𝜇 + ε+ 𝑑 + 𝛾) 𝑎𝑛𝑑 det(𝐴) = (𝜇 + ε)(𝜇 + 𝑑 + 𝛾) − 𝛽ε = 1 −𝑅0.

It follows that det(𝐴) > 0 when 𝑅0 < 1 and trace(A) < 0. Hence, the quadratic equation, 𝜆2 − trace(A)𝜆 + det(𝐴) = 0 has negative 
eigenvalues [42]. Consequently, the system (1) is locally asymptotically stable at 𝐸0 if 𝑅0 < 1. □

3.5. Global stability of disease-free equilibrium

Theorem 3.3. The disease-free equilibrium, 𝐸0, of system (1) is globally asymptotically stable in Ω if 𝑅0 ≤ 1.

Proof. To prove this, we define the Lyapunov function 𝐿 ∶ {(𝑆,𝐸, 𝐼,𝑅) ∈ Ω ∶ 𝑆 > 0}→ℝ by

𝐿 = ε𝐸 + (𝜇 + ε)𝐼.

Differentiating L with respect to time in the solutions of system (1) we get

𝑑𝐿

𝑑𝑡
= ε𝐸′ + (𝜇 + ε)𝐼 ′.

= ε

(
𝛽𝐼𝑆

𝑆 +𝐸 + 𝐼 +𝑅
− (𝜇 + ε)𝐸

)
+ (𝜇 + ε) (ε𝐸 − (𝜇 + 𝑑 + 𝛾)𝐼) ,

= ε

(
𝛽𝐼𝑆

𝑆 +𝐸 + 𝐼 +𝑅

)
− (𝜇 + ε)(𝜇 + 𝑑 + 𝛾)𝐼,

= 𝐼

𝑆 +𝐸 + 𝐼 +𝑅

(
ε𝛽𝑆 − (𝜇 + ε)(𝜇 + 𝑑 + 𝛾)(𝑆 +𝐸 + 𝐼 +𝑅)

)
,

= 𝐼

𝑆 +𝐸 + 𝐼 +𝑅

(
(𝜇 + ε)(𝜇 + 𝑑 + 𝛾)𝑅0𝑆 − (𝜇 + ε)(𝜇 + 𝑑 + 𝛾)(𝑆 +𝐸 + 𝐼 +𝑅)

)
,

= 𝐼(𝜇 + ε)(𝜇 + 𝑑 + 𝛾)
𝑆 +𝐸 + 𝐼 +𝑅

(
𝑅0𝑆 − (𝑆 +𝐸 + 𝐼 +𝑅)

)
,

= −𝐼(𝜇 + ε)(𝜇 + 𝑑 + 𝛾)
𝑆 +𝐸 + 𝐼 +𝑅

(
−𝑅0𝑆 + (𝑆 +𝐸 + 𝐼 +𝑅)

)
,

= −𝐼(𝜇 + ε)(𝜇 + 𝑑 + 𝛾)
𝑆 +𝐸 + 𝐼 +𝑅

(
(1 −𝑅0)𝑆 + (𝐸 + 𝐼 +𝑅)

)
.

Then, if 𝑅0 ≤ 1, then 𝑑𝐿

𝑑𝑡
≤ 0. Furthermore, 𝑑𝐿

𝑑𝑡
= 0 if and only if 𝐼 = 0 or 𝐸 = 𝐼 = 𝑅 = 0 and 𝑅0 = 1. Hence, 𝐿 is a Lyapunov function 

on Ω. Thus, (𝐸, 𝐼, 𝑅) → (0, 0, 0) as 𝑡 → ∞. Using 𝐸 = 𝐼 = 𝑅 = 0 in the first equation of system (1) we obtain 𝑆 → Λ
𝜇

as 𝑡 → ∞. 

Therefore, the largest compact invariant set in 
{
(𝑆,𝐸, 𝐼,𝑅) ∈ Ω ∶ 𝑑𝐿

𝑑𝑡
(𝐸,𝐼) = 0

}
is the singleton 

{
𝐸0
}

. It follows from LaSalle’s-

Lyapunov theorem [43] that 𝐸0 is globally asymptotically stable in Ω. □

3.6. Local stability of endemic equilibrium

Theorem 3.4. The endemic equilibrium is locally asymptotically stable if 𝑅0 > 1.

Proof. Linearizing the system (1) around the endemic equilibrium 𝐸1, gives the following Jacobian matrix

𝐽 (𝐸1) =

⎛⎜⎜⎜⎜⎝
− 𝛽𝐼(𝐸+𝐼+𝑅)

(𝑆+𝐸+𝐼+𝑅)2 − 𝜇
𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2

𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2
𝛽𝐼(𝐸+𝐼+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 − (𝜇 + ε) 𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2
0 ε −(𝜇 + ε) 0
0 0 𝛾 −𝜇

⎞⎟⎟⎟⎟⎠
.

The characteristic equation of the matrix 𝐽 (𝐸1) evaluated at 𝐸1 is

𝑎0𝜆
4 + 𝑎1𝜆

3 + 𝑎2𝜆
2 + 𝑎3𝜆+ 𝑎4 = 0,
5

where
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𝑎0 = 1,

𝑎1 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 > 0,

𝑎2 = 𝑥3𝑥4 + (𝑥1 + 𝑥2)(𝑥3 + 𝑥4) + 𝑥1𝑥2 > 0,

𝑎3 = 𝑥3𝑥4(𝑥1 + 𝑥2) + 𝑥1𝑥2(𝑥3 + 𝑥4) > 0,

𝑎4 = 𝑥1𝑥2𝑥3𝑥4 > 0.

This directly follows from the condition 𝑅0 > 1 for 𝛽 − 𝑑 > 0.

Next remains to check if 𝐷𝑖 > 0, 𝑖 = 1, 2, 3, 4 holds, where

𝐷1 = 𝑎1, 𝐷2 =
|||||𝑎1 𝑎3
𝑎0 𝑎2

|||||, 𝐷3 =
|||||||
𝑎1 𝑎3 𝑎5
𝑎0 𝑎2 𝑎4
0 𝑎1 𝑎3

|||||||, 𝐷4 =

|||||||||
𝑎1 𝑎3 𝑎5 𝑎7
𝑎0 𝑎2 𝑎4 𝑎6
0 𝑎1 𝑎3 𝑎5
0 𝑎0 𝑎2 𝑎4

|||||||||
.

Using matrix manipulation we get

𝐷1 = 𝑎1 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 > 0,

𝐷2 =
|||||𝑎1 𝑎3
𝑎0 𝑎2

||||| =
|||||𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 𝑥3𝑥4(𝑥1 + 𝑥2) + 𝑥1𝑥2(𝑥3 + 𝑥4)

1 𝑥3𝑥4 + (𝑥1 + 𝑥2)(𝑥3 + 𝑥4) + 𝑥1𝑥2

||||| ,
= 𝑥3𝑥4(𝑥3 + 𝑥4) + (𝑥1 + 𝑥2)2(𝑥3 + 𝑥4) + (𝑥1 + 𝑥2)(𝑥3 + 𝑥4)2 + 𝑥1𝑥2(𝑥1 + 𝑥2) > 0,

𝐷3 =
|||||||
𝑎1 𝑎3 0
𝑎0 𝑎2 𝑎4
0 𝑎1 𝑎3

||||||| =
|||||||
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 𝑥3𝑥4(𝑥1 + 𝑥2) + 𝑥1𝑥2(𝑥3 + 𝑥4) 0

1 𝑥3𝑥4 + (𝑥1 + 𝑥2)(𝑥3 + 𝑥4) + 𝑥1𝑥2 𝑥1𝑥2𝑥3𝑥4
0 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 𝑥3𝑥4(𝑥1 + 𝑥2) + 𝑥1𝑥2(𝑥3 + 𝑥4)

||||||| ,
= 𝑎1(𝑎2𝑎3 − 𝑎1𝑎4) − 𝑎23,

= (𝑥2
1 + 𝑥2

2)(𝑥1 + 𝑥2)(𝑥3 + 𝑥4)𝑥3𝑥4 + (𝑥1 + 𝑥2)2𝑥1𝑥2(𝑥3 + 𝑥4)2 + (𝑥1 + 𝑥2)(𝑥1𝑥2)2(𝑥3 + 𝑥4),

+ (𝑥3𝑥4)2(𝑥1 + 𝑥2)(𝑥3 + 𝑥4) + (𝑥1 + 𝑥2)2(𝑥3 + 𝑥4)2𝑥3𝑥4 + (𝑥1 + 𝑥2)𝑥1𝑥2(𝑥3 + 𝑥4)3 > 0,

𝐷4 =

|||||||||
𝑎1 𝑎3 0 0
𝑎0 𝑎2 𝑎4 0
0 𝑎1 𝑎3 0
0 1 𝑎2 𝑎4

|||||||||
= 𝑎1

|||||||
𝑎2 𝑎4 0
𝑎1 𝑎3 0
1 𝑎2 𝑎4

|||||||− 𝑎3

|||||||
𝑎0 𝑎4 0
0 𝑎3 0
0 𝑎2 𝑎4

||||||| ,
= 𝑎4

(
𝑎1(𝑎2𝑎3 − 𝑎1𝑎4) − 𝑎23

)
,

= 𝑎4𝐷3 > 0.

Since 𝐷1, 𝐷2, 𝐷3, 𝐷4 are all positive, the Routh-Hurwitz criterion [44] for local stability holds. Therefore, the endemic equilibrium 
is locally asymptotically stable when it exists. □

3.6.1. Global stability of endemic equilibrium

To investigate the global stability of the system, we employ the geometric approach in [45].

Consider a bounded open set 𝐷 ⊂ 𝑅𝑛 and the map 𝑥 ↦ 𝑓 (𝑥) defined by 𝑓 ∶ 𝐷 ↦ 𝑅𝑛, where 𝑓 ∈ 𝐶1(𝐷) and 𝑥 is a vector. Suppose 
that the solution 𝑥(𝑡) for the differential equation

𝑥′ = 𝑓 (𝑥), (7)

be uniquely determined by the initial condition 𝑥(0, 𝑥0) = 𝑥0, and denote the solution as 𝑥(𝑡, 𝑥0). For any compact set 𝑉 ⊂ 𝐷 and 
sufficiently large 𝑡, if 𝑥(𝑡, 𝑉 ) ⊂ 𝐾 , then 𝐾 is an absorbing set in 𝐷. An open set 𝐷 is then simply connected if every closed curve in 
𝐷 can be continuously deformed to a point within 𝐷. Consider the following assumptions hold for system (7):

(𝐻1) 𝐷 is simply connected.

(𝐻2) there is a compact absorbing set 𝐾 ∈ 𝐷.

(𝐻3) there is a unique equilibrium �̄� for system (7) in 𝐷.

Find conditions under which local stability of �̄� in 𝐷 leads to global stability of �̄�. Let |.| refers to a vector norm in 𝑅𝑛(𝑛 ∈ ℕ) and 
the matrix norm which it induces matrices of size 𝑛. The Lozinskiı̆ measure 𝜇1(𝐵) of size 𝑛 matrix 𝐵 with respect to the norm |.| is 
defined as

𝜇 (𝐵) = lim |𝐼 + ℎ𝐵|− 1
, where 𝐼 is a unit matrix of size 𝑛.
6

1
ℎ→0+ ℎ
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Suppose the map 𝑃 (𝑥) ∶ 𝐷 ↦ 𝑅𝑟 is a 𝐶1 and non-singular matrix valued function for all 𝑥 ∈ 𝐷, where 𝑟 = (𝑛2) × (𝑛2), and assume the 
Lozinskiı̆ measure with respect to the norm |.| be 𝜇1. Consider 𝐾 is a compact absorbing set of system (7). Then define the quantity, 
𝑞 as

𝑞 = lim
𝑡→∞

sup sup
𝑥0∈𝐾

1
𝑡

𝑡

∫
0

𝜇1(𝐵(𝑥(𝑠, 𝑥0)))𝑑𝑠, (8)

where 𝐵 = 𝑃𝑓 𝑃−1 + 𝑃𝐽 [2]𝑃−1, 𝑃𝑓 is derivative of 𝑃 in the direction of 𝑓 with 𝑃𝑓 = 𝑑𝑃

𝑑𝑡
and 𝐽 = 𝜕𝑓

𝜕𝑥
.

Proposition 3.1. Consider the assumptions (𝐻1), (𝐻2) and (𝐻3) presented by [45] hold. Thus, the unique endemic equilibrium �̄� of system 
(7) is globally stable in 𝐷 if the quantity 𝑞 in Eq. (8) is negative.

To show the existence of a compact set in the interior of Ω (Ω∗), which is absorbing for system (1), is equivalent to proving the 
uniform persistence of the system (1). That is, there exists a positive number 𝑐 such that every solution (𝑆, 𝐸, 𝐼, 𝑅) of system (1) with 
(𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) in Ω∗ satisfies

min
(
lim
𝑡→∞

inf 𝑆(𝑡), lim
𝑡→∞

inf 𝐸(𝑡), lim
𝑡→∞

inf 𝐼(𝑡), lim
𝑡→∞

inf 𝑅(𝑡)
) ≥ 𝑐.

We give the following theorem for a proof.

Theorem 3.5. If 𝑅0 > 1, then system (1) in Ω∗ is uniformly persistent. This entails the existence of a constant 0 < 𝑐 < 1 (independent of initial 
conditions), such that any solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of system (1) satisfies lim inf 𝑡→+∞ 𝑆(𝑡) > 𝑐, lim inf 𝑡→+∞ 𝐸(𝑡) > 𝑐, liminf 𝑡→+∞

𝐼(𝑡) >
𝑐, and lim inf 𝑡→+∞ 𝑅(𝑡) > 𝑐.

Proof. We utilize methodologies employed by prior researchers [23,46] to validate this Theorem. Assuming 𝑋 = Ω, 𝑋1 = Ω∗, 𝑋2 =
𝜕Ω(boundary of Ω), we can deduce 𝑌1 = {(𝑆, 0, 0, 0) ∶ 0 < 𝑆 ≤ Λ

𝜇
}, Ω1 =

⋃
𝑦∈𝑌1

𝜔(𝑦) =
{
𝐸0
}

, where 
{
𝐸0
}

represents an isolated 
compact invariant set in 𝑋. By defining 𝑀 =

{
𝐸0
}

, we confirm 𝑀 as acyclic isolated covering of Ω1.

To show that 
{
𝐸0
}

is a weak repeller for 𝑋1, suppose a positive orbit (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of system (1) exists such that

lim
𝑡→+∞

𝑁(𝑡) = Λ
𝜇

, lim
𝑡→+∞

𝑆(𝑡) = Λ
𝜇

, lim
𝑡→+∞

𝐸(𝑡) = 0, lim
𝑡→+∞

𝐼(𝑡) = 0, lim
𝑡→+∞

𝑅(𝑡) = 0.

Since 𝑅0 > 1, we select 𝑡0 > 0 sufficiently large such that when 𝑡 ≥ 𝑡0, for small 𝜀, system (1) implies Λ
𝜇
− 𝜀 ≤ 𝑆(𝑡), 𝑁(𝑡) ≤ Λ

𝜇
+ 𝜀, 

0 ≤ 𝐸(𝑡) ≤ 𝜀, 0 ≤ 𝐼(𝑡) ≤ 𝜀, 0 ≤ 𝑅(𝑡) ≤ 𝜀 for 𝑡 ≥ 0.

We also obtain the following inequality:

𝑆

𝑁
≥

Λ
𝜇
− 𝜀

Λ
𝜇
+ 𝜀

. (9)

From the second, third equations of system (1) and Eq. (9), we get

𝑑𝐸

𝑑𝑡
≥ 𝛽( Λ

𝜇
− 𝜀)𝐼

Λ
𝜇
+ 𝜀

− (𝜇 + ε)𝐸,

𝑑𝐼

𝑑𝑡
= ε𝐸 − (𝜇 + 𝑑 + 𝛾)𝐼.

(10)

Following system (10), we consider the matrix 𝑀𝜀 defined by

𝑀𝜀 =
⎛⎜⎜⎝ −(𝜇 + ε)

𝛽( Λ
𝜇
−𝜀)

Λ
𝜇
+𝜀

ε −(𝜇 + 𝑑 + 𝛾)

⎞⎟⎟⎠ .

𝑀𝜀 has a positive off-diagonal element, and the Perron-Frobenius Theorem gives a positive eigenvector 𝑣 =
(
𝑣1, 𝑣2

)
for the maximum 

eigenvalue 𝑅0(𝜀) of 𝑀𝜀. Let us consider the following system:

d𝑧1
d𝑡

= −(𝜇 + ε)𝑧1 +
⎛⎜⎜⎝
𝛽( Λ

𝜇
− 𝜀)

Λ
𝜇
+ 𝜀

⎞⎟⎟⎠𝑧2,

d𝑧2
d𝑡

= ε𝑧1 − (𝜇 + 𝑑 + 𝛾)𝑧2. (11)

Let 𝑧(𝑡) =
(
𝑧1(𝑡), 𝑧2(𝑡)

)
represent a solution of system (11) passing through (𝑙𝑣1, 𝑙𝑣2) at 𝑡 = 𝑡0, where 𝑙 > 0 is such that 𝑙𝑣1 < 𝐼

(
𝑡0
)
, 𝑙𝑣2 <( )
7

𝐸 𝑡0 . Given that the semi-flow of system (11) is monotone and 𝑀𝜀𝑣 > 0, we can deduce that 𝑧1(𝑡) and 𝑧2(𝑡) are strictly increasing and 
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𝑧1(𝑡) → +∞ and 𝑧2(𝑡) → +∞ as 𝑡 → +∞, which contradicts the eventual boundedness of positive solutions of system (1). Therefore, 
𝐸0 acts as a weak repeller for 𝑋1. This concludes the proof of the Theorem. □

Theorem 3.6. If 𝑅0 > 1, then the endemic equilibrium 𝐸1 is globally asymptotically stable in Ω∗ provided that

𝜇 > max{2𝛽, 𝛽 + ε, 𝛽 + 𝛾 + 𝑑, 𝛾 + 𝑑} . (12)

Proof. Following Theorem 3.5 there is a compact absorbing set 𝐾 in the interior of 𝐷 which is absorbing for system (1). The proof 
of the theorem consists of choosing a suitable vector norm in 𝑅6 and a 6 × 6 matrix valued function 𝑃 (𝑥) so that Proposition 3.1 is 
satisfied. The Jacobian matrix 𝐽 of system (1) is given by:

𝐽 =

⎛⎜⎜⎜⎜⎝
− 𝛽𝐼(𝐸+𝐼+𝑅)

(𝑆+𝐸+𝐼+𝑅)2 − 𝜇
𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2

𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2
𝛽𝐼(𝐸+𝐼+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 − (𝜇 + ε) 𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2
0 ε −(𝜇 + ε) 0
0 0 𝛾 −𝜇

⎞⎟⎟⎟⎟⎠
.

The second additive compound matrix 𝐽 [2] is given by

𝐽 [2] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐾11
𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2
𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 0
ε 𝐾22 0 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 0 − 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2

0 𝛾 𝐾33 0 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2

0 𝛽𝐼(𝐸+𝐼+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 0 𝐾44 0 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2

0 0 𝛽𝐼(𝐸+𝐼+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 𝛾 𝐾55

𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2

0 0 0 0 ε 𝐾66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

𝐾11 = − 𝛽𝐼(𝐸 + 𝐼 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

− 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2
− (2𝜇 + ε), 𝐾22 = − 𝛽𝐼(𝐸 + 𝐼 +𝑅)

(𝑆 +𝐸 + 𝐼 +𝑅)2
− (2𝜇 + ε),

𝐾33 = − 𝛽𝐼(𝐸 + 𝐼 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

− 2𝜇, 𝐾44 = − 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2
− 2(𝜇 + ε),

𝐾55 = − 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2
− (2𝜇 + ε), 𝐾66 = −(2𝜇 + ε).

Let

𝑃 = 𝑃 (𝑆,𝐸, 𝐼,𝑅) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝐸

0 0 0 0 0
0 𝑎1

𝐸
0 0 0 0

0 0 0 𝑎1
𝐸

0 0
0 0 𝑎2

𝐼
0 0 0

0 0 0 0 𝑎2
𝐼

0
0 0 0 0 0 𝑎2

𝐼

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where 𝑎1 and 𝑎2 are two undetermined positive constants, then 𝑃𝑓 𝑃−1 = diag
(
− �̇�

𝐸
,− �̇�

𝐸
,− �̇�

𝐸
,− �̇�

𝐼
,− �̇�

𝐼
,− �̇�

𝐼

)
. Let

B (𝑆,𝐸, 𝐼,𝑅) = 𝑃𝑓 𝑃−1 + 𝑃𝐽 [2]𝑃−1,

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐾11 −
�̇�

𝐸

𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2
𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 0

ε 𝐾22 −
�̇�

𝐸

𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 0 0 − 𝑎1𝐼

𝑎2𝐸

𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2

0 𝛽𝐼(𝐸+𝐼+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 𝐾44 −

�̇�

𝐸
0 0 𝑎1𝐼

𝑎2𝐸

𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2

0 𝑎2𝐸𝛾

𝑎1𝐼
0 𝐾33 −

�̇�

𝐼

𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2 − 𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2

0 0 𝑎2𝐸𝛾

𝑎1𝐼

𝛽𝐼(𝐸+𝐼+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 𝐾55 −

�̇�

𝐼

𝛽𝑆(𝑆+𝐸+𝑅)
(𝑆+𝐸+𝐼+𝑅)2

0 0 0 0 ε 𝐾66 −
�̇�

𝐼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

8

The matrix 𝐵(𝑆, 𝐸, 𝐼, 𝑅) and be written in block matrix form:
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𝐵 (𝑆,𝐸, 𝐼,𝑅) =
⎛⎜⎜⎜⎝

𝐵11 𝐵12 𝐵13 𝐵14
𝐵21 𝐵22 𝐵23 𝐵24
𝐵31 𝐵32 𝐵33 𝐵34
𝐵41 𝐵42 𝐵43 𝐵44

⎞⎟⎟⎟⎠, where

𝐵11 = 𝐾11 −
�̇�

𝐸
, 𝐵12 =

(
𝛽𝑆(𝑆 +𝐸 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

,− 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2

)
, 𝐵14 = 0,

𝐵13 =
(

𝛽𝑆(𝑆 +𝐸 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

,− 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2

)
, 𝐵21 = (ε,0)𝑡,

𝐵22 =
⎛⎜⎜⎝

𝐾22 −
�̇�

𝐸

𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2
𝛽𝐼(𝐸+𝐼+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 𝐾44 −

�̇�

𝐸

⎞⎟⎟⎠ , 𝐵23 =
(
0 0
0 0

)
,

𝐵24 =
(
− 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2
,− 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2

)𝑡

, 𝐵31 = (0,0)𝑡, 𝐵32 =

( 𝑎2𝐸𝛾

𝑎1𝐼
0

0 𝑎2𝐸𝛾

𝑎1𝐼

)
,

𝐵33 =
⎛⎜⎜⎝

𝐾33 −
�̇�

𝐼

𝛽𝑆𝐼

(𝑆+𝐸+𝐼+𝑅)2
𝛽𝐼(𝐸+𝐼+𝑅)
(𝑆+𝐸+𝐼+𝑅)2 𝐾55 −

�̇�

𝐼

⎞⎟⎟⎠ , 𝐵34 =
(
− 𝛽𝑆(𝑆 +𝐸 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

,
𝛽𝑆(𝑆 +𝐸 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

)𝑡

,

𝐵41 = 0,𝐵42 = (0,0),𝐵43 = (0, ε),𝐵44 = 𝐾66 −
�̇�

𝐼
.

Let 𝐯 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6) be a vector in 𝑅6 ≅ 𝑅

(
4
2

)
. We then select a norm in 𝑅6 as |||(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6)||| = max

{ ||𝑣1|| , ||𝑣2|| +||𝑣3|| , ||𝑣4|| + ||𝑣5|| , ||𝑣6|| } and let 𝜇1(𝐵) be the Lozinskii measure of 𝐵 with respect to the induced matrix norm | ⋅ | in 𝑅6, defined by 
𝜇1(𝐵) = limℎ→0+

|𝐼+ℎ𝐵|−1
ℎ

.

Following the estimation approach as in [47], we then have

𝜇1(𝐵) ≤ sup{ℎ1, ℎ2, ℎ3, ℎ4}, where

ℎ1 = 𝜇1(𝐵11) + |𝐵12| + |𝐵13| + |𝐵14|, ℎ2 = 𝜇1(𝐵22) + |𝐵21| + |𝐵23| + |𝐵24|,
ℎ3 = 𝜇1(𝐵33) + |𝐵31| + |𝐵32| + |𝐵34|, ℎ4 = 𝜇1(𝐵44) + |𝐵41| + |𝐵42| + |𝐵43|.|||𝐵𝑖𝑗

||| (𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, 2, 3, 4) are matrix norms with respect to the 𝑙1 vector norm. We compute ℎ𝑖 as follows:

𝜇1(𝐵11) = − 𝛽𝐼(𝐸 + 𝐼 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

− 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2
− (2𝜇 + ε) − �̇�

𝐸
, |𝐵12| = 𝐵13 =

𝛽𝑆(𝑆 +𝐸 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

,𝐵14 = 0.

Then, ℎ1 = − 𝛽𝐼(𝐸 + 𝐼 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

− 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2
− (2𝜇 + ε) − �̇�

𝐸
+ 2 𝛽𝑆(𝑆 +𝐸 +𝑅)

(𝑆 +𝐸 + 𝐼 +𝑅)2
.

Furthermore, from the second and third equations of system (1), we have

�̇�

𝐸
= 𝛽𝑆𝐼

𝐸(𝑆 +𝐸 + 𝐼 +𝑅)
− (𝜇 + ε) and

�̇�

𝐼
= ε𝐸

𝐼
− (𝜇 + 𝛾 + 𝑑).

Choosing 𝑎1 = −𝑎2, then we have

ℎ1 ≤ 2 𝛽𝑆(𝑆 +𝐸 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

− 𝜇 ≤ 2𝛽 − 𝜇, ℎ2 ≤ 𝛽𝑆𝐼

(𝑆 +𝐸 + 𝐼 +𝑅)2
+ ε− 𝜇 ≤ 𝛽 + ε− 𝜇,

ℎ3 ≤ 𝛽𝑆(𝑆 +𝐸 +𝑅)
(𝑆 +𝐸 + 𝐼 +𝑅)2

+ 𝛾 + 𝑑 − 𝜇 ≤ 𝛽 + 𝛾 + 𝑑 − 𝜇, ℎ4 ≤ 𝛾 + 𝑑 − 𝜇.

The estimate 𝜇1(𝐵) can be written as

𝜇1(𝐵) ≤ sup{ℎ1, ℎ2, ℎ3, ℎ4} = −min{−ℎ1,−ℎ2,−ℎ3,−ℎ4}.

Let ℎ =min{𝜇 − 2𝛽,𝜇 − (𝛽 + ε), 𝜇 − (𝛽 + 𝛾 + 𝑑), 𝜇 − (𝛾 + 𝑑)} .

Following condition (12), ℎ > 0, and then −ℎ < 0. As a result,

𝜇1(𝐵) ≤ sup{ℎ1, ℎ2, ℎ3, ℎ4} < −ℎ. It follows that 𝜇1(𝐵) = 𝜇1(𝑃𝑓 𝑃−1 + 𝑃𝑓 𝐽 [2]𝑃−1) ≤ −ℎ < 0.

Along each solution (𝑆, 𝐸, 𝐼, 𝑅) of system (1) with initial value (𝑆0, 𝐸0, 𝐼0, 𝑅0) ∈ 𝐾 when 𝑡 > 𝑇 , we have

1
𝑡

𝑡

∫
0

ℎ𝑖𝑑𝑠 ≤ −ℎ < 0, 𝑖 = 1,2,3,4.
9

Averaging along each solution as 𝑡 →∞, we get
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𝑞 = lim
𝑡→∞

sup sup
𝑥0∈𝐾

1
𝑡

𝑡

∫
0

𝜇1(𝐵(𝑥(𝑠, 𝑥0)))𝑑𝑠 ≤ −ℎ < 0. □

4. Bifurcation analysis

Theorem 4.1. The system (1) exhibits a forward bifurcation at 𝑅0 = 1.

Proof. Setting 𝑥1 = 𝑆 , 𝑥2 = 𝐸, 𝑥3 = 𝐼 , and 𝑥4 = 𝑅 we write system (1) as follows

𝑑𝑥1
𝑑𝑡

=Λ−
( 𝛽𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

+ 𝜇
)
𝑥1 ∶= 𝑓1,

𝑑𝑥2
𝑑𝑡

=
𝛽𝑥3𝑥1

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4
− (𝜇 + ε)𝑥2 ∶= 𝑓2,

𝑑𝑥3
𝑑𝑡

= ε𝑥2 −
(
𝜇 + 𝑑 + 𝛾

)
𝑥3 ∶= 𝑓3,

𝑑𝑥4
𝑑𝑡

= 𝛾𝑥3 − 𝜇𝑥4 ∶= 𝑓4.

(13)

Fix 𝑅0 = 1 and let

𝛽∗ ∶= (𝜇 + ε)(𝜇 + 𝑑 + 𝛾)
ε

be the bifurcation parameter. Jacobian of the linearized system (13) around the disease-free equilibrium 𝐸0 when 𝛽 = 𝛽∗ is

𝐽 (𝐸0) =
⎛⎜⎜⎜⎝
−𝜇 0 −𝛽∗ 0
0 −(𝜇 + ε) 𝛽∗ 0
0 ε −(𝜇 + 𝑑 + 𝛾) 0
0 0 𝛾 −𝜇

⎞⎟⎟⎟⎠ .

The eigenvalues of the characteristic polynomial are 𝜆1 = 𝜆2 = −𝜇, 𝜆3 = −(2𝜇 + 𝑑 + 𝛾 + ε), and 𝜆4 = 0. We can observe that the three 
eigenvalues are real and negative, and one is 0 and simple.

To study the bifurcation analysis, we denote the right eigenvector corresponding to the zero eigenvalue 𝜆4 = 0 by 𝐰=(𝑤1, 𝑤2, 𝑤3,
𝑤4)𝑇 . Computing 𝐽 (𝐸0)𝐰 = 𝟎𝐰 gives

⎛⎜⎜⎜⎝
−𝜇 0 −𝛽∗ 0
0 −(𝜇 + ε) 𝛽∗ 0
0 ε −(𝜇 + 𝑑 + 𝛾) 0
0 0 𝛾 −𝜇

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑤1
𝑤2
𝑤3
𝑤4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎠ .

Direct calculation gives the right eigenvector

w =
(
− 𝛾(𝜇 + 𝑑 + 𝛾)

ε𝜇
,
𝜇(𝜇 + 𝑑 + 𝛾)

ε
, 𝜇, 𝛾

)𝑇

.

Next, we compute the left eigenvector v=(𝑣1, 𝑣2, 𝑣3, 𝑣4) associated with 𝜆4 = 0 by computing 𝐯𝐽 (𝐸0) = 𝟎 which is

(𝑣1, 𝑣2, 𝑣3, 𝑣4)
⎛⎜⎜⎜⎝
−𝜇 0 −𝛽∗ 0
0 −(𝜇 + ε) 𝛽∗ 0
0 ε −(𝜇 + 𝑑 + 𝛾) 0
0 0 𝛾 −𝜇

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎠ .

It follows that⎧⎪⎪⎨⎪⎪⎩
−𝜇𝑣1 = 0,
−(𝜇 + ε)𝑣2 + ε𝑣3 = 0,
−𝛽∗𝑣1 + 𝛽∗𝑣2 − (𝜇 + 𝑑 + 𝛾)𝑣3 + 𝛾𝑣4 = 0,
−𝜇𝑣4 = 0.

From the first and fourth equations, we have that 𝑣1 = 𝑣4 = 0. Since v.w=1 one solution of the left eigenvector is v =
(
0, ε, 𝜇+ ε, 0

)𝑇

by taking the expression of 𝛽∗ into account.

Based on theoretical results in [48], we have to compute the bifurcation coefficients a and b given by

a =
4∑

𝑣 𝑤 𝑤
𝜕2𝑓𝑘 (𝐸 ,𝛽∗),
10

𝑘,𝑖,𝑗=1
𝑘 𝑖 𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
0
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b =
4∑

𝑘,𝑖=1
𝑣𝑘𝑤𝑖

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽
(𝐸0, 𝛽

∗).

Since the first and fourth components of v are zero, we do not need the derivatives of 𝑓1 and 𝑓4. From the derivatives of 𝑓2 and 𝑓3, 
the only nonzero values are:

𝜕2𝑓2

𝜕𝑥2
3

(𝐸0, 𝛽
∗) = −2𝜇(𝜇 + ε)(𝜇 + 𝑑 + 𝛾)

Λε
and

𝜕2𝑓2
𝜕𝑥3𝜕𝛽

(𝐸0, 𝛽
∗) = 1.

Which directly follows that,

a = 𝑣2𝑤
2
3
𝜕2𝑓2

𝜕𝑥2
3

(𝐸0, 𝛽
∗) = −2𝜇3(𝜇 + ε)(𝜇 + 𝑑 + 𝛾)

Λ
,

b = 𝑣2𝑤3
𝜕2𝑓2

𝜕𝑥3𝜕𝛽
(𝐸0, 𝛽

∗) = 𝜇ε.

It is clear that a < 0 and b > 0 for all positive parameter values. Thus, the system (1) exhibits forward bifurcation at 𝑅0 = 1. □

5. Model calibration with vaccination

Recently, great progress has been made towards measles elimination through constant vaccination against measles globally. 
Therefore, for any mathematical model regarding the measles epidemic to be realistic, it must include vaccination. In this section, we 
additionally assume that a fraction of the individuals recruited due to birth or immigration are vaccinated at a rate of 𝜃 and hence 
go to the recovered class. Vaccination and natural recovery from measles provide the same level of protection. The proportion of 
those vaccinated is represented by 𝜃(0 ≤ 𝜃 ≤ 1) where 𝜃 = 0 represents vaccination is not applied and 𝜃 = 1 indicates all individuals 
recruited due to birth or immigration are vaccinated. The evolution of the system with the incorporation of vaccination is governed 
by the following nonlinear ordinary differential equations:

𝑑𝑆

𝑑𝑡
=Λ(1 − 𝜃) −

( 𝛽𝐼

𝑆 +𝐸 + 𝐼 +𝑅
+ 𝜇

)
𝑆,

𝑑𝐸

𝑑𝑡
= 𝛽𝐼𝑆

𝑆 +𝐸 + 𝐼 +𝑅
− (𝜇 + ε)𝐸,

𝑑𝐼

𝑑𝑡
= ε𝐸 −

(
𝜇 + 𝑑 + 𝛾

)
𝐼,

𝑑𝑅

𝑑𝑡
= 𝜃Λ+ 𝛾𝐼 − 𝜇𝑅.

(14)

The reproduction number of system (14) with the implementation of vaccination is given as

𝑅0𝑣 =
𝛽ε(1 − 𝜃)

(𝜇 + ε)(𝜇 + 𝑑 + 𝛾)
= (1 − 𝜃)𝑅0. (15)

It can be easily observed that 𝑅0𝑣 ≤ 𝑅0 and the equality holds when 𝜃 = 0. This shows that the vaccine will minimize the 𝑅0 . For 
measles eradication, we have obtained that 𝑅0 ≤ 1 (Theorem 3.3) and it follows from Eq. (15) that the critical vaccination for measles 
eradication is 𝜃 ≥ 1 − 1

𝑅0
= 𝜃𝑐 .

5.1. Data

Ethiopia is one of the countries with a high measles mortality burden [31]. Measles is reported weekly by the Ministry of Health. 
According to the Ethiopian Weekly Epidemiological Bulletin [49] report, the national surveillance data summary of measles dis-

ease in 2015 is presented in Table 2, and graphically illustrated in Fig. 1. The real data points are represented by the red dot 
histogram.

5.2. Nominal parameters

In order to simulate the proposed measles model in the context of Ethiopian data, it is necessary to set all the parameter values. 
Some of the parameter values are obtained from national census databases. Among these are the natural birth and death rates and 
the total population. The natural mortality rate for Ethiopia is 𝜇 = 1∕(64 × 52)[𝑤𝑒𝑒𝑘𝑠]−1 [50]. Some others, such as the parameter 
rate of progress from exposed to infectious class (ε) and recovery rate (𝛾) are also found in measles infected patients’ clinical studies. 
Considering the assumption that the latent period for measles ends in 6 − 9 days and the infectious period as 5 days [51] we choose 
11

ε = 7.5∕7[𝑤𝑒𝑒𝑘𝑠]−1 and 𝛾 = 5∕7[𝑤𝑒𝑒𝑘𝑠]−1.
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Table 2

Reported weekly measles cases in Ethiopia, 2015 [49].

Weeks Infected Weeks Infected Weeks Infected Weeks Infected Weeks Infected

1 250 12 1300 23 550 33 190 43 180

2 260 13 1400 24 580 34 200 44 310

3 230 14 1600 25 500 35 190 45 110

4 200 15 1300 26 480 36 180 46 310

5 1000 16 1400 27 470 37 160 47 300

6 900 17 1000 28 300 38 170 48 250

7 2400 18 800 29 280 39 170 49 160

8 2200 19 600 30 300 40 160 50 200

9 1900 20 700 31 150 41 160 51 320

10 1800 21 500 32 180 42 172 52 380

11 1600 22 600

Fig. 1. Simulation of the model solution compared to the real data using the initial parameter and state values. Observed real data points are represented by the red 
dot histogram, and the best-fitting solution curve for the system model is shown by the blue curve.

5.3. Forward problem

The system (14) can be given in vector form as:

𝑑𝐱(𝑡)
𝑑𝑡

= 𝐟(𝐱(𝑡),𝐩), 𝐱(𝑡0) = 𝐱0, (16)

where 𝐱(𝑡) = (𝑆, 𝐸, 𝐼, 𝑅) ∈ℝ4 represents the state variables and 𝐱0 = (𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) ∈ℝ4 is the initial condition at the initial 
time 𝑡0, the vector 𝐩 = (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6) = (Λ, 𝛽, 𝜇, ε, 𝛾, 𝑑) ∈ ℝ6 represents the model parameters and 𝐟 ∶ 𝐔 ⊂ ℝ4 × ℝ6 → ℝ4 is a 
nonlinear map representing the evolution law of the system defined on the open set:

𝐔 =
{
(𝐱(𝑡),𝐩) ∈ℝ4 ×ℝ6 ∣ 𝑥𝑖 > 0, 𝑓𝑜𝑟 𝑖 = 1,… ,4 𝑎𝑛𝑑 𝑝𝑖 > 0, 𝑓𝑜𝑟 𝑖 = 1,… ,6

}
. (17)

The solution to the forward problem in system (16) is obtained by numerical integration using a Runge-Kutta fourth and fifth 
orders (𝐨𝐝𝐞𝟒𝟓) method. To simulate the forward problem, we assume the initial set of parameters as p0 = (500, 2.59605, 1∕(64 ×
52), 7.5∕7, 5∕7, 0.168). Initially infected humans are assumed to be the number of confirmed measles cases in Ethiopia in 2015, which 
is 𝐼(0) = 250 individuals. The exposed and infected groups are also equal, 𝐸(0) = 𝐼(0). Moreover, initially recovered individuals are 
assumed to have 𝑅(0) = 1800. The susceptible population is also assumed to be 𝑆(0) = 21000. Accordingly, the initial state variables at 
the initial time 𝑡0 are given as 𝐱0 = (21000, 250, 250, 1800). It is also assumed that the proportion of vaccinated in 2015 was 𝜃 = 0.65.

Following the above initial assumptions, Fig. 1 depicts the 𝑆𝐸𝐼𝑅 model solution compared with the real data reported weekly. 
Apart from the numerical variation between the model solution and the real data, there is agreement in the pattern of the model 
simulation and the real data. This characteristic pattern agreement and numerical disparity propose that the model solution may vary 
from the real data due to the use of improper initial parameter values or improper initial state variables in the numerical simulation. 
Therefore, it is important that model calibration be done to fit the model solution to the observed real data. Model calibration is a 
numerical simulation for the search of parameter values that make the model simulation fit well with the real data. It is discussed in 
12

the following subsection.
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Table 3

Estimated parameter values for the proposed model.

Parameter Lower bound Upper bound Reference Estimated value(CI)

Λ 0 10000 Assumed 0.9289613942(-0.1423810 2.0003038) ×104
𝛽 0 100 Assumed 0.0007107243(-0.0002338 0.0016552) ×104
𝜇 1∕(70 × 52) 1∕(60 × 52) [50] 0.0000000275(-0.0000086 0.0000087) ×104
ε 6∕7 9∕7 [4,51] 0.0001024338(-0.0000335 0.0002384) ×104
𝛾 6∕7 1 [4,51] 0.0001000000(-0.0009732 0.0011732) ×104
𝑑 0 1 Assumed 0.0000779494(-0.0009738 0.0011297 ) ×104

5.4. Inverse problem

In most cases, it is impractical the forward problem to reproduce the real data. This could be due to an error in data collection 
or registration or an error in model formulation caused by the wrong model assumptions. Therefore, model calibration consists of 
seeking a suitable set of parameters that, to a certain degree, makes the model solution as close as to the real data.

For the model calibration, the system contains 𝑝𝑝𝑝 = (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6) unknown parameters to be estimated based on real data. For 
the purpose of comparison between the real data observations and model solutions, a discrete time set with 𝑁 = 52 weeks presented 
in Fig. 1 is used. The 𝑁 time discrete real data points are represented by Z = (𝑧1, 𝑧2, ..., 𝑧𝑁 ) and the time discrete model solution 
𝑦𝑦𝑦(𝑡𝑘) = (𝑦1, 𝑦2, … , 𝑦𝑁 ) is generated for the 4 outputs 𝑦1, 𝑦2, 𝑦3, 𝑦4 corresponding to 𝑁 data points.

𝑦𝑦𝑦(𝑡𝑘) = [𝑦1(𝑡𝑘), 𝑦2(𝑡𝑘), 𝑦3(𝑡𝑘), 𝑦4(𝑡𝑘)]𝑇 𝑎𝑛𝑑

𝑦𝑦𝑦 = [𝑦1(𝑡1),… , 𝑦1(𝑡𝑁 ),… , 𝑦4(𝑡1),⋯ , 𝑦4(𝑡𝑁 )]𝑇 (𝑙𝑒𝑛𝑔𝑡ℎ 4 ⋅𝑁).

The model error (or the residual error) 𝑒𝑒𝑒𝑘 in (18) which is the difference between a column vector model solution 𝑦𝑦𝑦 and a column 
vector real data points 𝑧𝑧𝑧 is weighted in a quadratic criterion 𝐽𝐽𝐽𝑁 as:

𝑒𝑒𝑒𝑘 = 𝑧𝑧𝑧(𝑡𝑘) − �̂�𝑦𝑦(𝑡𝑘, �̂�𝑝𝑝), 𝑘 = 1,… ,𝑁, (18)

𝐽𝐽𝐽𝑁 = ||𝑧𝑧𝑧− 𝑦𝑦𝑦||2 = 𝑀∑
𝑖=1

𝑒𝑒𝑒𝑇
𝑘
𝑊𝑊𝑊 𝑒𝑒𝑒𝑘. (19)

In formal terms, given a real data observation vector 𝐳 and a model solution vector 𝑦𝑦𝑦, the calibration aims at finding a vector of 
parameters �̂̂�𝑝𝑝 such that

�̂̂�𝑝𝑝 = 𝑎𝑟𝑔min
�̂̂�𝑝�̂�𝑝𝑝�̂�𝑝𝑝𝑝≥0

𝐽𝐽𝐽𝑁 (�̂̂�𝑝𝑝), (20)

for a function Eq. (19). Here, �̂̂�𝑝𝑝 in Eq. (20) is the optimal estimated parameter, and �̂�𝑦𝑦 is the model solution corresponding to the 
optimal �̂̂�𝑝𝑝 value. 𝑊𝑊𝑊 is a 4 ⋅ 𝑁 × 4 ⋅ 𝑁 positive definite symmetric weighting matrix to be solved using the weighted least squares 
algorithm. For the optimal estimated parameter values, the functional 𝐽𝐽𝐽 𝑁 reaches a minimum value [52].

For the implementation of the calibration, we used the least squares method using the Trust-Region

-Reflective method algorithm lsqnonlin from MATLAB’s optimization toolbox. The parameters are estimated with lower and upper 
bounds. Global minimum convergence is not guaranteed in this case. However, to find the best optimal parameter estimates with the 
minimum functional value, the algorithm starts with different initial parameters and state values. The estimated parameter values are 
presented in Table 3 and the estimated basic reproduction number of measles for Ethiopia in the year 2015 is found to be 𝑅0 = 1.3973.

Fig. 2a depicts the proposed system model fitted to real data. We found that there are only a very few points that are poorly fitted 
with the model solution as compared. The fit of a system model to real data is also measured by its residuals, which are defined as 
the difference between the real data and the value predicted by the model. Following a similar approach [12], we computed the root 
mean squared error (RMSE) 1.413501277877855 ×103. The residual plots seem to be random, proving that the model is well calibrated 
(Fig. 2b). Moreover, we plotted the fitted model with a 95% confidence interval (CI), as can be seen in Fig. 3. The plot of the CI helps 
visualize the uncertainty in the estimated parameter values. In particular, the model is plotted using the estimated parameter values, 
and the 95% CIs are shown as error shaded areas around the fitted model. The confidence interval also helps to measure the model’s 
performance. By examining the CIs over time, one can understand the stability and accuracy of the model’s predictions. That is, if 
the CIs remain narrow and consistent, it suggests the model is performing well in capturing the underling dynamics of the epidemic. 
On the other hand, if the CIs widen or become inconsistent, it may indicate limitations or uncertainty in the model assumptions or 
data. The CIs remain narrow and consistent, as depicted in Fig. 3. Thus, it is evidence that the model fits well.

5.5. Local sensitivity analysis

Studying the sensitivity of the basic reproduction number as model parameters change is important in system dynamics. It is used 
to determine the robustness of system predictions for parameter values. A highly sensitive parameter should be carefully estimated 
because a small variation in that parameter could lead to large quantitative changes. A less sensitive parameter does not require as 
13

much effort to estimate, since a small change in that parameter will not result in a big influence on the disease dynamics.
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Fig. 2. The 𝑆𝐸𝐼𝑅 system fitted with the weekly reported real data. Observed real data points are represented by the red dot histogram, and the best-fitting solution 
curve for the system model is shown by the blue curve.

Fig. 3. Infected new cases fitted to real data with 95% confidence interval.

Definition 5.1. The normalized forward local sensitivity index of the basic reproduction number 𝑅0𝑣 that depends differentiably on 
a parameter 𝜔 is defined by

Π𝑅0𝑣
𝜔 =

𝜕𝑅0𝑣
𝜕𝜔

𝜔|𝑅0𝑣| . (21)

Notice that Π𝑅0𝑣
𝜔 has a maximum value of magnitude 1. Π𝑅0𝑣

𝜔 = 1 implies an increase (decrease) of 𝜔 by 𝑦% increases (decreases) 
𝑅0𝑣 by 𝑦%. On the other hand, Π𝑅0𝑣

𝜔 = −1 indicates an increase (decrease) of 𝜔 by 𝑦% decreases (increases) 𝑅0𝑣 by 𝑦%. Following 
Eq. (21), the normalized forward local sensitivity index of 𝑅0𝑣 with respect to 𝛽, 𝜇, ε, 𝛾, 𝑑, 𝜃 is given by

Π𝑅0𝑣
𝛽

= 1, Π𝑅0𝑣
𝜇 = − 𝜇(2𝜇 + ε+ 𝛾 + 𝑑)

(𝜇 + ε)(𝜇 + 𝛾 + 𝑑)
, Π𝑅0𝑣

ε = 𝜇

𝜇 + ε
,

Π𝑅0𝑣
𝛾 = − 𝛾

𝜇 + 𝛾 + 𝑑
, Π𝑅0𝑣

𝑑
= − 𝑑

𝜇 + 𝛾 + 𝑑
, Π𝑅0𝑣

𝜃
= − 𝜃

1 − 𝜃
.

It can be easily observed from Table 4 that the local sensitivity indices of the parameters 𝛽 and ε are positive and the remaining are 
negative. Positive sensitivity indices have a positive effect on the increase of the basic reproduction number, and negative sensitivity 
indices have a reverse effect on the basic reproduction number. The effective contact rate of measles 𝛽 and the rate of vaccination 𝜃
are the most sensitive parameters and significantly impact the disease dynamics. More importantly, decreasing the effective contact 
rate of measles 𝛽 and increasing the vaccination rate 𝜃 decrease the basic reproduction number. On the other hand, the natural death 
14

rate of humans and the rate of progress from the exposed to the infectious class are less sensitive to the basic reproduction number.
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Table 4

Numerical value of the local sensitivity indices.

Parameters Local sensitivity indices

𝛽 Π𝑅0𝑣
𝛽

= 1
𝜇 Π𝑅0𝑣

𝜇 = −4.224877 × 10−4

ε Π𝑅0𝑣
ε = 2.681276111938502 × 10−4

𝛾 Π𝑅0𝑣
𝛾 = −0.561870756205265

𝑑 Π𝑅0𝑣
𝑑

= −0.437974883669988
𝜃 Π𝑅0𝑣

𝜃
= −1.857143

Fig. 4. The forward bifurcation graph for infected versus 𝑅0 using the parameters Λ = 100, 𝛽 = 6, 𝜇 = 0.00045662, ε = 0.01, 𝑑 = 0.0015 and 𝛾 varies between 0.01 and 
20, i.e., 𝛾 = 0.01 ∶ 0.02 ∶ 20.

6. Numerical simulations

6.1. The system without vaccination

In this subsection, numerical simulations of the forward bifurcation of the system (1) and the mesh and contour plots for the basic 
reproduction number are discussed.

6.1.1. Forward bifurcation

It is shown in Eq. (6) that the disease dies out if 𝑅0 ≤ 1 and is endemic if 𝑅0 > 1 for 𝛽 > 𝑑. These results further prove that 
the model exhibits forward bifurcation. The global stability of the disease free and endemic equilibria for 𝑅0 ≤ 1 and 𝑅0 > 1 is also 
depicted graphically in Fig. 4. The dots colored red show that the disease free equilibrium is unstable if the reproduction number is 
greater than unity. On the other hand, the line segment colored blue shows that the disease free equilibrium is globally asymptotically 
stable if 𝑅0 ≤ 1 and the endemic equilibrium is globally stable if 𝑅0 > 1. 𝑅0 = 1 is the threshold value.

6.1.2. Mesh and contour plots

We draw the mesh and contour plots for the basic reproduction number dependence on the effective transmission rate 𝛽 and the 
natural recovery rate 𝛾 . The mesh and contour plots show that the basic reproduction number increases significantly for higher values 
of 𝛽 and lower values of 𝛾 (Figs. 5a and 5b). This result shows a good agreement with the local sensitivity indices depicted in Table 4. 
Thus, to control 𝑅0, policymakers are recommended to work on reducing 𝛽 and increasing 𝛾 . The variation of the basic reproduction 
number as well as the parameters effective transmission rate 𝛽 and natural recovery rate 𝛾 are depicted in Fig. 5.

We also draw the mesh and contour plots for the basic reproduction number dependence on the effective transmission rate 𝛽
and the rate of progression to the infectious class ε. The mesh and contour plots show that the basic reproduction number increases 
significantly for higher values of 𝛽, but ε has no significant value (Figs. 6a and 6b). In this case, to control 𝑅0 , policymakers are 
recommended to work on reducing 𝛽. The variation of the basic reproduction number as the parameters effective transmission rate 
𝛽 and the rate of progression to the infectious ε covary are depicted in Fig. 6.

6.2. The system with vaccination

In this subsection, numerical simulations of the proposed system (14) are done. We also validate the importance of the threshold 
15

parameter 𝑅0 to show disease elimination and endemic cases. The simulations are done using the built-in MATLAB function ode45.
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Fig. 5. Combined effects of the transmission rate 𝛽 and the recovery rate 𝛾 on the basic reproduction number for the measles model. The parameters both vary in the 
interval 𝛽 = 0.05 ∶ .02 ∶ 2 and 𝛾 = 0.05 ∶ .02 ∶ 2. The remaining parameters are given in Table 3.

Fig. 6. Combined effects of the effective transmission rate 𝛽 and the rate of progression to the infectious class ε on the basic reproduction number for the measles 
model. The parameters 𝛽 and ε vary in the interval 𝛽 = 0.05 ∶ .01 ∶ 2 and ε = 0.05 ∶ .01 ∶ 2. The remaining parameters are given in Table 3.

Fig. 7. Solution trajectories for the disease-free equilibrium. In this case, the assumed initial state value is (𝑆(0), 𝐸(0), 𝑅(0)) = (21000, 250, 18000) while varying the 
initial infected individuals between 1000 and 2000 with step size 200, the rate of vaccination is also assumed to be 𝜃 = 0.95, and the estimated parameter values are 
Λ = 9.289613942105396 × 103, 𝛽 = 0.007107 × 103, ε = 0.001024 × 103, 𝜇 = 0.0000002747 × 103, 𝛾 = 1, 𝑑 = 0.0007795 × 103 .

6.2.1. The disease extinction case

The measles disease extinction (Fig. 7). The starting points where the solution trajectories start are colored magenta, and the end 
point of the solution trajectories is colored red. The direction of the solution trajectories is shown by a forward arrow. In this case, 
the disease-free equilibrium 𝐸0 =(1690709,0,0,32123479) is globally stable. All solution values tend to move to the disease-free 
equilibrium, whatever the initial value is. The disease-free equilibrium is the plane containing the susceptible and recovered classes. 
From this graphical result, it could be concluded that the disease dies out in the community. The calculated value of the reproduction 
16

number is 𝑅0 = 0.1996.



Heliyon 10 (2024) e33594H.W. Berhe, A.A. Gebremeskel, H.A. Atsbaha et al.

Fig. 8. Solution trajectories for the endemic equilibrium. In this case, the assumed initial state value is (𝑆(0), 𝐸(0), 𝑅(0)) = (21000, 250, 18000) while varying the 
initial infected individuals between 1000 and 2000 with step size 200, the rate of vaccination is assumed to be 𝜃 = 0.65, and the estimated parameter values are 
Λ = 9.289613942105396 × 103, 𝛽 = 0.007107 × 103, ε = 0.001024 × 103, 𝜇 = 0.0000002747 × 103, 𝛾 = 1, 𝑑 = 0.0007795 × 103 .

Fig. 9. Time series of the infected population by varying the vaccination and effective contact rates.

6.2.2. The disease endemic case

The measles disease endemic case (Fig. 8). The starting points where the solution trajectories start are colored magenta, and the 
end point of the solution trajectories is colored red. The direction of the solution trajectories is shown by a forward arrow. In this 
case, the endemic equilibrium 𝐸∗ =(2250705,642,324,5601600) is globally stable. All solution values tend to move toward endemic 
equilibrium. From this graphical result, it could be concluded that the disease is endemic. The calculated value of the reproduction 
number is 𝑅0 = 1.3973.

6.2.3. The effects of vaccination and transmission rates

The effects of vaccination and transmission rates are discussed here. It is important to identify which one would be the most valid 
parameter for controlling disease spread since both are the most sensitive parameters. Fig. 9 shows the time series of the infected when 
the most sensitive parameters are changed. As the rate of vaccination increases from 0.65 to 0.75, it can be observed that the disease 
can be eradicated from the community (Fig. 9a). Compared to the impact of the vaccination rate, lowering the effective contact 
rate from 7.10724 to 6.10724 does not have a significant impact on the eradication of the disease (Fig. 9b). The epidemiological 
implication of this is that vaccination of the susceptible population is the best means for controlling the disease.

It is also worth noting that the 𝑆𝐸𝐼𝑅 model assumption is not like the 𝑆𝐼𝑅 in which it cannot be concluded that the disease dies 
out if the number of infected individuals is minimized. The time series of the exposed and infected individuals presented in Fig. 10

can prove this hypothesis. It can be observed that the number of individuals in the exposed class is enormous as compared to the 
infected ones. The exposed population rapidly grows and achieves its peak value of 3417 at the end of 9 weeks, whereas the infected 
population grows and reaches its peak value of 1938 at the end of 10 weeks. For the remaining periods, however, the number of 
both exposed and infected people decreased. Even though the infected individuals seem to decrease, which may ultimately cause the 
17

disease to die out, the disease may remain endemic due to the transfer of the exposed individuals to the infected class.
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Fig. 10. The time series of the exposed and infected people. In this case the assumed initial state value is (𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) = (21000, 250, 250, 18000). The 
rate of vaccination is assumed to be 𝜃 = 0.65 and the estimated parameters values are Λ = 9.289613942105396 × 103, 𝛽 = 0.007107 × 103, ε = 0.001024 × 103, 𝜇 =
0.0000002747 × 103, 𝛾 = 1, 𝑑 = 0.0007795 × 103 .

7. Discussions and conclusion

A deterministic 𝑆𝐸𝐼𝑅 model to describe the dynamics of the measles outbreak in Ethiopia is analyzed and calibrated using weekly 
real data. The long-term dynamics of the system are analyzed. It is shown that the system is biologically feasible. It is also established 
that 𝑅0 is a sharp threshold value, and it does completely determine the global stability of the disease-free equilibrium for 𝑅0 < 1. And 
therefore, the system exhibits forward bifurcation. Furthermore, the global stability analysis of the endemic equilibrium is analyzed 
for 𝑅0 > 1 using a suitable Lyapunov function by assuming the disease-induced death rate 𝑑 = 0. Based on our mathematical analysis, 
to eliminate the measles disease from a community, policymakers may work on reducing the basic reproduction number to less than 
unity. This result is different from the previous results on measles dynamics [4,33], where reducing the basic reproduction number 
to less than one is not enough for measles eradication.

The calibration process is done through the solution of an inverse problem using the least squares method using the Trust-

Region-Reflective method algorithm lsqnonlin from MATLAB’s optimization Toolbox. Nominal initial parameter and range values are 
selected from the related literature studying measles disease dynamics. Estimated parameter values with 95% confidence intervals 
are presented. Furthermore, unlike the previous work by the authors [34] who studied the global sensitivity analysis of the basic 
reproduction number, local sensitivity analysis of the basic reproduction number to the estimated parameters is done to investigate 
the robustness of the model as parameters change. It is found that a decrease in the contact rate and an increase in the vaccination 
rate would cause the disease to die out.

The 𝑆𝐸𝐼𝑅 model is not like the 𝑆𝐼𝑅 in that we cannot say the epidemic is under control if the number of infected individuals 
drops. Definitely, in the 𝑆𝐸𝐼𝑅 models, it may come about that temporarily the number of people in the infected class is small, though 
the exposed class is still enormous. Consequently, the epidemic may appear to have died out but will then be out of control again 
when the people in the exposed class transfer to the infected class and contaminate other people. Therefore, an effective strategy 
essentially takes into consideration the time necessary for the exposed class to transfer to the infected and will minimize to zero new 
infected cases throughout the period.

Like many epidemic models, the system studied has drawbacks. We calibrated the proposed model to weekly reported cases of 
measles to estimate the parameters of the model. Estimation of parameters is tedious work because a large part of the infectious 
process is missed in most cases [53]. One of the drawbacks is that we could obtain optimal parameter values that result in a local 
minimum. Therefore, to solve this problem, the recommendation is to simulate the system for several sets of initial parameter values 
and take the optimal parameters with the smallest error as the best parameter estimate. Moreover, it is still challenging to propose 
an appropriate Lyapunov function to study the stability of the endemic equilibrium when 𝑑 > 0. Therefore, further study using the 
Lyapunov function theory is needed to determine the global stability of the endemic equilibrium of an SEIR with a standard incidence 
and disease-induced death rate. However, the better way to deal with it so far is to use the geometric approach proposed in the works 
of [22].

Even though we used a comparatively simple model of measles to demonstrate our methodology, the method that we use can be 
functional on more complex models by incorporating additional information into the model. For instance, age structure would be 
very suitable when considering potential vaccination strategies for measles [10,54]. Furthermore, parameter uncertainty will always 
exist during the estimation of the parameters and will always influence model predictions. Consequently, an age-structured measles 
18

model that incorporates uncertainty analysis in parameter estimation is essential to be investigated.
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