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Background: Livestock-related emissions have been associated with aggravations of respiratory symptoms in 
patients with chronic obstructive pulmonary disease (COPD), potentially by altering the respiratory resistome. 

Objectives: This study investigates the structure of the acquired oropharyngeal (OP) resistome of patients with 
COPD and controls, its interplay with the respiratory microbiome and associations with residential livestock 
exposure. 

Methods: In a matched case–control study in the rural Netherlands, we analysed OP swabs from 35 patients 
with COPD and 34 controls, none of whom had used antibiotics in the preceding 4 weeks. Resistome profiling 
was performed using ResCap, complemented by prior characterization of the microbiome via 16S rRNA-based se
quencing. Residential livestock farm exposure was defined using distance-based variables alongside modelled 
concentrations of livestock-emitted microbial pollutants. We compared resistome profiles between patients 
with COPD and controls, examining alpha and beta diversity as well as differential abundance. Additionally, we 
assessed the interplay between the resistome and microbiome using co-occurrence networks and Procrustes ana
lysis. Variations in resistome profiles were also analysed based on residential livestock exposures. 

Results: Patients with COPD exhibited higher resistome diversity than controls (Shannon diversity, P = 0.047), 
though resistome composition remained similar between groups (PERMANOVA, P = 0.19). Significant correlations 
were observed between the OP resistome and microbiome compositions, with distinct patterns in co-occurrence 
networks. Residential exposure to livestock farms was not associated with resistome alterations. 

Conclusions: Our findings reveal the COPD airway as a hospitable environment for antimicrobial resistance genes, 
irrespective of recent antimicrobial usage. Demonstrating the interplay between the resistome and microbiome, 
our study underscores the importance of a deeper understanding of the resistome in respiratory health.

Introduction
The impact of livestock farm emissions on the respiratory health 
of neighbouring residents is an important concern within public 
health. Previous studies have established significant associa
tions between exposure to these emissions and respiratory 
morbidity and mortality.1–8 Livestock farm emissions constitute 
a complex mixture of gases and particulate matter,9–11 com
prising microbiological components such as endotoxins and anti
microbial resistant (AMR) bacteria,12–16 thereby presenting a 
multifaceted challenge. Notably, it has been observed that pa
tients with chronic obstructive pulmonary disease (COPD) residing 
in close proximity to farms demonstrate increased risks of airway 

inflammation, cough and dyspnoea, compared with those residing 
further away.17,18

In a recent study, researchers discovered an association 
between residential exposure to livestock-related air pollution 
and increased microbial richness in the upper respiratory tract, 
highlighting the potential influence of the livestock environment 
on the microbiome.19 The composition of the airway microbiome 
plays a significant role in the onset and progression of lung 
diseases. Previous research consistently demonstrates that 
alterations in the airway microbiome are associated with the 
development and progression of COPD.20–22 These studies indi
cate a decline in microbial diversity as COPD progresses and dur
ing acute exacerbations.23–27 The microbiome and resistome 
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(the complete collection of acquired bacterial genes potentially 
responsible for acquired antimicrobial resistance) reciprocally 
interact.28,29 The microbiome provides a diverse ecosystem that 
facilitates the acquisition and preservation of antimicrobial resist
ance genes (ARGs) through gene transfer. Simultaneously, the re
sistome influences the microbiome by conferring advantages to 
microorganisms under selective pressures, influencing their abun
dance and composition based on their resistance potential.

Despite the growing interest in microbiome research, the in
vestigation of the relationship between the respiratory resistome 
and respiratory health remains limited. Although studies have 
demonstrated the transmission of AMR bacteria in occupational 
settings to farmworkers from farm dust,30–32 the impact of resi
dential exposure to livestock emissions on the respiratory resis
tome remains unexplored. Gaining insight into the resistome 
among both patients with COPD and control individuals allows 
for the identification of disease-specific resistome patterns and 
enhances our understanding of the impacts of livestock farm 
exposure. Investigating the interplay between the microbiome 
and resistome unravels intricate dynamics, potentially provid
ing valuable insights into interactions of ARGs within the air
ways. Given the escalating global health threat posed by 
AMR,33 and the potential of ARGs within the airway to lead to se
vere and difficult-to-treat infections, it is important to address 
this critical knowledge gap by shedding light on the structure 
of the respiratory tract resistome in health and disease and by 
investigating the dynamics between residential exposure and 
the resistome.33

This study characterized the acquired ARGs in the oropharynx 
of rural residents living in a livestock-dense region. We aimed to 
investigate associations between the oropharyngeal (OP) resis
tome composition and (i) COPD status, (ii) the OP microbiome 

composition and (iii) residential exposure to livestock-related mi
crobial emissions. In this case–control study, we collected OP sam
ples from 35 patients with COPD and 34 matched controls. To 
characterize the resistome, we employed resistome-enrichment 
(ResCap) metagenomic shotgun sequencing. We hypothesize 
that the OP resistome of patients with COPD is inherently different 
to that of the controls and that the microbiome and resistome mu
tually shape one another. Furthermore, we anticipate that residen
tial exposure to livestock-related emissions will induce alterations 
in the load and structure of the OP resistome, potentially contrib
uting to the aggravation of respiratory symptoms in patients with 
COPD.

Methods
Study design and population
The study population comprises rural residents in the Netherlands, both 
with and without a diagnosis of COPD. This study is nested within the 
VGO programme (Dutch acronym for ‘livestock farming and the health 
of neighbouring residents’) initiated in 2012 to investigate the health ef
fects associated with residential proximity to livestock farms. The initial 
selection procedure for VGO participants was previously outlined.18,34

Subsequently, participants were selected for a COPD case–control micro
biome study,19 from which we selected participants for this resistome 
study. The inclusion criteria stipulated that patients with COPD must 
(i) live in the VGO area in 2015–16, (ii) have a COPD diagnosis based on 
spirometry results and a categorization into Global Initiative for Chronic 
Obstructive Lung Disease (GOLD) Stages 1–3 and (iii) be aged ≥ 40 years. 
The exclusion criteria included: (i) any participants with missing data, 
(ii) farm workers, (iii) residing on a farm, (iv) current smokers and (v) recent 
use (within the past 4 weeks) of oral antibiotics (Figure 1). Control partici
pants were carefully matched with the patients with COPD based on age 
category, sex, smoking status (never, ex-smoker) and farm childhood.

Figure 1. A flow chart of the participant selection procedure from the VGO study, illustrating the procedure for the selection of matched patients with 
COPD and controls. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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Sample collection
OP samples from 35 patients with COPD and 34 control participants were 
used for this study, collected during home visits in the period February 
2015 to July 2016 in addition to three field blanks. Previous research af
firms the resemblance between bacterial communities in the oropharynx 
and lungs, establishing OP samples as a valuable proxy for our research.35

Copan eSwabs were used for sampling, and these were stored in 1 mL li
quid Amies Medium (483CE, Copan Diagnostics Inc., CA, USA). During 
transportation, these samples were stored on ice until transfer to the 
−80°C freezer on the same day. Blanks were unused swabs treated on- 
site using the same procedure as participant samples. The DNA extracts 
were identical to those described in the microbiome analysis protocol 
outlined by van Kersen et al..19

Sequencing and bioinformatics
Resistome characterization of the OP samples was performed using the 
ResCap method, a shotgun metagenomic enrichment approach tailored 
for resistome analyses.36 The ResCap procedure consists of four main 
steps: (i) total microbial DNA isolation,19 (ii) whole-metagenome shotgun 
library construction (Roche SeqCap EZ workflow), (iii) hybridization and 
enrichment and (iv) enriched library deep sequencing (Illumina), as previ
ously described.36 After quality control and trimming of the raw sequences, 
these were mapped against the ResFinder database of acquired ARGs.37

Mapping data were subsequently normalized for ARG length and microbial 
load using 16S rRNA qPCR. For additional information on sequencing details 
and bioinformatics, refer to Text S1.

Residential livestock exposure assessment
Residential exposure for each participant was assessed using their geo
coded home address. To investigate potential factors influencing the struc
ture of the OP resistome, we considered both proxies of livestock exposure 
and predicted concentrations of livestock-related emissions derived from 
previously established models.38,39 Exposure proxies were computed using 
Geographic Information System (GIS) software (ArcGIS; version 10.2.2, 
Esri)40 using geolocated information on livestock farms alongside geo
coded residential addresses, as previously described.13 Proxies included 
general, species-specific and farm type-specific variables. Land-use re
gression, dispersion and random forest models were applied to estimate 
residential exposure to generic and more specific livestock-related 
emissions. These emissions included PM10, endotoxin, two livestock 
commensals (Escherichia coli and Staphylococcus spp.) and two ARGs 
(tetW and mecA); all frequently encountered on livestock farms and in 
their surrounding areas.16,41–43 All models were previously developed 
and validated for our specific geographic region, and they were em
ployed in our study to predict the annual average residential exposure 
to these emissions.38,39

Data analysis
All statistical analyses were conducted using R version 4.2.2 (2022-10-31).44

The OP resistome was characterized using established methods, including 
evaluations of within-sample diversity (alpha diversity), between-sample 
compositional differences (beta diversity) and in-depth investigations of dif
ferences in ARG abundances [differential abundance (DA) analysis]. Firstly, 
we compared these resistome characteristics between patients with COPD 
and controls. Secondly, we examined the relationship between the micro
biome and resistome using Procrustes analysis and co-occurrence networks. 
Finally, we examined the potential association between the OP resistome 
and residential livestock exposure. For a comprehensive explanation of the 
applied statistical methods, refer to Text S2.

Results
Study population
Characteristics of the study population, stratified by COPD status, are 
presented in Table 1. The majority of participants were male (59%), 
with a mean age of 61 years. Among patients with COPD, all were 
categorized into GOLD Stage 1 or 2 (51% and 49%, respectively), in
dicating mild and moderate COPD according to the GOLD criteria. For 
detailed livestock exposure proxy values for each participant, refer to 
Table S2 (available as Supplementary data at JAC Online).

Oropharyngeal resistome of patients with COPD 
and controls
The COPD group exhibited significantly higher Shannon diver
sity compared with the control group (two-sample t test; 

Table 1. Baseline characteristics of patients with COPD and control 
participants included in the study

Patients with 
COPD Controls P value

(n = 35) (n = 34)

Gender
Male 21 (60.0%) 20 (58.8%) 1
Female 14 (40.0%) 14 (41.2%)

Age
Mean (SD) 61.5 (7.36) 60.2 (7.82) 0.473
Median (min, max) 62.6 (43.9, 71.6) 62.7 (41.8, 70.6)

BMI
Mean (SD) 26.7 (4.15) 27.5 (4.40) 0.473
Median (min, max) 25.9 (20.1, 34.1) 26.3 (21.4, 39.2)

COPD GOLD grade
0 0 (0%) 34 (100%) <0.001
1 18 (51.4%) 0 (0%)
2 17 (48.6%) 0 (0%)

Childhood on farm
No 22 (62.9%) 22 (64.7%) 1
Yes 13 (37.1%) 12 (35.3%)

Smoking status
Former smoker 27 (77.1%) 26 (76.5%) 1
Never 8 (22.9%) 8 (23.5%)

Pack-years of 
cigarettes smoked
Mean (SD) 16.8 (15.1) 13.8 (22.0) 0.506
Median (min, max) 16.7 (0, 54.6) 7.25 (0, 117)

Education level
No 22 (62.9%) 22 (64.7%) 1
Yes 13 (37.1%) 12 (35.3%)

Number of farms 
within 3 km radius
Mean (SD) 82.7 (30.1) 90.0 (23.1) 0.265
Median (min, max) 78.0 (13.0, 137) 89.5 (20.0, 129)

For continuous variables, data are presented as mean (SD) and median (min, 
max), and P values were derived from t tests between COPD and control 
groups. For categorical variables, data are presented as number (%) per cat
egory and P values were derived from the χ2 test of independence.
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P value = 0.047) (Figure 2a). Observed richness and Simpson’s 
evenness did not reveal significant differences between patients 
with COPD and controls (Figure 2b and c).

Across the entire study population, we identified 85 distinct 
ARGs (90% identity clusters). Figure 3(a) displays the relative 
abundances of ARGs, grouped by their AMR class, while Figure 3(b)
presents the relative abundances of the top 10 ARGs, which collect
ively explain 99.2% of the data from the control population and 
96.4% from the COPD population. Within the top 10 ARGs across 
all samples, 50% conferred tetracycline resistance, 40% macrolide 
resistance and 10% beta-lactam resistance. The predominant ARG 
observed in all samples was mef(A)_clust, associated with macrolide 
resistance. Relative abundance patterns of the eight AMR classes did 
not appear to differ considerably between COPD and control groups.

In each group, we identified eight core ARGs (see Text S2 
for definition), conferring resistance potential to tetracyclines, 
macrolides and beta-lactams. Our analysis revealed an identical 
core resistome shared between patients with COPD and controls 
(Figure S1). Notably, the two ARGs that were found in low quan
tities in the blank samples exhibited no overlap with the resistome 
of patients with COPD and controls. A heatmap showing the abun
dance of ARGs across the groups is shown in Figure S2. No distinct 

clustering patterns were observed between patients with COPD 
and controls, as depicted in the principal coordinates analyses 
(PCoAs) (PERMANOVA; P value = 0.19, R2 = 0.0201) (Figure 2d). 
Similarly, DA analysis using DESeq and ALDEx did not reveal any 
statistically significant differentially abundant ARGs associated 
with COPD status, as detailed in Tables S3 and S4.

Association between the oropharyngeal resistome 
and microbiome
Procrustes analysis demonstrated a moderate yet significant 
correlation between PCoA ordinations of the resistome and mi
crobiome from the same individuals (correlation = 0.46, P value  
< 0.001), which was absent when microbiome participant IDs 
were randomized (correlation = 0.16, P value = 0.32). The paired 
Procrustes superimposition plot is depicted in Figure 2(e).

Co-occurrence correlation analysis between bacteria and 
ARGs uncovered associations among various ARGs and bacter
ial genera, as well as interactions among the ARGs themselves 
(Table S5a and b). Seven bacterial genera exhibited positive asso
ciations with one or more specific ARGs. Figure 4 illustrates a 
co-occurrence network depicting these correlations, with nodes 

(a) (b) (c)

(d) (e)

Figure 2. Comparison of the OP resistomes of patients with COPD and controls. Alpha diversity indices (a) Shannon, (b) Simpson’s evenness and 
(c) observed richness for COPD and control OP resistome samples. P values were derived from t tests and Wilcoxon’s rank sum tests. (d) PCoA plot based 
on the Bray–Curtis dissimilarity matrix of the OP resistome of patients with COPD and controls. Ellipses show the 95% CI for the centroid of each group. 
Points represent the resistance gene communities of one participant. The first two principal coordinates of the PCoA (Axis 1 and Axis 2) explained 28.5% 
and 17.2% of the variance, respectively. (e) Procrustes superimposition plot showing the association between microbiome and resistome PCoAs. The 
protest function was used to calculate the correlation coefficient and P value for paired participant samples using 9999 permutations. This figure ap
pears in colour in the online version of JAC and in black and white in the print version of JAC.
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representing bacteria and ARGs and edges representing positive 
and negative correlations. Notably, cat_2 ARG (conferring phenicol 
resistance) emerged as central in the network, exhibiting the high
est degree centrality (number of connections). Co-occurrence 
patterns were observed within the same AMR class and across 
different AMR classes, without significant negative correlations 
among ARGs. Bacteria–ARG correlations revealed a smaller cluster 
involving Streptobacillus, Alysiella and ARGs cat_2 and blaOXA-22 
(phenicol and beta-lactam resistance genes). Gemella exhibited 
a significant negative correlation with tet(37) (a tetracycline 
ARG), representing the sole negative correlation identified.

Association between the oropharyngeal resistome 
and livestock exposure
Livestock exposure analysis revealed no significant differences 
in resistome composition and diversity across individuals with dif
fering levels of exposure, regardless of the specific exposure vari
able used. Detailed results are given in Tables S6 (PERMANOVA), 
S7 and S8 (analysis of alpha diversity indices). DA analyses, ex
ploring potential relationships between residential livestock ex
posure variables and ARG expression, also did not reveal any 
significant differences (both DESeq and ALDEx methods pro
duced Benjamini–Hochberg (BH)-corrected P values > 0.05).

Discussion
The primary aim of our study was to advance our understanding 
of the respiratory resistome in rural residents, both with and with
out COPD. Alongside this, we aimed to conduct a comparative 
analysis of the resistome and microbiome compositions among 
the study participants. Additionally, we sought to examine the 
potential associations between the respiratory resistome and 
residential exposure to microbial emissions from livestock farms.

The oropharyngeal resistome of patients with COPD 
versus controls
Consistent with our hypothesis, individuals with COPD demon
strated higher resistome alpha diversity compared with controls, 
even in the absence of antibiotic usage within the 4 weeks pre
ceding sampling. Compelling evidence suggests that recurrent 
antibiotic use in individuals with COPD contributes significantly 
to the increased occurrence of phenotypic antibiotic resistance.45

On average, individuals with COPD tend to use antimicrobial 
agents more frequently, exerting a selection pressure for ARG ex
pression. Additionally, chronic inflammation within the COPD air
way can lead to the production of excess exudate which creates 
conditions that are more favourable for the survival and growth 
of microorganisms, including AMR bacteria.46 Consequently, indivi
duals with altered immune function, such as those with COPD, 
may exhibit higher levels of AMR bacteria, even without increased 
antimicrobial usage, thus possibly leading to a higher diversity 
of ARGs. Despite this elevated resistome diversity in patients 
with COPD compared with controls, no differences in compos
ition or overall resistome load [Fragments Per Kilobase of tran
script per Million mapped reads (FPKM)] were observed 
between the two groups.

Associations between the oropharyngeal resistome 
and microbiome
Having both resistome and microbiome data for our study 
participants, we had the unique opportunity to investigate their 
relationship. A strong correlation was observed between the 
compositional differences in the resistome and microbiome, sug
gesting a degree of interdependency. The resistome composition 
is likely influenced by the presence of specific bacterial species 
within the microbiome that can be reservoirs for ARGs. 
Additionally, host-specific factors, such as genetics, immune 

(a) (b)

Figure 3. Relative resistome abundances across patients with COPD and controls where (a) shows the relative abundances ARGs grouped by their AMR 
class and (b) shows the relative abundance of the top 10 ARGs (90% gene identity) within the total resistome. ARG counts have been (relatively) rar
efied, gene length-corrected and 16S qPCR-corrected prior to scaling to 100%. This figure appears in colour in the online version of JAC and in black and 
white in the print version of JAC.
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responses and exposure history, may contribute to the observed 
correlations. Despite significant overlap between the two compo
sitions shown in the Procrustes analysis, resistome alpha diversity 
did not correlate with microbial alpha diversity.

Co-occurrence network analysis offered more nuanced in
sights into the complex relationships among ARGs and bacteria 
and between ARGs themselves. The distinct clusters of ARGs, 
which were not directly associated with a specific bacterium, 
suggest shared genetic elements or co-localization on mobile 
genetic elements. Positive associations between specific ARGs 
and bacterial genera imply multi-drug resistance or functional re
lationships, potentially identifying these bacteria as ARG reser
voirs. Alternatively, associations may indicate shared ecological 
niches. The negative correlation between Gemella and tet(37) 
suggests that the presence of Gemella may exert an influence 
on tet(37), or the possibility that another bacterium carrying 
tet(37) might be more prevalent or involved in competitive inter
actions with Gemella, thus unveiling intricate and dynamic inter
actions within this airway microbial ecosystem.

Livestock exposure and its impact on the oropharyngeal 
resistome
Examining the relationship with livestock exposure, our analyses 
did not reveal any discernible shifts in resistome composition, 
relative abundance of ARGs, or alpha diversity associated with 
livestock exposure. The persistent presence of ARGs in the air
ways suggests a consistent underlying resistome across all study 
participants. It is crucial to acknowledge that all participants in 
our study had some degree of livestock exposure, given the over
all high livestock density in the study region, thereby limiting the 
contrast between exposure levels, and possibly hindering our 
ability to discern potential differences.

Study strengths and limitations
Strengths of our study include the use of novel ARG-enriched 
shotgun metagenomics to characterize the OP resistome.36,47

This approach offers a comprehensive view of the resistome 
along with their relative abundances which surpasses the 

Figure 4. Bacteria–ARG and ARG–ARG co-occurrence network, based on correlation analysis. Nodes representing bacteria are named on their genus 
level, and nodes representing ARGs are named by their 90% cluster identity name. Nodes representing bacteria are coloured grey, and the colour of 
nodes representing ARGs shows their AMR class. Node size is proportional to the nodal degree (number of connections in the network). Edges show 
strong (Spearman’s |ρ| ≥ 0.6) and significant [P value (BH-adjusted) < 0.01] pairwise correlations. Edges coloured in green represent the positive cor
relations, while edges in red represent the negative correlations. This figure appears in colour in the online version of JAC and in black and white in 
the print version of JAC.
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limitations of conventional methods such as antibiotic suscepti
bility testing or qPCR, as previously demonstrated.48 Secondly, 
we assessed exposure to livestock-related emissions through 
a multifaceted approach, incorporating distance-based vari
ables and predicted microbial exposures based on models de
veloped and validated for our study region.39 Furthermore, the 
OP microbiota composition of the same study population was 
previously characterized utilizing 16S rRNA-based sequencing.19

This multi-omics approach enabled us to decipher potential associa
tions between paired microbiome and resistome samples, revealing 
co-occurrence patterns between specific ARGs and bacteria.

Our study has certain limitations, primarily stemming from its 
exploratory nature. Notably, the generalizability of our findings to 
broader populations may be constrained by the homogeneity of 
the participants as they are all selected from the southern part of 
the Netherlands with relatively high livestock exposure levels. 
Additionally, the modest sample size likely compromised our 
ability to detect significant differences or associations where 
they may be present. It is also important to note that our study 
assessed ARGs, offering insights into the antimicrobial potential 
of the identified genes rather than their actual phenotypic resist
ance. While ARGs often show a strong correlation with resistance 
phenotypes, it is crucial to acknowledge the potential for discrep
ancies.49 Furthermore, our study lacks information on home or 
work-related exposures other than residential exposure to live
stock farming, which could significantly influence the resistome. 
Additionally, our research exclusively involved participants with 
mild to moderate COPD, potentially limiting the case–control 
contrast in our comparisons. Respiratory diseases like COPD are 
typically more closely associated with microbiota in the lower re
spiratory tract. However, for practical reasons, we utilized OP 
samples as a proxy, as studies have demonstrated that the 
microbiota of these samples bears a closer resemblance to 
the lung microbiota than their nasopharyngeal counterparts.50

However, it is essential to recognize that OP samples, collected 
from the upper respiratory tract, may not perfectly mirror the 
microbiota in the lower respiratory tract.

Study implications
Our findings revealed the pervasive presence of ARGs in both 
individuals with and without COPD living in a livestock-dense 
region, raising attention to potential clinical implications. 
Future research is needed to assess the risks associated with 
the presence of ARGs in the airways, particularly in the context 
of respiratory infections and treatment options. Livestock exposure 
did not emerge as a modifier of the OP resistome composition, 
consistent with microbiome analysis results from a previous 
study where no compositional changes were observed.19

To our knowledge, only one prior study has investigated the 
upper airway resistome in relation to livestock exposure. 
Conducted in an occupational setting, the study compared OP 
resistomes of 23 farmworkers with those of 12 nearby villagers. 
The findings revealed heightened abundance of ARGs asso
ciated with farm exposure, influenced by specific farm-related 
tasks and their duration.51 Another study, specifically focussing 
on nasal methicillin-resistant Staphylococcus aureus carriage, 
revealed an increased prevalence associated with residential 
proximity to livestock farms.52

Comprehensively understanding the impact of different degrees 
and types of livestock exposure on the resistome and its clinical im
plications requires further investigation. We recommend for future 
research that studies encompass diverse geographic and demo
graphic settings to enhance generalizability, including a broader 
range of exposure levels across participants. The widespread detec
tion of airborne ARGs raises concerns about their contribution to the 
dissemination of AMR, warranting additional research to evaluate 
associated risks. While we examined livestock exposure and COPD 
status as contributing factors to AMR, comprehensive investigations 
into various host-specific factors are essential for a better under
standing of their influence.

In conclusion, this study provides novel insights into the 
structure of the respiratory resistome and its interplay with 
the microbiome, residential exposure to livestock farm emis
sions and respiratory health. Developments in cutting-edge 
technologies such as metagenomic shotgun sequencing36,47

have enabled the elucidation of the structure of the resistome 
in OP samples of our rural study population and the investiga
tion of its determinants. These findings make valuable contribu
tions to the emerging field of respiratory microbiome and 
resistome research, highlighting the importance of compre
hending the interplay between the resistome and microbiome 
in disease dynamics. The identified associations between ex
posure and respiratory symptoms in individuals with COPD em
phasize the need for comprehensive studies that integrate 
environmental, microbiological and clinical perspectives to un
ravel these complex interactions. This ‘One Health’ approach 
aligns with global efforts to both mitigate AMR and enhance 
our understanding of respiratory diseases by recognizing the 
interconnectedness of human health, animal health and the 
environment.
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