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I N TRODUC TION

Somatic mutations naturally accumulate over time in all or-
gans of each individual. The frequency of somatic mutation 

acquisition in blood cells has been estimated to be ~15–20 
mutations per cell per year.1,2 Although most of them are neu-
tral, some can confer a fitness advantage that causes clonal 
expansion, a phenomenon known as clonal haematopoiesis 
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Summary
MYSM1 deficiency causes inherited bone marrow failure syndrome (IBMFS). We 
have previously identified an IBMFS patient with a homozygous pathogenic vari-
ant in MYSM1 who recovered from cytopenia due to spontaneous correction of one 
MYSM1 variant in the haematopoietic compartment, an event called somatic genetic 
rescue (SGR). The study of the genetic and biological aspects of the patient's haema-
topoietic/lymphopoietic system over a decade after SGR shows that one genetically 
corrected haematopoietic stem cell (HSC) can restore a healthy and stable haemat-
opoietic system. This supports in vivo gene correction of HSCs as a promising treat-
ment for IBMFS, including MYSM1 deficiency.
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of indeterminate potential (CHIP) that is associated with pre-
disposition to haematological malignancy and increased risk 
of mortality.2 On the other hand, in the context of Mendelian 
haematopoietic disorders, a somatic mutation may specif-
ically mitigate the deleterious effect of the disease-causing 
germline genetic defect, a phenomenon known as somatic 
genetic rescue (SGR).1 While in most cases, the SGR has been 
shown to have partial and limited effects on the patients' hae-
matological parameters, in rare cases it resulted in the resto-
ration of a normal haematopoietic system and a cure of the 
disease, a phenomenon-typified natural gene therapy.1,2

MYSM1 functions in deubiquitinating the histone 2A 
ubiquitinated at position K119, an epigenetic marker for 
gene transcription silencing.3 As a result, MYSM1 reverts 
the transcriptional repression of genes encoding ribosomal 
proteins and transcription factors that are essential for the 
maintenance of haematopoietic stem cell (HSC) quiescence 
and development of blood cells.3,4 To our knowledge, only 12 
individuals carrying biallelic pathogenic MYSM1 mutations 
have been reported so far, indicating the rarity of this syn-
drome (Table S1). We previously reported the case of a young 
individual carrying a homozygous c.1967A>G; p.His656Arg 
(H656R) MYSM1 variant associated with a reduction in the 
values of most blood lineages and a virtual lack of B lympho-
cytes. We further showed that an SGR corresponding to the 
genetic correction of one of the mutated alleles to wild type 
occurred in the patient's multipotent HSC compartment 
and was associated with a progressive improvement of hae-
matopoiesis that occurred early in life.5 Here, we report the 
assessment of the patient's lympho/haematopoietic features 
12 years following the SGR event.

M ETHODS

Detailed methods are described in Supporting Information.

R E SU LTS A N D DISCUSSION

Several tools predicted pathogenicity of the H656R MYSM1 
variant (Figure S1; Table S1). Recombinant WT and H656R 
portion of MYSM1 containing the catalytic domain (referred 
to as C1-WT and C1-H656R, respectively) (Figure 1A) were 
similarly recovered from bacterial lysates (Figure 1B), indi-
cating that the mutation does not affect protein expression/
stability. However, unlike C1-WT, C1-H656R was devoid of 
in vitro deubiquitinase activity (Figure 1C), supporting the re-
cent conclusion drawn in a mouse model that H656R MYSM1 
is a loss-of-function mutation.4 The patient's blood cell counts 
that normalized a few months after SGR remained remarka-
bly stable over an additional period of 12 years (Figure 1D). Of 
note for this patient who lacked B cells prior to SGR, B cell sub-
populations, immunoglobulin levels, post-vaccination serol-
ogies, post-infectious seroconversions and Immunoglobulin 
heavy chain variable-diversity-junction repertoire were nor-
mal (Figure 1E; Figure S2). This indicates that one or a few 

SGR-positive (SGR+) HSCs suffice to reconstitute and main-
tain a normal immuno-haematopoietic system in a context of 
MYSM1 deficiency. The rapid SGR-mediated haematopoietic 
reconstitution argues for a strong selective advantage of SGR+ 
HSCs over unmodified cells. This is in line with studies dem-
onstrating that HSCs carrying the H656R mutation exhibit a 
profound intrinsic defect in haematopoiesis potential, while 
the bone marrow environment of Mysm1-deficient mice does 
not preclude haematopoietic engraftment and development 
of WT HSCs.4,6 The recent demonstration that MYSM1 de-
ficiency causes proteostatic stress and ferroptosis in HSCs 
could explain why SGR provided such a benefit in patient' 
HSCs.4 Assessment of the immune cell subsets by cytometry 
by time-of-flight (CyTOF) analysis in blood samples from the 
patient 12 years post-SGR and five age-matched healthy con-
trols revealed overall similar profiles (Figure 2A; Figure S3). 
Absolute cell counts did not differ in the patient and the 
controls except for a slight increase in innate natural killer 
(NK)-T cells (NK-T) and mucosal-associated invariant T cells 
(MAIT) populations, while the proportion of monocytes, T, 
B and NK cells was comparable (Figure 2B). Within the T cell 
population, the percentage of CD4+ T cells was significantly 
reduced and the CD4+/CD8+ ratio was reversed, but the ab-
solute number of CD4+ T cells was within the normal range 
for age. The fractions of naive and memory T and B cells were 
unaffected (Figure 2C). Nevertheless, we noticed an increase 
in the double-negative (DN) population (noted CD3 DN) that 
culminated in 21.9% of total T lymphocytes and 9.1% of total 
peripheral blood mononuclear cells (PBMNCs) (Figure 2B). 
This population consisted mainly of γδ T cells which, as the 
αβ T cells, exhibited a diversified T cell receptor (TCR) rep-
ertoire (Figure  S2). These results indicate that, despite an 
increase in NK-T and MAIT and in DN Tγδ cells, the SGR-
mediated immunohaematological reconstitution that took 
place more than 12 years ago gave rise to an overall normal 
immune system that persisted over time. Consistent with this 
observation, the patient had not experienced any haemato-
logical or immunological/infectious problems during these 
years.

Next, we tested whether the immunological populations 
detected 12 years post-SGR originated from cells that preex-
isted to the SGR (i.e. homozygous for the H656R mutation) 
or from a genetically corrected progenitor (i.e. carrying a WT 
MYSM1 allele at a heterozygous state; denoted SGR+). PCR 
amplification and next-generation sequencing of the MYSM1 
c.1967A>G variant in U2OS, used as WT control, recovered 
more than 99.99% of WT reads (Figure 2D). In the patient's 
father's and mother's PBMNCs, 50.8% and 50.6% of the reads 
were WT, respectively, while the remaining reads contained 
the MYSM1 variant, congruent with a heterozygous status. 
The MYSM1 variant was present in more than 99.98% of 
reads in patient's fibroblasts, confirming the homozygous 
status of the MYSM1 variant in this tissue (Figure 2D). Thus, 
the accuracy and reliability of our approach allowed us to 
determine the proportion of WT and mutated MYSM1 al-
leles in a given cell population and estimate the percentage 
of cells that originated from an SGR+ progenitor (Figure S4). 



      |  2351de TOCQUEVILLE et al.

WT reads were absent in patient's blood DNA sampled at 
6 months of age while they represented 4.8% of total reads at 
1 year of age, suggesting that the SGR took place in the pa-
tient's haematopoietic compartment between 6 months and 
1 year of age. Patient's B and NK lymphocytes, sorted 12 years 
post-SGR (Figure  S5), showed almost equal proportions of 
WT and c.1967A>G reads, indicating that they were virtually 
all derived from SGR+ progenitors. A slightly lower propor-
tion of WT reads in monocytes suggested that ~9% of them 
did not originate from an SGR+ precursor (Figure  2C,D). 
Similarly, the mutant reads were more abundant than their 
WT counterpart in the various T lymphocyte populations. 
This indicated that a substantial fraction of T lymphocytes 
were homozygous for the MYSM1 variant (Figure  2C,D). 
Remarkably, DN γδ and DN αβ T cells had lower proportion 
of WT reads (21.6% and 31.4%, respectively) suggesting that 
only ~43% of DN γδ and ~63% of DN αβ T cells were SGR+ 
(Figure 2C,D). These results indicate that SGR+ cells almost 
completely replenished the patient's immune system and per-
sisted over time with the exception of T cells, and particularly 

the DN T cells, where SGR- cells persist (Figure S6). It is un-
likely that the SGR- DN γδ T population represents cells that 
would have expanded in response to a viral infection before 
the SGR occurrence since the TCR gd repertoire does not 
highlight any clonal expansion (Figure S2). We propose that 
the overrepresentation of SGR- DN γδ T cells underlines a 
minor role of MYSM1 in the development and maintenance 
of this cell population. The SGR-mediated haematological re-
constitution in the MYSM1-deficient patient shares some fea-
tures with haematopoietic stem cell transplantation (HSCT) 
and autologous gene therapy. As the manipulation of HSCs 
and the homeostatic proliferation associated with HSCT and 
gene therapy can promote CHIP,7–9 we wondered whether 
the SGR-mediated hemato-immunological reconstitution in 
the patient might have favoured CHIP. Reassuringly, genetic 
analysis of 65 genes associated with CHIP (Table S2) did not 
detect any CHIP-associated variant nor CNV in patient's 
blood.

In conclusion, our study reports the full recovery of 
a functional haematopoietic system that persisted over a 

F I G U R E  1   Activity of the H656R MYSM1 variant and haematological parameters in the patient over time. (A) Schematic representation of the full-
length MYSM1 protein as well as the WT and the mutated forms of the C-terminal part of MYSM1 (noted C1-WT and C1-H656R, respectively) used to 
assess the deubiquitinase activity in vitro. (B) A 6% polyacrylamide gel stained with Coomassie blue showing fractions from a representative purification 
of GST-C1-WT and GST-C1-H656R used in in vitro deubiquitinase assay. Glut: Glutathione purification. (C) Fluorescence intensity measurements for 
C1-WT (green line), C1-H656R (red line), UCHL-1 used as positive control (blue line) and Ub-AMC alone used as background fluorescence control (black 
line). (D) Whole blood cell counts over time. Grey areas represent normal values obtained in age-matched healthy subjects. (E) Immunophenotyping of 
the B cell compartment in the patient 12 years post-somatic genetic rescue (SGR) and serology values post-vaccination and post-infection. Age-matched 
normal values are indicated in brackets.
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F I G U R E  2   Immunological phenotype of patient's blood 12 years post-somatic genetic rescue (SGR) and SGR detection by next-generation 
sequencing (NGS). (A) Representative illustration of uniform manifold approximation and projection applied to analyse immune cell subsets from whole 
blood samples obtained in one age-matched healthy control and the MYSM1-deficient patient 12 years post-SGR. Each cluster is visually represented 
by a distinct colour. The arrow highlights the T γδ cell population in patient. (B) Proportion of the immunological subsets obtained in blood from five 
age-matched healthy controls and the patient 12 years post-SGR. (C) Proportion of naive and memory B and T cell populations in the patient 12 years 
post-SGR and 5 age-matched healthy controls. (D) Graphic representation of the numbers of WT and MYSM1 c.1967A>G mutated reads obtained by 
NGS in the indicated cell populations. (E) Graphic representation of the estimated proportion of SGR+ cell subpopulations deduced from (D). PBMNCs, 
peripheral blood mononuclear cells. Statistical significance: *p < 0.05; **p < 0.01; ns, not significant.
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period of 12 years due to an SGR in the context of inher-
ited bone marrow failure syndrome, a phenomenon dubbed 
“natural gene therapy”. It is noteworthy that since the SGR 
occurred in the haematopoietic compartment, the non-
haematological manifestations of the disease are not affected 
by the SGR. However, whether the MYSM1 SGR occurred 
in a unique HSC or in a hemangioblast prior to its differen-
tiation into HSCs is unknown. It would have been interest-
ing to analyse the phylogenetic structure of haematopoietic 
clones to estimate the size of the SGR+ HSC pool at the origin 
of haematopoietic recovery.7 However, such an analysis re-
quires a bone marrow sample, which is not ethically justified 
given the good health of the patient. Finally, as the in vivo 
genome editing by mRNA/lipid Cas9 strategy in HSCs has 
recently been shown to be efficient in mice,10 our results 
predict that in vivo gene therapy of haematopoietic diseases 
could be efficient even with few edited cells if the correction 
confers a strong selective advantage, as observed in MYSM1 
deficiency. Hence, our study provides evidence that MYSM1 
deficiency may be an ideal condition to test the efficiency of 
in vivo gene therapy by mRNA/lipid transfer into the HSC 
compartment.
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