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Nowadays, traffic congestion is a significant issue globally. The vehicle quantity has grown 
dramatically, while road and transportation infrastructure capacities have yet to expand proportionally 
to handle the additional traffic effectively. Road congestion and traffic-related pollution have 
increased, which is detrimental to society and public health. This paper proposes a novel reinforcement 
learning (RL)-based method to reduce traffic congestion. We have developed a sophisticated Deep 
Q-Network (DQN) and integrated it smoothly into our system. In this study, Our implemented DQL 
model reduced queue lengths by 49% and increased incentives for each lane by 9%. The results 
emphasize the effectiveness of our method in setting strong traffic reduction standards. This study 
shows that RL has excellent potential to improve both transport efficiency and sustainability in 
metropolitan areas. Moreover, utilizing RL can significantly improve the standards for reducing traffic 
and easing urban traffic congestion.
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Abbreviations
DQL	� Deep Q learning
RL	� Reinforcement learning
ITS	� Intelligent transportation systems
ICT	� Information communication technology
IOT	� Internet of things
TMS	� Traffic management system
TSC	� Traffic signal control
MARL	� Multi-agent reinforcement learning
SARL	� Safety aware reinforcement learning
TC	� Traffic control
DP	� Dynamic programming
ID	� Ddentification
NSA	� North south arms
NSLA	� North south left arms
EWA	� East west arms
EWLA	� East-west left arms
DQN	� Deep Q Network
TSP	� Transit signal priority
ATSC	� Adaptive traffic signal control

Urban areas1,2 are more and more facing the problem of traffic congestion. In the transportation sector, this 
issue dramatically impacts travel time, fuel consumption, an operating costs. Moreover, congestion significantly 
contributes to pollution, resulting in a severe environmental impact3,4. Several studies have been conducted to 
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develop efficient traffic management systems to address this pressing issue. Recent initiatives have concentrated 
explicitly on Intelligent Transportation Systems (ITS). These efforts aim to improve the safety, effectiveness, 
and environmental sustainability of traffic control systems. Researchers aim to develop creative solutions 
within the ITS field to reduce congestion and enhance urban sustainability5. It is essential, to address critical 
aspects6 such as lowering delay and queue length to optimize traffic flow at an intersection. Traffic congestion 
can be reduced by improving traffic management that is closely linked to the intersection routes’ layout and 
structure. Implementing strategic initiatives to optimize and improve traffic flow on these routes is crucial for 
attaining a smoother and more efficient traffic experience7,8. By efficiently reducing congestion in several routes 
at an intersection, They automatically decrease the overall traffic flow. By strategically managing and reducing 
congestion on particular routes9, we have created a smoother and more synchronized traffic movement. This 
method improves the intersection’s efficiency and helps creating a smoother, less crowded transit network.

Motivation and contribution of this research
The motivation behind this research stems from the pressing global issue of traffic congestion, which has 
become a significant challenge due to the rapid increase in vehicle numbers without corresponding expansion 
in transportation infrastructure. This imbalance has led to numerous adverse consequences, including increased 
road congestion and pollution, which have far-reaching impacts on society and public health. To address this 
critical problem, we aim to leverage advanced technologies, specifically RL, to devise innovative solutions for 
reducing traffic congestion. RL, particularly DQN, presents a promising approach that harnesses computational 
intelligence to optimize traffic flow and alleviate congestion effectively. By developing and implementing a 
sophisticated DQL model within a transportation system, the researchers seek to demonstrate the transformative 
potential of RL in enhancing transport efficiency and sustainability in urban areas. The study’s motivation is 
grounded in the urgent need to adopt intelligent, data-driven approaches to tackle traffic congestion, promoting 
safer, more efficient, and environmentally sustainable urban mobility. The expected outcomes of this research 
include setting new traffic reduction standards and advancing urban transportation systems by applying cutting-
edge RL methodologies. Ultimately, this work aims to contribute to developing more intelligent, more adaptive 
urban transportation networks capable of addressing the challenges posed by growing vehicle populations and 
limited infrastructure capacities.

This study presents the development of an advanced traffic reduction system that utilizes intelligent 
technologies to minimize delays. We proposed a RL framework for the system, a type of machine learning, to 
efficiently optimize traffic flow and reduce congestion. Our intelligent traffic management technology combines 
sophisticated algorithms with up-to-date data to minimize delays and improve overall efficiency. This novel 
approach signifies substantial progress in traffic control systems, possibly resolving current urban mobility 
difficulties. The contribution of this research is as follows:

•	 Focusing on specific benchmark methods to ensure successful traffic reduction implementation for enhanc-
ing a traffic-free smart city.

•	 Applying advanced, customized layer based method for making efficient traffic reduction.
•	 Developing an advanced DQN to maintain the traffic reduction system in an intersection.
•	 Performing RL technique of state, action, and rewards successfully in the traffic reduction domain.
•	 Focusing on minimizing queue length and increasing rewards at each length.

Organization of the paper
The research is divided into multiple areas, each with a specific function. Section “Related work” summarizes 
relevant literature on the topic and serves as the basis for the investigation. Section “Research methodology” 
details the research design and methodology employed in the study. The study’s findings are detailed in 
Section “Result analysis”, while. Section “Discussion” contains a thorough topic analysis and a critical assessment 
of the results and their consequences. Section “Conclusion and future work” concludes our work and provides 
suggestions for future research directions.

Related work
Machine learning and deep learning are important parts of many fields these days, like healthcare, banking 
systems, and business management10–27. Our current study focuses on machine learning applications for 
improving traffic signal management in urban areas. The main goal is to create a functional congestion system 
and reduce waiting times and line lengths. Due to this endeavor, many researchers have used various methods 
to reduce traffic-congestion. Interestingly, the scene displays many innovative methods currently being used to 
control traffic signals in cities.

Various RL schemes have been combined with centrally performed genetic algorithms for parameter 
tweaking to produce “intelligent” cooperation schemes among RL-based traffic control agents, as demonstrated 
in28. A type of RL in conjunction with fuzzy neural networks is used to construct the hierarchical real-time 
traffic control architecture as shown in29. The authors30 examined the advantages of multi-agent model-based RL 
for traffic control from a vehicle-centric perspective. A similar method is provided in31. These two approaches 
make some significant assumptions about the required information and may not be realistically obtained, 
particularly when traffic patterns change and drivers’ personalities are considered. Examples of this information 
include probability estimates of waiting times for each vehicle’s destination and their location at each traffic light 
controller, including whether the light is green or red.

The multi-agent reinforcement learning (MARL) technique is an alternative signal control method involving 
numerous signalized intersections. Each junction is under the control of a different RL agent, similar to safety-
aware reinforcement learning (SARL). Large networks could benefit from the adoption of MARL techniques. 
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Three algorithms, TC1, TC2, and TC3, are presented by the authors of30, who proposed a method for adaptive 
signal regulation based on RL. The results demonstrate that RL performed better on an essential 3:2 grid when 
using fixed time controllers. Additionally, the authors use co-learning to teach signal controllers and driving 
agents value functions. Learning to compute policies can also be used to find the network’s optimal paths. This 
was the most fundamental task, with numerous restrictions, including fixed time controllers and state space 
increments. By implementing essential information sharing between RL agents,32 expands on this work. The 
authors presented three new traffic controllers-TC-SBC, TC-GAC, and TCSBC+GAC. To determine the traffic 
conditions at nearby intersections, TC-SBC adds a small quantity of congestion. TC-GAC selects the best course 
of action based on this information. Tested algorithms on essential grid networks fared well in varying traffic 
scenarios. The drawbacks of TC-SBC include its difficulty in computing growth in state space size and the fact 
that TC-GAC is not perpetually aware of traffic patterns or congestion. In33, two new algorithms, TC-SBA and 
TCSBAC, are introduced to improve this work further. The vast state space again causes it to suffer from adding 
extra bits to the state and mishaps-four times as much as the initial TC1 is exceeded in the new state space. 
In34, MARL is also implemented on big networks with almost 50 junctions. Based on Q-learning, the technique 
considers the average queue length at each link on every junction for state representations. Action selection is 
based on a green time ratio and fixed time signal designs.

Partial detection is currently being used in a few research projects. One initiative that focuses on low-
penetration rates of automobiles equipped with dedicated short-range communications (DSRC) is called 
COLOMBO, for instance35,36. The system feeds data to a traffic control system using information obtained 
from vehicle-to-everything (V2X) technology. Under low to medium car flow, COLOMBO will only achieve 
optimal performance if the optimal strategy under low-to-medium car flow must react by detected car arrivals. 
This is because COLOMBO cannot directly react to real-time traffic flow, as detected and undetected vehicles 
perform similarly. DSRC actuated traffic lights are another relatively new method they have used to control 
traffic utilizing DSRC radio. In July 2018, a public demonstration of the system’s designed prototype took place 
in Riyadh, Saudi Arabia37–39. On the other hand, because DSRC actuated traffic lights depend on every vehicle’s 
arrival, they function best in low- to medium-car flow rates and poorly in high-car flow rates.

The authors address the safety and efficiency concerns of the stage-based signal control strategy40 in their 
group-based optimization model for mixed traffic flows with uneven volumes. A unique genetic algorithm-
based method for optimizing transit priority in situations involving both private and transit traffic is proposed 
in41. A simulation-based generic algorithm with a multi-objective optimization model that considers emissions 
and delays is used42. Simulation-based techniques are also frequently used for the TSC problem. The authors of43 
have put out a strategy that uses local communication between the sensors and the traffic lights to manage them 
in a way that responds to traffic in intricate real-world networks. Referencing44, an analysis of the CRONOS 
algorithm’s behavior revealed that it reduces overall delay compared to local and centralized control strategies. 
Because dynamic programming (DP) is very adjustable, can be employed under a wide range of traffic conditions, 
and can leverage a wide range of performance indicators, it has been utilized by many researchers to solve 
the TSC problem. By approximating the value function, the authors of45 employed an approximate dynamic 
programming-based method that significantly decreased vehicle delays while reducing the processing resources 
needed. RHODES breaks down and restructures the TSC problem into hierarchical sub-problems, as shown 
in46. The study also demonstrated that RHODES works better than semi-actuated controllers in terms of delay.

We have recognized significant advancements in the field of traffic signal control involving the utilization 
of methodologies and algorithms. Multiple academics, such as Tan et al.47, Wan et al.48, Gender et al.49, and 
Gao et al.50, have studied rewards and state functions, using neural schema to improve traffic light control. 
They are known for their groundbreaking efforts to improve efficiency using new methods. Similarly, academics 
like Mousavi et al.51, Liang52, and Van et al.53 have focused on TSC. They focus on improving the TSC system 
by reducing delays and queue lengths. Their findings demonstrate significant excellence. After a thorough 
comparison with current methods, our system proves to be notably more efficient. This comparison emphasizes 
the development in traffic reduction and showcases the historical importance of certain specific techniques. 
However, our system has outperformed existing research in terms of outcomes. Additionally, our system is highly 
dependable and has obtained the most efficient results. Table 1 summarizes a neural network-based comparison 
of different authors, highlighting their main contributions, outcomes, and future potential. This table is a helpful 
resource for exploring studies related to traffic signal management.

Another innovative domain of traffic reduction is the utilization of adaptive traffic signal control (ATSC), a 
method proven to be highly effective in the field of traffic management. This methodology focuses on Transit 
Signal Priority (TSP), which involves modifying traffic signal cycles to reduce the time transit vehicles wait at 
red lights. Studies in this field primarily focus on implementing TSP-based ATSC to evaluate and reduce delays 
and queues in traffic flow. Table  2 provides a detailed analysis of how ATSC strategies are implemented for 
reducing traffic. This comparison highlights the varied contributions of several authors, demonstrating their 
unique techniques, significant discoveries, and influence on diminishing waits and queues. Highlighting Transit 
Signal Priority as a fundamental component emphasizes the importance of this flexible method in improving the 
effectiveness of traffic signal management systems.

The main obstacle is the ongoing incapacity to alleviate traffic congestion efficiently. Furthermore, the 
current methods have yet to be sufficient to produce the intended results. To tackle this complex problem, we 
have developed a new approach that uses RL-more precisely, the DQL algorithm. This method solves the long-
standing problem and receives a great deal of historical attention, regularly piquing academics’ curiosity in this 
emerging topic.
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Research methodology
We have devised a method to address traffic congestion by employing DQN. In this section, we have provided 
the implementation of the DQL model for executing in traffic reduction.

Dataset analysis and discussion
Our approach used two XML datasets66, both containing time series data. The first dataset contains environmental 
data, including vehicle ID, route, depart Lane, and depart Speed. This dataset is crucial for creating an intersecting 
environment consisting of 205 edges representing unique environment points used to train our agent. The 
second dataset focuses on route information and includes attributes such as edge ID, lane ID, index, length, 
shape, and function. These criteria are crucial for determining the paths within a junction. By effectively joining 
these two datasets, we could train our agent successfully. The model benefits from integrating environmental and 
route data, enhancing knowledge of system dynamics.

References DRL method
Number of 
intersections Compared against Control strategy Improvements

Lin et al.62 ResNetbasedA2C 9 ctuatedcontroller Cyclic fixed TSP switch 16% lower Waiting time

Genders and 
Razavi49 DDQN + ER 1 STSCA Acyclic TSPs with intermediate TSPs 82% lower Overall Delay

Chu et al.58 Stabilised IA2C 30 IA2C,IQL-LR,IQL-DNN Acyclic TSPs with fixed duration 63.7% lower Average Delay

Li et al.54 DeepSAE + RL 1 Q-learning algorithm Two TSPs with dynamic duration 14% lower Overall Delay

Yang et al.63 Regional A3C + 
PER 2 42 Rainbow DQL, Hierarchical MARL, 

Decentralized multi-agents
Acyclic TSP selection and TSP duration 
computation 8.78% lower Average Delay

Casas64 DDPG 43 Q-learning algorithm Cyclic TSPs with computed duration No data

Gao et al.59 DDQN + ER 1 LQF, fixed time controller Cyclic TSPs with fixed duration 47% lower Overall Delay

Tan et al.65 Hierarchical regional 
A2C 24 Regional DRL Acyclic TSPs with fixed duration 44.8% lower Waiting time

Wang et al.60 3DQN + PER 1 Actuated and fixed time controller Acyclic TSPs with fixed duration 10.1% lower Average Delay

Table 2.  Analyse and compare strategies used by ATSC to reduce traffic.

 

References Key contribution  Result/findings Future scope

Tan et al.47 Integrate a new reward function
Decrease queue length by up to 40% when compared to the 
baseline, which consists of deterministic and completely 
dynamic TSCs.

To expand the suggested schema for use in various 
intersections.

Li et al.54
Explored the application of the Single 
Architecture Ensemble (SAE) neural 
network architecture

Decreased average delay by up to 14% as compared to the 
initial measurement. –

Wan et al.48 Explored the application of a dynamic 
reward factor

Decreased average delay by up to 20% compared to the 
initial measurement.

To expand the suggested schema for application in various 
intersections, alternative DRL approaches including 
actor-critic55, deep deterministic policy gradient56, and 
proximal policy optimization can be employed57.

Chu et al.58 Explored the application of the LSTM 
neural network design.

Decreased average latency by 10% and queue length by 
17% compared to the baseline.

To expand the suggested schema in order to enhance 
communication between multiple crossings.

Gender et 
al.49

Explored the utilization of extensive state 
space

Decreased average queue length by up to 30% compared to 
the initial measurement.

Extend the proposed schema to regulate red and yellow 
TSC.

Gong et 
al.50

Integrate MARL with the 3DQN 
architecture.

Decrease average queue length by up to 46% compared to 
the baseline.

To expand the suggested plan in order to guarantee equity 
among traffic streams.

Gao et al.59 Explored the utilization of an extensive 
state space

Decreased average delay by up to 29% in comparison to the 
initial measurement.

To expand the suggested schema for use in various 
intersections.

Wang et 
al.60

Examine the utilization of high-resolution 
event-based data

Decrease average latency by a maximum of 21% and 
queue length by up to 30% as compared to the initial 
measurement.

To expand the suggested schema to incorporate traffic 
disruptions such as detector noise, traffic accidents, and 
adverse weather conditions.

Mousavi et 
al.51

Contrast the value-based and PG-based 
approaches with a baseline model that 
utilizes a completely dynamic TSC based 
on a neural network with one hidden layer.

The PG-based solution decreases the average delay by a 
maximum of 43% and reduces the queue length by 40%.

To expand the suggested schema for use in various 
intersections.

Liang et 
al.52

implement a prioritized experience replay 
method

Decrease average waiting time by up to 20% compared to 
the initial measurement. –

Van et al.53 Implement the max-plus coordination and 
transfer planning method.

Decrease average delay by up to 20% in comparison to the 
MARL.

To consider adopting various DRL methodologies due to 
the utilization of the conventional DQN methodology in 
the proposed method. Which has proven to be unstable

Wei et al.61 Studied the application of actual traffic 
datasets

Decreased average delay by a maximum of 19% and queue 
length by a maximum of 38% compared to the initial 
measurement.

To expand the suggested schema to regulate the yellow 
phase of TSC

Table 1.  Comparison of conventional state of art methods for traffic system.
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After the training, our model produced two extra datasets named “plot_queue_data” and “plot_reward_
data”. The datasets were crucial for the following testing step. We have assessed the wait length and rewards by 
analyzing the data produced by our trained agent during testing. The comprehensive testing procedure enabled 
us to evaluate the model’s performance and effectiveness in real-world situations, offering vital insights about 
queue dynamics and rewards obtained by the agent.

We were evaluated 30 episodes during our testing phase using specific parameters. The maximum number 
of steps permitted was established at 240, while the quantity of cars produced for testing remained at 1000. The 
testing setup included a neural network structure of four layers with a learning rate 0.001. Our testing primarily 
focused on four specific actions: NSA (North-South Arms), NSLA (North-South Left Arms), EWA (East-West 
Arms), and EWLA (East-West Left Arms). The actions were intentionally selected to reduce queue length and 
maximize incentives in the system. This method enabled us to thoroughly assess the model’s performance in 
many scenarios, giving us a detailed insight into it’s skills in improving queue dynamics and reward results.

Reinforcement learning for traffic reduce
Implementing RL in traffic management can enhance signal timings and route allocations by adjusting to 
real-time traffic circumstances. This technique minimizes traffic and improves transportation efficiency by 
encouraging driving behavior and reducing congestion. The technology can adjust and improve traffic flow in 
urban areas by continuously learning from traffic patterns. Utilizing RL shows potential for developing intelligent 
traffic control systems that enhance sustainable and efficient urban mobility. Figure 1 displays the RL life cycle.

Here, St represents the state cycle of the environment, At is the action taken at time step t, and Rt is the 
reward associated with the possible action.

RL occurs in an environment where an agent learns through interaction and prediction of its actions. The 
favorable results of accurate predictions measure effectiveness, whereas less effective acts lead to increased 
penalty rates. This method encourages the agent to constantly improve decision-making by prioritizing activities 
that result in positive results and discouraging those with negative repercussions. RL adaptability enables the 
development of intelligent agents that can navigate their surroundings using more optimized tactics.

Agent training with environment
During the training of DQL agent, several crucial procedures are necessary for achieving success. We set up 
a replay memory to preserve events to facilitate effective learning from previous interactions. It is essential to 
provide a dynamic environment that reflects the difficulty of the actual world, offering the agent a variety of 
events to learn from. Establishing suitable parameters is crucial, as they determine the agent’s behavior and 
learning speed. The initialization of the DQN is crucial for its learning process as it allows the network to 
improve its knowledge of optimal behaviors over time through experience. The agent uses a accurately designed 
loss function to enhance its decision-making skills. This function acts as a guiding principle for the agent to alter 
its weights and approximate optimal Q-values, thus improving its performance gradually. Figure 2 illustrates the 
Agent Training process using the DQL model.

Ahead of new knowledge, the agent uses the learning to negotiate the difficulty of the natural world, making 
informed and wise judgments that can result in the best possible outcomes. The DQL agent improves continually 
by learning and applying knowledge Repeated, becoming more skilled at solving real-world problems.

This study explores the complex interactions of transportation and urban traffic management to improve 
traffic flow, reduce congestion, and encourage sustainable mobility in metropolitan areas. The research analyzes 
the factors influencing traffic patterns and operational features on a complex road network with four principal 
directions. The study aims to get a thorough understanding of the behavior of the road network by conducting 
detailed analysis and observation, revealing its complexities and fundamental dynamics. The research tries 
to discover crucial jams, inefficiencies, and improvement opportunities inside the transportation system by 
comprehending its intricate relationships. The study intends to suggest new strategy and actions to improve 
traffic flow, reduce congestion, and enhance urban mobility solutions. The project aims to provide practical 

Fig. 1.  The RL life cycle involves the agent learning from its environment, taking actions, and receiving 
rewards depending on its actions.
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advice to policymakers and urban planners using a comprehensive strategy, including data analysis, modeling, 
and simulation. This will help create more dynamic, sustainable, and livable cities.

State of RL from intersection
A state depicts different node positions in the environment, where numerous nodes together indicate a state. 
Here, the state contains details regarding the positions of objects and node identifiers. The expression is:

	 S = (n1, v1, d1, n2, v2, d2, · · · , ni, vidi)� (1)

Where ni represents the number of vehicles, vi denotes the velocity of the ith vehicle, and di indicates the 
distance to the subsequent vehicle for each vehicle i.

Imagine lanes where the color green represents 1 and the color red represents 0.

	

[
G G G
R G R
R R R

]
� (2)

	

[
1 1 1
0 1 0
0 0 0

]
� (3)

Consider the 1st state:

	 [ 1 1 1 ]� (4)

Since all nodes are set to 1, the active green signal allows cars to move in this state.

Furthermore, all nodes are red in the final state, rendering vehicle movement impossible.

	 [ 0 0 0 ]� (5)

Each state contains a unique value that determines the allowed motions of the vehicle according to the assigned 
value. Figure 3 effectively conveys the state through node and value representations. If the state node is present, 
it contains 1; if it is null, it contains 0.

Action of RL from intersection
In RL for traffic signal control, an “action” is a decision made by the RL agent on managing the traffic signals 
at a specific intersection. The RL agent learns to make decisions by observing the environment and aiming to 
optimize specific objectives, including lowering traffic congestion, minimizing delays, or enhancing traffic flow. 
Our system’s potential actions include:

	 A = NSA, NSLA, EW A, EW LA

Every action the RL agent makes is associated with a particular arrangement of the traffic signal durations. 
The RL agent is given feedback in the form of rewards or penalties depending on the outcomes of its activities. 

Fig. 2.  RL involves defining execution criteria such as state, action, and rewards, as well as demonstrating the 
training process of the agent.
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The RL agent aims to develop a policy that correlates observable traffic environment conditions with optimal 
behaviors to maximize cumulative rewards over time. We have worked at a junction with four lanes. Each lane 
consists of two blocks. Figure 4 illustrates the operation of our system, displaying various intersection directions.

Rewards of RL from intersection
The enhancement of overall traffic flow efficiency and safety characterizes the reward of a traffic reduction system 
at an intersection. The optimized coordination and smooth interaction of vehicles result in reduced congestion, 
minimized travel delays, and better vehicular throughput. The rewards system based on intersections creates 
a coordinated and efficiently managed traffic network that promotes a more sustainable and efficient urban 
environment for all individuals using the roads.

The function of rewards as expressed in the intersection is:

	 R(s, a, ś)� (6)

•	 s: This accurately represents the current environment. States provide the conditions or context in which the 
agent is working. The award may be specific to the current scenario.

•	 a: This signifies the actions the agent has completed up to this point. The agent’s action determines the reward.
•	 s′: This is the state resulting from the environmental transformation caused by an agent’s action, denoted as 

a. The final state may also influence the rewards.Rewards are generally calculated based on the current envi-
ronment s, the agent’s action a, and the resulting environment s′. These three variables together express the 
reward during both training and testing. Rewards value may be negative. We have received the detrimental 
outcomes of our efforts. It articulates the consequences or sanctions employed to direct the learning process 
and influence the behavior of the RL agent. The agent learns to link some activities with negative consequenc-
es by introducing negative rewards, prompting it to modify its policy to reduce the incidence of undesirable 
behaviors.

Deep Q network implementation
During the Implementation of DQN, the agent discovers the most effective action through ongoing interaction 
with the environment, relying on a persistent trial-and-error approach. The ideal action is determined by 
considering both the immediate and potential rewards in the next index, up to n steps ahead. In the DQL 
algorithm, we were utilizef V π (Si) to denote the total reward under a given policy π.

	 V π (Si) = ri + γri+1 + γ2ri+2 + L� (7)

The DQL algorithm computes the Q value to assess a specific state and activity. This value is determined by 
considering both immediate and discounted rewards. The formulation of the Q value is as follows:

	 Q (si, ai) ← ri + γV r (Si+1)� (8)

Fig. 3.  A state representation where several edges indicate the presence or absence of a vehicle.
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The discount coefficient, denoted by γ (0 < γ < 1), represents the impact of future rewards on the current 
activity. The objective of Q learning is to optimize the overall utility. Therefore, in (8), we substitute the variables 
ri and V π (Si+1) with the values Oi and max Qai+1,∈A (Si+1, ai+1), respectively.

	 Q (si, ai) ← Oi + γ maxQai+1,∈A (Si+1, ai+1)� (9)

Here, A represents the collection of action sets. The primary challenge in DQN during the learning phase is to 
effectively manage the trade-off between exploring new actions and exploiting the current knowledge of the 
action set. Specifically, in cases when the system is of significant size, the selection of the appropriate action will 
directly impact the convergence of the algorithm and the system’s performance. Hence, we have incorporated 
an adjusted index value are same identify the optimal action to get the most effective action. The index value 
can accurately represent the changes in rewards and quickly modify the range of exploration to minimize the 
unnecessary selection cost.

	
ai ← arg max

a
(Q (Si, a)) + Index (si, a)� (10)

Q represents the assessment value assigned to the current state and activity. The introduction of Index (si, a) 
is aimed at determining the optimal probable action based on the Q value. The expression evaluates to the value 
of (11). This formula provided is a type of index or score used in decision-making processes, often found in 
algorithms related to RL or optimization.

Fig. 4.  Interaction at our intersection where many paths are depicted.
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Index (Si, a) = Cp

√
2ln i × min

{1
4Va (i)

}
/Ta (i)� (11)

Cp is a positive constant, as shown by the notation 067. Ta represents the frequency of selecting action after i 
frames. V (i)a represents the bias component, which incorporates the action’s utility value variance σ2

a (i) to 
indicate its level of volatility. Below Table 3 showcase the index value calculation and model optimization criteria.

	
σ2

a (i) =
Ta(i)∑
k=1

O2 (Sk, a) /Ta (i) − O2 (
STa(i), a

)
� (12)

	 Va (i) = σ2
a (i) +

√
2ln i/Ta (i) � (13)

One approach to action selection is to use the action index, which considers the present action’s system utility 
and gradually rank of actions with a more significant impact. This approach demonstrates the system’s tendency 
to utilize its resources. Alternatively, in the continuous iterative process, if a particular action is not chosen or 
the chosen quantity is meager, there is a tendency to favor selecting that action in the subsequent iteration, 
demonstrating the explorative nature of the process.

Once the execution action ai is determined, the relay carries out the operation by calculating the utility value O 
and updating the Q value using the following:

	

Qi+1 (Si, ai) = (1 − α) Qi (Si, ai) + α (Oi + γ maxQi (Si+1) , ai+1)
if s = si and a = ai

� (14)

The learning rate α (0 < α ≤ 1) of the state action is calculated as α = 1/ (1 + Ta (i)).

Scenario Parameters Index value Optimization implication

A Cp = 1, i = 5, V (i)a = 2, Ta = 10 0.40 Focus on exploitation due to frequent trials and moderate exploration.

B Cp = 2, i = 20, V (i)a = 4, Ta = 4 2.45 Higher emphasis on exploration due to lower action frequency and higher variance.

C Cp = 1.5, i = 50, V (i)a = 1, Ta = 20 0.67 Balanced but slightly more focused on exploitation due to high action frequency and lower variance.

D Cp = 3, i = 10, V (i)a = 5, Ta = 2 5.09 Strong focus on exploration due to high variance and low action frequency.

Table 3.  Determine the index value calculation and optimization implication details.
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Algorithm 1.  Deep Q-Learning algorithm for Traffic Reduction

The Algorithm 1 express DQL sets up a replay memory D to save previous experiences, a Q-network with 
weights θ, and a target Q-network with weights θ−. The goal of the Q-network is changed frequently to align 
with the present Q-network. several parameters are defined, such as the exploration rate (ϵ). discount factor 
γ, learning rate α, mini-batch size (B), and target network update frequency (C). These factors impact the 
learning process and should be adjusted according to the specific traits of the traffic environment. The algorithm 
progresses via episodes, each symbolizing a series of encounters with the traffic environment. The agent performs 
actions in the environment and then observes the states and rewards that follow inside each episode. At each 
time step, the agent chooses an action using an exploration strategy. An action is selected randomly with a 
probability of epsilon to explore the environment. The action with the highest Q-value for the current state 
is then chosen. The algorithm saves every transition (consisting of state, action, reward, and next state) in the 
replay memory. Random mini-batches of experiences are sampled from the replay memory during training. This 
aids in disrupting the temporal relationship between successive experiences and enhances the stability of the 
learning process. The Q-network is updated by minimizing the temporal difference error between the predicted 
Q-values and target Q-values. The goal values are calculated using the observed rewards and the highest Q-value 
for the subsequent state. The update procedure is determined by the loss function L(θ). The target Q-network is 
periodically adjusted to align with the present Q-network to improve the stability of the learning process. This 
gentle update aids in preventing oscillations and enhancing convergence.

In the DQN, the output replaces maxQ ´a∈A (St+1, á) value. Experience replay (ER) is another crucial 
component of the general DQL process. The ER serves as the memory buffer for holding the experience tuples 
{st, at, rt, st+1} during the observation phase in the DQL learning process. The observation phase starts with 
the practical implementation of DQL and concludes when the ER reaches maximum capacity. Mini-batches can 
be sampled from the ER after the observation phase. Mini-batches are the input training sets for the Q-value 
Deep Neural Network model. The ER has a fixed size, so when a new experience tuple is added, the oldest stored 
tuple is discarded.

To calculate target Q-values, it is common practice to utilize a separate target DQL model. The target DQL 
model’s weights are updated periodically by copying weights θ́ from the Q-value DQL model, which changes 
weights during each learning iteration-ensuring a temporally static Q-value target in the target DNN model 
by maintaining the fixed weights for a set length of time. This avoids the issue of a shifting target and thereby 
stabilizes the DQL learning process. DQL efficiently reduces reward overestimation in noisy controlled contexts 
like traffic flows in complicated traffic networks, improving overall performance. Figure 5 displays the functional 
scheme of general DQL.

Hyperparameter tuning and novelty of DQL model
We have implemented a list of the hyperparameter tuning process for our DQL model. Hyperparameter tuning 
refers to selecting the optimal set of hyperparameters for a machine-learning model. Hyperparameters are 
configuration settings used to control the learning process and the structure of the model, which are set before 
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the training process begins. Unlike the model parameters (e.g., weights in a neural network), they are not learned 
from the data but can significantly impact the model’s performance. Hyperparameter tuning is needed because 
it helps optimize a machine learning model’s performance by finding the best configuration of hyperparameters. 
Hyperparameters, set before the training process, significantly affect how well a model learns from data 
and performs on unseen data. Proper tuning can lead to better accuracy, faster convergence, and improved 
generalization, ensuring the model fits the training data well and performs effectively on new, unseen data. 
With tuning, models may avoid overfitting, where they learn the training data too well but fail to generalize, or 
underfitting, where they do not learn the data well enough. Thus, hyperparameter tuning is crucial for achieving 
the best possible model performance. We have analyzed many factors like learning rate, dropout, padding, 
optimizer, weight delay, batch size, epoch, activation, and kernel initializer. To perform hyperparameter tuning, 
start by defining the search space by selecting the hyperparameters and their possible values. Next, choose 
a strategy or algorithm. Split the dataset into training and validation sets, then train models using different 
combinations of hyperparameters. Evaluate each model’s performance using a chosen metric, and finally, select 
the hyperparameters that yield the best validation performance. Here, we identify a specific range of parameter 
values, which constitutes the search space for the most optimal results in traffic reduction. Then, we select a value 
from this range to implement our system. Table 4 displays the outcomes of the Hyperparameter tuning process 
for our DQL model. By conducting methodical experiments, hyperparameter tweaking optimizes the model’s 
performance, improving its ability to forecast outcomes and its resilience accurately.

DQL model has significant innovation in RL, particularly in the context of artificial intelligence and machine 
learning. This approach revolutionizes how agents learn to make decisions in complex environments by leveraging 
deep neural networks. The key innovation lies in its ability to combine Q-learning, a traditional RL technique, 
with deep neural networks to handle high-dimensional state spaces. DQL can effectively learn optimal strategies 
in environments with extensive and diverse state spaces by using neural networks to approximate the Q-function 
(which estimates the expected future rewards for taking a particular action in a given state). This innovation 
has successfully applied RL to a wide range of challenging tasks, autonomous driving, and robotic control. 
DQL represents a fundamental advancement in the field, opening doors to more sophisticated and capable AI 

Fig. 5.  The DQL Architecture proposes a model that expresses the working process and ultimately determines 
the appropriate action for traffic lanes.
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systems that can learn directly from raw sensory inputs and navigate complex decision-making scenarios. A 
novel application of DQL in traffic management aims to significantly reduce congestion by optimizing traffic 
signal timings. This approach leverages the DQL algorithm’s ability to learn and adapt to complex, dynamic 
environments. By integrating real-time traffic data, such as vehicle flow and occupancy sensors, the DQL model 
can predict and respond to traffic patterns with high precision. The model continuously updates its strategy based 
on traffic conditions, proactively adjusting signal timings to minimize jams and improve overall traffic flow. This 
innovative use of DQL enhances traffic efficiency, reduces travel times, and lowers emissions, addressing critical 
challenges in urban mobility.

Result analysis
Evaluation criteria and improvement
We carefully map the intersection’s state, calculate the rewards, and then assign state names and actions to 
each lane sequentially. Figure 6 graphically depicts the various states of the intersection and the accompanying 
actions for distinct lanes. This model allows us to identify which action corresponds to each state accurately. Our 
approach focuses on recognizing the present state, predicting the next stage of the junction, and evaluating if the 
rewards are improving.

Our findings show that by identifying a vehicle’s current condition, we may predict its likely future state 
and determine the most efficient subsequent state for the agent, thus improving overall performance. Table 5 
lists essential states such as s1, s2, s7, s8, s6, s5, s12, s11, s14, s13, s16, s15, s20, s19, s18, and s17, showing them 
as current states and suggesting the best next states. This table displays the possible future states for vehicles 
based on their current status and the incentives linked to each state, highlighting the expected gain. This focus 
table is essential in our traffic reduction system, offering significant insights for optimizing the intersection’s 
functionality.

The performance of our model showed great potential during both the training and testing stages. Within 
the training set, the queue duration experienced a decrease to 852, but the related incentives, negative at 
− 94492, indicate an enhanced comprehension and adjustment within the RL environment. The queue length 
decreased to 418 during the testing phase, while a positive testing reward of 8520 was obtained. These results 
jointly demonstrate a significant decrease in the length of the wait and an improvement in incentives compared 
to the initial state. This indicates the model’s efficacy in acquiring knowledge and improving its performance, 
showcasing favorable advancements in training and testing situations.

	
queuer = T esting queue length

T raining queue length
× 100 � (15)

Fig. 6.  Showcase the potential actions of a different lane and state representation at a junction.

 

Parameter Search space Selected value

Total episodes [15, 20, 30] 30

Max steps [220, 230, 240] 240

n cars generated [1000, 1150, 999] 1000

Width layers [350, 400] 400

Num of layers [4] 4

Batch size [16, 32,8 ] 32

Learning rate [0.001, 0.0001] 0.001

Training epochs [800] 800

Num of states [80] 80

Num of actions [4] 4

Gamma [0.80, 0.76, 0.75] 0.75

Table 4.  Hyparameter tuning of proposed model.
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rewardsm = T esting reward

T raining rewards
× 100 � (16)

In this context, queuer  represents the decrease in queue length, while rewardsm represents the maximization 
of outcomes.

Current state Next State Action Rewards

s1 (s2, s3, s4, s5, s6) a2 ++

s1 (s2, s3, s10, s16, s15) a6 ++

s1 (s2, s3, s19, s20) a8 ++

s2 (s3, s4, s5, s6) a2 ++

s2 (s3, s10, s16, s15) a6 ++

s2 (s3, s19, s20) a8 ++

s7 (s8, s9, s10, s11, s12) a4 ++

s7 (s8, s9, s4, s17, s18) a7 ++

s7 (s8, s9, s13, s14) a5 ++

s8 (s9, s10, s11, s12) a4 ++

s8 (s9, s4, s17, s18) a7 ++

s8 (s9, s13, s14) a5 ++

s6 (s5, s4, s3, s2, s1) a1 ++

s6 (s5, s4, s9, s13, s14) a5 ++

s6 (s5, s4, s17, s18) a7 ++

s5 (s4, s3, s2, s1) a1 ++

s5 (s4, s9, s13, s14) a5 ++

s5 (s4, s17, s18) a7 ++

s12 (s11, s10, s9, s8, s7) a3 ++

s12 (s11, s10, s16, s15) a6 ++

s12, (s11, s10, s3, s19, s20) a8 ++

s11 (s10, s9, s8, s7) a3 ++

s11 (s10, s16, s15) a6 ++

s11 (s10, s3, s19, s20) a8 ++

s14 (s13, s9, s8, s7) a3 ++

s14 (s13, s9, s3, s19, s20) a8 ++

s14 (s13, s9, s4, s5, s6) a2 ++

s13 (s9, s8, s7) a2 ++

s13 (s9, s3, s19, s20) a8 ++

s13 (s9, s4, s5, s6) a2 ++

s15 (s16, s10, s11, s12) a4 ++

s15, (s16, s10, s4, s17, s18) a7 ++

s15 (s16, s10, s3, s2, s1) a1 ++

s16 (s10, s11, s12) a4 ++

s16 (s10, s4, s17, s18) a7 ++

s16 (s10, s3, s2, s1) a1 ++

s20 (s19, s3, s2, s1) a1 ++

s20 (s19, s3, s9, s13, s14) a5 ++

s20 (s19, s3, s10, s11, s12) a4 ++

s19 (s3, s2, s1) a1 ++

s19 (s3, s9, s13, s14) a5 ++

s19 (s3, s10, s11, s12) a4 ++

s18 (s17, s4, s5, s6) a2 ++

s18 (s17, s4, s10, s16, s15) a6 ++

s18 (s17, s4, s9, s8, s7) a3 ++

s17 (s4, s5, s6) a2 ++

s17 (s4, s10, s16, s15) a6 ++

s17 (s4, s9, s8, s7) a3 ++

Table 5.  Determine the current state and identify the next ideal state with increased rewards.
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We have achieved a notable reduction of 49% in queue length and a 9% increase in rewards. The results highlight 
the model’s effectiveness in reducing the queue length by almost 50%, which is a significant improvement. This 
result is consistent with the formula for reducing traffic congestion, indicating its successful implementation. 
The significant reduction in line duration and simultaneous increase in incentives confirm the model’s success 
in alleviating traffic congestion, demonstrating our strategy’s effectiveness. In Table 6, we depict the percentage 
of progress about queue duration and rewards.

Training phase results in RL environment
We have successfully executed 5400 steps throughout our RL agent’s training iteration. Significantly, the queue 
length reached a final index of 852 at the end of this training period. It is crucial to emphasize that the training 
data included information from the environment, edge, and vehicle sources. The 5400 steps provided extensive 
information about the edge information of the environment. Figure 7 visually depicts the training progression 
by demonstrating the changes in the queue length throughout the steps.

During the training phase, our model allocated rewards according to the queue length performance, which 
served as a metric to measure the success of the training process. The reward value received, − 944992, indicates 
a negative reward, suggesting a punitive factor in the setting of RL. Negative cultivate rewards are a type of 
feedback mechanism used to discourage undesirable behaviors by penalizing them. Unlike traditional negative 
rewards that reduce the agent’s overall score, negative cultivate rewards focus on promoting better behavior 
by progressively penalizing actions that lead to less optimal outcomes. This approach can optimize traffic flow 
in traffic management by penalizing actions or behaviors that cause congestion or delays. Our traffic control 
system uses negative rewards to disincentivize actions like abrupt lane changes or excessive speeding, thereby 
encouraging smoother and more efficient traffic patterns. By applying these penalties, the system can gradually 
refine its strategies to minimize traffic jams and improve overall flow. Figure 8 illustrates the training rewards of 
our DQL model, showing the link between rewards and epochs. It provides insights into how the effectiveness 
of the training process changes over time.

Testing phase results in RL environment
After completing 30 epochs of testing on our DQL model, we have achieved a testing queue length of 418. This 
result indicates a successful reduction in the queue length compared to the queue during training. The lowered 
queue length indicates the reduction of traffic jams, demonstrating the efficacy of our methodology. The length 
of the queue during the testing phase is 418 (last index). Figure 9 graphically illustrates the length of the testing 
queue throughout several epochs, offering a distinct portrayal of the enhancements made in queue management. 
Our system significantly reduced queue length by almost 50% from training to testing. During the training 
phase, the last index queue value was 852; in the testing phase, it dropped to 418. This substantial reduction in 
queue length during testing indicates our system’s effectiveness in alleviating traffic congestion. Thus, the testing 
results demonstrate the system’s ability to reduce queue lengths and mitigate traffic congestion.

During the rewards calculation phase of the testing, we have considered 535 steps. This procedure measures 
the length of the queue, which indicates the amount of reward that the training receives. In this framework, 

Fig. 7.  The agent generates the queue length during training; this graph shows the queue length across steps.

 

Testing label Findings (%) Status of label

Queue length 49 Reduced

Rewards 9 Increased

Table 6.  Enhancement of our system, which demonstrates a shorter wait time and more rewards.
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negative rewards indicate a substantial penalty for the training, with smaller negative values indicating an 
enhancement in rewards. The incentives amount to − 8520.0 and are contained in the last action steps. Figure 10 
illustrates the correlation between the rewards of the testing data and the action steps taken, presented in a visual 
format. During training, the final reward index was − 944992, whereas in testing, it improved significantly to 
− 8520. This substantial gap highlights a significant enhancement in performance. The rewards are maximized 

Fig. 10.  Assessing the testing rewards based on the action step from the model.

 

Fig. 9.  Evaluating the testing queue length representation throughout episodes using the suggested model.

 

Fig. 8.  The agent generates the rewards during training; this graph shows the rewards across steps.
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during the testing phase, suggesting that the agent can make more effective decisions based on the testing 
rewards. This indicates that the agent’s decision-making strategy has improved significantly when evaluated in 
the testing environment.

Effectiveness and findings of this research
This study presents an innovative traffic reduction system tailored for urban areas. Leveraging RL techniques, 
notably an advanced DQL algorithm, we have developed a system that operates on a reward-based mechanism. 
The premise is simple: when the queue length decreases, the agent gives a reward accordingly, incentivizing 
traffic optimization. Our results expresses the volumes about the efficacy of this approach. We have achieved a 
remarkable 49% reduction in queue length, translating to nearly a 50% decrease in waiting times-an impressive 
feat in traffic management. This substantial reduction in the queue length during the testing phase indicates 
a notable enhancement in system efficiency. By decreasing the queue length, our system demonstrated its 
capability to handle tasks more effectively, directly correlating to reducing traffic congestion. The implications 
of this improvement are significant. A shorter queue length suggests that our system can manage and process 
tasks faster and more efficiently. This improvement is crucial in real-world applications where reducing traffic 
congestion can enhance productivity, lower operational costs, and improve user satisfaction. This outcome 
underscores the effectiveness of our approach and validates our system’s ability to alleviate traffic congestion. We 
can expect even greater efficiencies and performance improvements as we continue to refine and optimize our 
system. Moreover, our system demonstrates a 9% improvement in reward at every state, indicating consistent 
progress and refinement. The goal is to maximize cumulative rewards, which can be effectively applied to 
optimize traffic management and decision-making. To achieve this, an RL agent is trained to interact with a 
traffic simulation environment where it can take actions such as adjusting traffic signals, controlling traffic flow, 
or managing road usage. The agent receives feedback in the form of rewards based on the effectiveness of its 
actions in reducing congestion, minimizing delays, and improving overall traffic efficiency. Through exploration 
and exploitation, the agent learns to make decisions that balance immediate rewards with long-term benefits, 
ultimately optimizing traffic flow. By continually refining its strategy through trial and error, the RL agent can 
identify patterns and implement strategies that reduce traffic congestion and smooth traffic flow. This approach 
helps manage traffic in real-time and adapts to changing conditions and varying traffic patterns, ensuring that 

Fig. 11.  The traffic reduction system involves finding the next ideal condition based on specific criteria.
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decisions remain optimal under different scenarios. Table 5 encapsulates the key components of our approach, 
outlining the state-action relationships that drive our system’s behavior. We have showcased our training data 
in Figures 7 and 8 to provide a comprehensive view of our methodology. These figures illustrate the evolution 
of queue length and associated rewards over the training period, showcasing the iterative refinement of our 
model. During testing, our system continues to demonstrate its prowess. Figures 9 and 10 present the outcomes 
of our test runs, highlighting the tangible reductions in queue length and the corresponding increase in rewards, 
further validating the effectiveness of our approach. Through rigorous analysis, we have observed a consistent 
reduction in queue length and a proportional increase in rewards across various states. This experiential evidence 
underscores the viability and impact of our traffic reduction system within urban environments.

Queue length reduction strategies can significantly impact traffic reduction by improving overall flow 
and decreasing congestion. Implementing measures such as optimizing traffic signal timings, enhancing lane 
management, and deploying ITS can reduce queue lengths. These strategies enhance efficiency and reduce 
commuter travel times by minimizing delays at intersections and jam areas. The effectiveness of such measures 
is notable in urban areas, leading to smoother traffic flow, decreased emissions from idling vehicles, and 
improved overall road safety. However, the success of these strategies often depends on comprehensive planning, 
coordination with local authorities, and continual monitoring and adjustments based on traffic patterns.

Discussion
We have created a novel system designed to decrease significantly traffic congestion at intersections by utilizing 
a complex method based on Deep DQL in an RL. Implementing DQN in a traffic reduction system offers the 
unique advantage of continuously improving traffic flow efficiency through real-time adaptive learning. Unlike 
traditional static algorithms, DQL can dynamically adjust traffic signals based on current conditions, learning 
from past traffic patterns and behaviors to optimize future decisions. This leads to reduced congestion, shorter 
travel times, and lower emissions as the system becomes increasingly adept at managing varying traffic volumes 
and unexpected disruptions, ultimately enhancing urban mobility and environmental sustainability. The 
technology begins by training an agent in a accurately designed environment replicating real-world intersection 
situations. The agent in this setting learns to evaluate the current condition of the intersection by analyzing 
whether vehicles are present or not in particular lanes. The agent analyses the states to find the best vehicle 
route, aiming to reduce queue duration and improve traffic flow. Our solution is centered upon a neural schema 
consisting of many nodes, each indicating the occupancy status of a lane (0 for empty, 1 for occupied). The agent 
uses the DQL model to assess the values linked to the nodes, producing Q-values that direct decision-making 
toward optimal traffic management solutions. Upon obtaining the current state (st), the agent strategically 
plans the vehicle trajectory by determining the next state (St+1) that maximizes traffic flow and minimizes 
congestion. This technique entails carefully calculating node values to evaluate possible actions and identify 
the most effective action. Additionally, our system views queue durations as a vital parameter for reducing 
traffic. For training our model, we focus on several specific parameters: total_episodes, max_steps, num_layers, 
width_layers, batch_size, learning_rate, training_epochs, num_states, num_actions, and gamma. We set each 
parameter to its optimal value to ensure the most effective training of our agent. To test our model, we focus on 
several parameters: max_steps, episode_seed, num_states, and num_actions. We set each parameter’s optimal 
value to create the most effective traffic reduction system. These testing parameters are executed to compute the 
queue length and rewards. Based on the testing results, the agent can make decisions regarding the environment. 
The parameters chosen for this model reflect several advancements over previous works. Increasing the num_
layers and width_layers enhances the network’s depth and capacity, allowing it to better capture and represent 
complex patterns compared to shallower or narrower architectures used in earlier studies. Adjustments in 
batch_size and learning_rate improve the stability and efficiency of training; a larger batch size and a more 
adaptive learning rate schedule can lead to smoother convergence and better generalization, addressing the 
training issue found in prior methods. Additionally, extending total_episodes and training_epochs offers the 
model more exposure to diverse scenarios, mitigating underfitting problems encountered before. Changes in 
‘gamma‘ refine how future rewards are valued, potentially improving the model’s alignment with the problem’s 
dynamics and enhancing decision-making over the long term. Overall, these configurations aim to build on past 
limitations by offering a more robust and efficient learning process, leading to improved model performance 
and reliability in both training and testing phases. When a route has a low queue length, showing smoother 
traffic flow, the agent gives it priority over congested alternatives. Updating Q-values requires forecasting the 
future condition of cars, allowing the agent to enhance its comprehension of the best traffic control tactics. The 
system evolves continuously through an iterative process, dynamically adjusting to changing traffic conditions to 
maximize efficiency at intersections. During the last stage of our system, the agent distributes rewards according 
to its selected actions, a crucial step in encouraging efficient traffic control. The agent receives the most rewards 
by choosing the most efficient lane and demonstrating successful intersection navigation. If the selected lane 
is not as successful, the benefits decrease over time, prompting the agent to seek out better ways. Our solution 
continuously demonstrated superior queue lengths and rewards through thorough testing, highlighting its 
effectiveness in reducing traffic congestion. Figure  11 displays the comprehensive traffic reduction system, 
with each state readily visible graphically. The model was validated after an extensive investigation. An Intel(R) 
Core(TM) i7 CPU, 16GB RAM, and 12 GB GPU was used for the entire training procedure on a Windows 10 
computer. TensorFlow 2.2.1 and Python 3.12.3 implemented all offensive automatic traffic reduction models. 
Python libraries such as TensorFlow, frequently used to create image classification models, may be managed 
more easily with the help of Spider. The findings confirm the system’s effectiveness and create a significant 
historical record of traffic patterns, providing essential insights for improving urban mobility. Our technology 
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shows the potential to revolutionize urban traffic management by effectively combining reward mechanisms 
with intelligent decision-making. Our technology can adjust to changing traffic conditions and choose the best 
routes, leading to a more efficient and sustainable urban environment.

Conclusion and future work
RL gives substantial benefits in the application of transportation systems, where real-time adaptive control is 
critical to increasing efficacy and efficiency. Traffic Control approaches that rely on prespecified models of these 
processes are perceived to have a substantial disadvantage compared to the ability to learn through dynamic 
interaction with the environment. This paper introduces an innovative RL technique utilizing the DQL algorithm 
to minimize traffic congestion effectively. The system is structured based on an intersection-centered traffic 
model, emphasizing its ability to optimize waiting times and improve reward systems. This study’s findings 
represent a significant advancement in traffic management, creating an effective method for decreasing traffic 
congestion. Our current method effectively manages road intersections and makes optimal decisions to reduce 
traffic congestion. This advancement shows significant potential and is a crucial addition to traffic control.

In the future, our model will be enhanced to work with real-time traffic data and optimization. This 
development will enable our system to connect to the internet, allowing the model to receive real-time data. 
In this capability, the agent can make informed decisions and adopt the optimal lane for vehicle movement. 
To address the high computational complexity in DQL for large-scale traffic networks, first, feature extraction, 
and dimensionality reduction techniques will reduce the state and action space. Secondly, more efficient neural 
network architectures will be used to improve processing efficiency. Additionally, techniques such as experience 
replay and target networks will stabilize learning and reduce redundant computations. Parallel computing and 
distributed learning will also be utilized to manage large-scale data by distributing the computational load across 
multiple processors, thereby cutting computational costs.

Data availibility
Data is available in a publicly accessible link: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​m​a​s​f​​i​q​1​0​0​/​​A​-​R​e​i​n​​f​o​r​c​e​m​​e​n​t​-​L​​e​a​r​n​i​n​​g​-​A​p​p​r​​o​a​
c​h​-​f​​o​r​-​R​e​​d​u​c​i​n​g​-​T​r​a​f​f​i​c​-​C​o​n​g​e​s​t​i​o​n​-​u​s​i​n​g​-​D​e​e​p​-​Q​-​L​e​a​r​n​i​n​g​/​t​r​e​e​/​m​a​i​n​/​t​r​a​f​f​i​c​/​T​L​C​S​/​i​n​t​e​r​s​e​c​t​i​o​n​​​​​.​​
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