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Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deletions or mutations of survival of motor neuron 
1 (SMN1) gene. To date, the mechanism of selective cell death of motor neurons as a hallmark of SMA is still unclear. The 
severity of SMA is dependent on the amount of survival motor neuron (SMN) protein, which is an essential and ubiquitously 
expressed protein involved in various cellular processes including regulation of cytoskeletal dynamics. In this review, we 
discuss the effect of SMN ablation on cytoskeleton organization including actin dynamics, growth cone formation, axonal 
stability, neurite outgrowth, microtubule stability, synaptic vesicle dynamics and neurofilament protein release in SMA. We 
also summarized a list of critical proteins such as profilin-2 (PFN2), plastin-3 (PLS3), stathmin-1 (STMN1), microtubule-
associated protein 1B (MAP1B) and neurofilament which play an important role in modulating cytoskeleton in SMA. Our 
aim is to highlight how cytoskeletal defects contribute to motor neuron degeneration in SMA disease progression and con-
centrating on cytoskeleton dynamics may be a promising approach to develop new therapy or biomarker.

Keywords  Spinal muscular atrophy · Cytoskeleton defect · Actin · Microtubule · Profilin-2 · Plastin-3 · Microtubule-
associated protein

Introduction

Spinal muscular atrophy (SMA) is an autosomal recessive 
inheritance disease, characterized by progressive muscle 
weakness due to the degeneration of spinal α motor neurons. 
Symmetrical motor function impairment initially happens 
in proximal skeletal muscles and subsequently spreads to 
distal muscles [1, 2]. In addition, other tissues in SMA are 
also affected with the increasing severity of the disease [3]. 
According to onset time, survival and motor function, SMA 
is clinically divided into five subtypes from severe type 0 to 
mild type IV [4, 5]. It is caused by mutations or deletions of 

survival of motor neuron 1 (SMN1) gene, while the sever-
ity of SMA is negatively regulated by the copy number of 
survival of motor neuron 2 (SMN2) as a paralogous backup 
gene [6–8]. Despite encoding SMN protein and being highly 
similar, SMN2 and SMN1 exhibit differences at five bases 
[9]. One of these differences is C-to-T transition in exon 7 of 
SMN2 contributing to predominant skipping of exon 7 dur-
ing pre-mRNA splicing [9–11]. Consequently, 90% SMN2 
products are truncated protein called SMNΔ7, whereas 10% 
transcripts are translated into full-length SMN protein which 
is insufficient to compensate for the loss of SMN1 [6, 7, 9, 
12, 13](Fig. 1A).

Therefore, increasing SMN level is a mainstream treat-
ment for SMA, especially concentrating on modulating 
SMN2 alternative splicing. In 2016, U.S. Food and Drug 
Administration approved Nusinersen (Spinraza®), an anti-
sense oligonucleotide (ASO) to correct splicing by blocking 
an intronic silencer in intron 7 of SMN2. In addition, Ris-
diplam (Evrysdi®) as an SMN2 pre-mRNA splicing modifier 
was approved to treat SMA by promoting the recruitment of 
U1 small nuclear ribonucleoprotein particles (U1-snRNPs). 
Moreover, onasemnogene abeparvovec (Zolgensma®) as a 
gene therapy for SMA patient delivers a functional copy of 
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human SMN with adeno-associated virus vector [14–19]. 
Although this therapeutics made impressive strides in 
extending patient lifespan and improving neurodevelop-
mental outcome and motor function, current treatments do 
not allow to thrive and live a normal life for most SMA 
patients. Defects of motor axon development in SMA begin 
prenatally, associated with postnatal degeneration of motor 
neurons [20]. Thus, as suggested in clinic trials, the earlier 
treatment can be initiated, the better to attain stabilization 
of motor function [21]. However, delays in treatment are 
widespread and some therapies may be currently limited to 
a certain age population [22]. Even for the patients treated 
early, the disease burden remains due to irreversible neu-
ronal cell death [23].

Therefore, to understand the mechanisms of selec-
tive cell death of motor neurons as a hallmark of SMA 
is important for SMA patient treatment and diagnosis. 
SMN is an essential and ubiquitously protein in all cell 
and tissue types, not just in motor neurons. SMN protein 
plays a housekeeping role in the regulation of snRNP bio-
genesis, as well as intracellular homeostasis including 
cytoskeletal dynamics, RNA metabolism, DNA recom-
bination, cell signaling, Ca2+ homeostasis, intracellular 

vesicular pathways, ubiquitin–proteasome pathway and 
mitochondrial activity (Fig. 1B) [24–27]. Hence, SMN 
plays a major role in SMA pathology and specific vulner-
ability to motor neurons in this disease. Due to extraor-
dinary extended axon length and their dependency on the 
cytoskeleton for its stability, signaling, and axonal trans-
port, spinal motor neurons are particularly susceptible to 
selective and early degeneration compared with other neu-
rons in SMA [28–30]. Moreover, Sumner et al. identified 
impaired radial growth and Schwann cell ensheathment of 
motor axons initiated during embryogenesis and caused 
reduced acquisition of myelinated axons that impeded 
motor axon function neonatally in SMA [20]. Cytoskeletal 
proteins have been demonstrated to fulfill crucial func-
tions in various signaling pathways [31–35]. Accumulated 
evidence suggest that integrity of cytoskeleton is closely 
linked to cell death [35–43]. Hence, therapeutic strategies 
targeting cytoskeletal disorders have the potential to be 
valuable supplements to current treatment of SMA.

In this review, the altered dynamics of cytoskeleton and 
its mechanisms in SMA were comprehensively described, 
which explained how potential modifiers might improve phe-
notypes of SMA. The aim was to provide new insights into 

Fig. 1   A Both SMN1 and SMN2 genes are located close together on 
chromosome 5q13, encoding for SMN protein. Normally, SMN1 tran-
scripts are correctly spliced and translated into a full-length SMN 
protein, while 90% SMN2 are translated into a truncated and non-
functional SMN protein due to the exon 7 skipping caused by alterna-
tive splicing. B Under normal condition, the physiological behaviors 
of healthy individual are supported by the abundant SMN proteins 

which mainly derive from SMN1 gene. In SMA, the limited SMN 
protein encoded by SMN2 gene is insufficient to counterbalance the 
loss of SMN1, impairing various cell physiological activities such 
as cytoskeleton regulation, Ca2+ and energy homeostasis, intracel-
lular vesicular pathways, cell signaling, RNA metabolism and DNA 
recombination
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SMA pathogenesis and emerging therapies by summarizing 
the latest advances in the cytoskeletal role of SMA.

Role of cytoskeletal dynamics in neurons

The neuronal cytoskeleton is an adaptive and dynamic 
structure consisting of three major components: actin-
based microfilaments, microtubules and intermediate fila-
ments (neurofilaments) (Fig. 2) [44–47]. Filamentous actin 
(F-actin) is a heterodimer structure and is composed of α‑ 
and β‑actin. β‑Actin is known as globular actin (G-actin). 
Microtubule is a cylinder comprising 13 protofilaments 
which are heterodimers formed by the alternating arrange-
ment of α‑ and β‑tubulin. Actin and microtubule proteins are 
indispensable for regulating neuron structure and function by 
influencing cellular motility processes such as growth cone 
formation, axonal stability, neurite outgrowth and synaptic 
vesicle dynamics [44, 48]. Actin cytoskeleton plays a vital 
role in pathfinding of neuronal axon and control of micro-
tubule dynamics [49–51]. The assembly of microtubule 
in growth cone promotes the axon extension, influencing 
neuronal polarization and regeneration [52–54]. Moreover, 
both actin-based microfilaments and microtubules support 
the dynamic function and high energy demands of pre- and 
postsynaptic structures by binding with mitochondria and 
driving plastic changes [47, 55–57].

Therefore, it is perhaps not surprising that cytoskeleton 
defects may be a common characteristic among neurodegen-
erative diseases such as Alzheimer’s disease (AD), Hunting-
ton’s disease (HD), Parkinson’s disease (PD), amyotrophic 
lateral sclerosis (ALS) and SMA. In some neurodegenerative 

diseases, the alteration of cytoskeleton is considered as a 
potential etiological factor in part [58–60]. However, some 
cytoskeletal proteins abnormalities may not be causative 
factors of neurodegenerative disorders because that inter-
ventions targeting these proteins fail to rescue the survival 
of diseased mice [61]. Although the causal link between 
neurodegenerative diseases and cytoskeletal dysfunctions is 
unclear, the overwhelming majority of cytoskeleton defects 
related to neurodegenerative diseases contain the impair-
ments of microtubule stability and actin dynamics [57, 
62–69]. In addition, the aggregation of neurofilaments, a 
class of intermediate filaments found primarily in axons of 
nerve cells, can be observed in several neurodegenerative 
diseases [46, 70] and may be related to the hyperphosphoryl-
ation of intermediate filaments [46, 70, 71]. In recent years, 
neurofilament concentrations in biofluids have emerged as 
a promising clinical biomarker for neurodegeneration [71]. 
However, compared to actin-based microfilaments and 
microtubules, the mechanism of neurofilament changes in 
neurodegenerative diseases remains largely unknown.

SMN protein is not only localized primarily in actin-
abundant neurites and growth cones but also regulates the 
distribution of β-actin within growth cones, which suggests 
the possible regulatory effects of SMN on cytoskeleton 
[72–77]. In SMA mouse model, morphological defects of 
nerve cell, which contributes to neurologic disorder, are 
often accompanied by cytoskeletal impairments such as 
destabilization of microtubules and imbalance of F/G-actin 
levels [45, 78]. In most instances, the depletion of SMN 
indirectly affects the cytoskeleton through a number of pro-
teins that play a regulatory role in the cytoskeleton. Here, 
we discuss cytoskeleton-related proteins including PFN2, 

Fig. 2   The neuronal cytoskel-
eton is an adaptive and dynamic 
structure consisting of three 
major components: actin-based 
microfilaments, microtubules 
and intermediate filaments 
(neurofilaments). Actin and 
microtubule proteins are 
indispensable for regulating 
neuron structure and function 
by influencing cellular motility 
processes such as growth cone 
formation, axonal stability, 
neurite outgrowth and synaptic 
vesicle dynamics. Neurofila-
ments are a class of intermedi-
ate filaments found primarily in 
nerve cells, especially in axons. 
They are essential for the struc-
ture of neuronal axons and play 
a crucial role in maintaining the 
shape and function of neurons
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PLS3 and microtubule-associated proteins (MAPs) that were 
affected by SMA (Table 1) and highlight the more exten-
sively studied proteins that regulate cytoskeleton in the fol-
lowing sections.

PFN2, an important regulator of actin 
dynamics in SMA

Encoded by four genes PFN1–PFN4, profilins have a vari-
ety of expression profiles in mammals. Profilins possess a 
binding site for actin, two binding sites for phosphatidylino-
sitol 4,5-bisphosphate (PIP2) [79] as well as poly-l-proline 
(PLP) binding domains, allowing for localization to mem-
branes, interaction with PLP-containing proteins and regu-
lation of actin dynamics [80, 81]. Therefore, profilins are 
of importance to regulate cellular processes related to actin 
cytoskeleton, such as cytokinesis, neuronal differentiation, 
synaptic plasticity, membrane trafficking and nuclear trans-
port [82–86].

PFN2, as a major splice variant of PFN2 gene, is primar-
ily restricted in neuronal cells [82] and is a critical regula-
tor of neuronal growth, development, and dendritic spine 
formation. PFN2 primarily inhibits actin polymerization by 
binding with actin monomers alone, whereas SMN protects 
F-actin from destabilization in the presence of urea, show-
ing positive effect on actin polymerization [87]. In moto-
neurons, PFN2 is highly concentrated and colocalizes with 
SMN in the cytoplasm and nuclear gems through binding 
with PLP domain encoded by exon 5 of SMN1 [88–90], 
producing more F-actin [87]. Sharma et al. revealed that 

increased PFN2 caused neurite outgrowth inhibition and 
axon pathfinding defects by disturbing the normal regula-
tion of dynamic actin cytoskeleton in SMA PC12 cell model 
[87]. However, decrease of PFN2 via the heterozygous or 
homozygous knockout (KO) of PFN2 alleles in the inter-
mediate SMA mouse model was not enough to rescue SMA 
phenotypes [91], indicating that other factors related to actin 
dynamics may be involved in the development of SMA. 
Moreover, PFN2 is abundant in postsynaptic structures [72, 
76, 92] and actin predominately localizes at presynaptic ter-
minal and postsynaptic density in neurons [47]. These dis-
tribution patterns indicate that actin cytoskeleton regulated 
by PFN2 may play a part in synaptic dysfunction of SMA. 
The ability of vesicle release was damaged along with a 
reduction in the size of the readily releasable pool in SMA 
mouse model [93, 94]. It also has a direct interaction with 
the PLP domain of Piccolo, a protein regulating neurotrans-
mitter release by promoting F-actin assembly [95, 96]. PFN2 
KO mouse exhibited deficiencies in the polymerization of 
synaptic actin and release of more neurotransmitters, indi-
cating that PFN2 may play a functional role in the exocytosis 
of vesicles [91, 97]. In SMA Caenorhabditis elegans model, 
the changes in synaptic endocytic proteins and the deficien-
cies of endosomal compartments were observed, indicating 
that SMN depletion impairs synaptic endocytosis [98, 99].

The underlying mechanism of free PFN2 modulating neu-
ronal actin cytoskeleton is through the interaction with ras 
homolog family member A (RhoA) kinase (ROCK) [100]. 
PFN2 is phosphorylated at serine 137 (Ser137) close to the 
PLP-binding domain by ROCK, decreasing combination 
capacity of PFN2 for some polyproline-rich proteins and 

Table 1   The list of cytoskeleton-related proteins that were affected by SMA

The list of cytoskeleton-related proteins that were affected by SMA. PFN2: profilin-2; PLS3: plastin-3; MAP1B: microtubule-associated protein 
1B; STMN1: Stathmin1; MAP2: microtubule-associated protein 2; TAU: tau protein; EB3: end-binding protein 3

Protein Roles in cytoskeleton Changes in SMA

PFN2 Regulates F-actin polymerization by binding with G-actin 
[82–86]

With the reduction of binding to SMN, available PFN2 is increased 
and hyperphosphorylated by ROCK [87–90]

PLS3 Binds and bundle actin filaments, and offset the actin depolym-
erization activity of cofilin and PFN [128–130]

Compared to SMA-affected siblings, some asymptomatic female 
siblings show high PLS3 level, while PLS3 is decreased in some 
SMA models [113–125]

MAP1B Serves as a constituent of crossbridge between microtubules in 
neuron [157–160]

In SMN-depleted cells, increased MAP1B induces down-regula-
tion of tubulin tyrosine ligase that subsequently reduces α-tubulin 
detyrosination [149]

STMN1 Binds or releases tubulin dimers in a phosphorylation-dependent 
manner [154]

STMN1 level is increased in SMA-like mouse models [148]

MAP2 Promotes the assembly and stability of microtubules, and have 
overlapping functions with MAP1B [170–172]

In SMN-deficient motor neuron cells, the expression of MAP2 
exhibits a down-regulation independent of MAP1B [150, 173]

TAU​ Promotes the assembly and stability of microtubules [170] The hyperphosphorylation of TAU mediated by cyclin-dependent 
kinase 5 degenerates motor neurons in SMA patients and mouse 
model [151]

EB3 Promotes the growth and stability of microtubules, and regulate 
the polarization of microtubules [179–181]

In SMN-depleted cells, EB3 exhibits a significant reduction in a 
MAP1B-dependent way [173]
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inhibiting interaction between G-actin and PFN2 to a lesser 
extent [101, 102]. In neurons, ROCK interacts with PFN2 in 
a direct way, which is conducive to increase actin stability 
and exerts negative effects on neurite outgrowth [98, 103]. 
Besides, ROCK is capable of directly or indirectly phospho-
rylating myosin light chain phosphatase (MLCP) and cofilin 
which are involved in the regulation of actin cytoskeleton 
and neurite outgrowth [104–106]. However, as shown in 
PC12 cell with SMN deficiency, the binding of MLCP and 
cofilin to ROCK is reduced due to the competitive inhibition 
of PFN2 [88] (Fig. 3).

Overactivated ROCK and the changed phosphorylation 
of its downstream have important impacts on growth cones 
and neurite outgrowth in SMA. As an initial step, focal 
F-actin polymerization is an essential process for the onset 
of axon collaterals [107]. Extending filopodia and lamel-
lipodia from the leading edge of growth cones is crucial 
in this process. ROCK prevents formation of filopodia 
and lamellipodia from pre-existing axonal F-actin patches 
[108]. Moreover, ROCK not only induces growth cone col-
lapse directly to inhibit neurite outgrowth, but also serves 
as a mediator to affect some signaling processes promot-
ing growth cone collapse [109]. Therefore, ROCK exerted 

negative regulation on the sprouting of neurites and phos-
phorylated PFN2 by ROCK is also believed to suppress 
branching, leading to a severe dysregulation of actin 
cytoskeleton in PC12 cell with SMN ablation [88, 103].

Under the stimulation of glutamate or electricity, PFN2 
is enriched in the head of a dendritic spine and then pro-
mote stabilization of dendritic spine morphology via its 
PLP-binding domain [110]. Therefore, the reduction of 
PLP-binding capacity of PFN2 may be involved in syn-
apse stripping in SMA PC12 cell model [88]. Moreover, 
increased available PFN2 and the enhanced ROCK path-
way promoted actin rod formation in SMN-lacking cells 
[111], which induced synaptic loss by blocking axonal 
transport physically and by disrupting microtubule integ-
rity, leading to the impaired integrity of motoneurons in 
SMA [111, 112]. Indeed, ROCK inhibitors ameliorated 
the defect of neurite outgrowth in SMA PC12 cell model 
[88]. Nevertheless, the inhibition of the RhoA pathway 
alone is inadequate to fully save neuronal outgrowth and 
differentiation in SMA mouse model [91]. This may be 
attributable to the increased availability of PFN2 in SMA 
also affecting other signaling pathways.

Fig. 3   SMN deficiency 
increases free profilin-2 that 
is available for combining 
with ROCK, and subsequently 
phosphorylated by ROCK. Due 
to the competitive inhibition, 
the phosphorylation of MLCP 
and cofilin is downregulated. 
Phosphorylated profilin-2 
promotes depolymerization of 
actin filaments, contributing to 
imbalance of F/G-actin levels 
in motor neurons, blocked 
axonal transport, inhibited 
neurite outgrowth and synaptic 
dysfunction by influencing actin 
dynamics in axon, growth cone 
and synapses
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PLS3, a potential protective modifier of SMA

The effect of PLS3 on SMA is controversial. In a study, 
high PLS3 expression was found in lymphoblastoid cells 
from asymptomatic female siblings sharing the same SMN 
genotype with their SMA-affected siblings, indicating that 
PLS3 may serve as a protective modifier of SMA with a 
calcium-binding and several actin-binding domains [113, 
114]. However, other studies failed to find a relationship 
between PLS3 expression levels and SMA phenotype 
[115–117]. As shown in some studies, the effect of PLS3 
on SMA is deemed gender-specific and age-dependent, 
since PLS3 transcript level exhibited a negative rela-
tionship with the severity of SMA only in post-pubertal 
female patients and was associated with SMN2 copy num-
ber, gross motor function as well as clinical types [118, 
119]. The strong colocalization of PLS3 and SMN was 
observed in granules throughout motor neuron axons 
[113], whereas some findings uncovered controversial 
results about PLS3 expression in SMA models. Acker-
mann et al. demonstrated that PLS3 did not change with 
reduction of SMN, suggesting that PLS3 plays a modify-
ing role independent of SMN [120]. By contrast, PLS3 
was decreased and dependent on SMN in zebrafish and 
mouse SMA models [91, 121, 122]. Therefore, overex-
pression of PLS3 exerts varied therapeutic effects in dif-
ferent SMA models. In zebrafish and intermediate SMA 
mouse models, overexpression of PLS3 rescued neurite 
length and axonal outgrowth deficiencies, and promoted 
survival and motor function [113, 120–123]. However, in 
severe SMA mice, overexpressed PLS3 did not exhibit a 
significant beneficial impact on this phenotype [124, 125]. 
One possible explanation is that PLS3 is able to alleviate 
the severity of SMA when SMN loss is moderate. Several 
studies found that human subjects with complete PLS3 
protein loss display signs of osteoporosis instead of lower 
motoneuron degeneration, indicating that PLS3 may act 
as a protective modifier of SMA rather than an etiological 
factor [126, 127].

PLS3 can bind and bundle to actin filaments, and offset 
actin depolymerization activity of cofilin and PFN2 sub-
sequently strengthening actin networks [128–130]. As a 
result, high expression of PLS3 can elevate F-actin levels 
in SMA, which rescues axon length and outgrowth defects 
[113, 131]. Overexpression of PLS3 increased axon input 
number, muscle fiber and endplate sizes in SMA mice, 
improving the neuromuscular transmission [120]. Moreo-
ver, increased PLS3 restored F-actin intensity, amount of 
presynapses and synaptic vesicles in SMA, thereby pro-
moting synaptic function [120]. PLS3 restores the inten-
sity and area of Piccolo which is related to F-actin dynam-
ics [95], resulting in the rescue of active zones number 

in SMA mice. PLS3 also promoted organization of the 
readily releasable pool in vesicles and rescued vesicle 
release and electrophysiological defects [120]. In addi-
tion, PLS3 plays a pivotal role in cell endocytosis process 
based the fact that endocytosis of PLS3 KO yeast was 
impaired [132]. Endocytosis regulated by F-actin is indis-
pensable for replenishing the recycling pool and influences 
the supply of vesicles to the release of neurotransmitters 
[133–136]. Overexpressed PLS3 can rescue endocytosis 
and synaptic vesicle recycling impaired by the depletion 
of SMN [122]. Moreover, PLS3, SMN and heterogeneous 
nuclear ribonucleoprotein (hnRNP) F/H act in the same 
complex that plays a vital role in endocytosis [137]. PLS3 
is also important to a well-organized cytoskeleton asso-
ciated with presynaptic compartment orchestration. The 
disturbed brain-derived neurotrophic factor/tropomyosin 
receptor kinase B (BDNF/TrkB)-signaling cascade due 
to the impaired localization of transmembrane proteins is 
important in the affected differentiation and maturation of 
SMA motor neurons [138–141]. PLS3 cooperating with 
actin-related protein 2/3 (Arp2/3) can improve the locali-
zation and cyclic adenosine monophosphate (cAMP)-
induced translocation of TrkB in SMA, which strengthens 
BDNF/TrkB-signaling [141].

In SMA, calcium homeostasis was disturbed and over-
expressed PLS3 rescued “cluster-like” formation of Cav2.2 
and increased spontaneous calcium ion (Ca2+) transients 
in motoneurons [141]. Indeed, overexpression of PLS3 
without calcium-binding ability is not enough to make up 
for loss of SMN, while short of actin-binding domains in 
PLS3, remains capable of rescuing axon morphology [142]. 
Moreover, PLS3 cooperated with some proteins in a cal-
cium-related way. For example, coronin 1C (CORO1C), as 
a F-actin-binding protein, can combine with PLS3 directly 
in a calcium-dependent way. Akin to PLS3, overexpressed 
CORO1C restores endocytosis in SMA cells by increasing 
F-actin content [122]. Moreover, calcineurin-like EF-hand 
protein 1 (CHP1) interacts with PLS3 which exists widely 
and abundantly at sites related to SMA including growth 
cones and neuromuscular junctions (NMJs). Together, the 
effect of PLS3 in SMA is through the cooperation of calcium 
influx and F-actin dynamics [122, 141, 143].

MAP, the bridge between SMA 
and microtubule dysfunction

Microtubule dynamics influencing neuronal functions are 
controlled by MAPs [144, 145], a set of proteins binding 
to microtubules and regulating their structures [146, 147]. 
Numerous studies claim that aberrant MAPs disturbing 
microtubule dynamics are involved in pathomechanism of 
SMA [148–153].
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As a member of stathmin (STMN) phosphoprotein fam-
ily, STMN 1 is one primary MAP related to SMA. STMN1 
has C-terminal “STMN-like domain (SLD)” that can bind 
or release tubulin dimers in a phosphorylation-dependent 
manner, participating in regulation of microtubule dynam-
ics [154]. STMN1 identified as a disease modifier for SMA 
and enhanced in SMN-depleted NSC34 cells and SMA-like 
mouse models. The aberrant up-regulation of STMN1 is cor-
related with the severity of SMA and is adverse to micro-
tubule polymerization and mitochondrial transport towards 
axons [148]. Correspondingly, knockdown of STMN1 ame-
liorated the deficiencies of microtubule network formation, 
axonal outgrowth and mitochondrial transport in SMN-
depleted NSC34 cells and SMA mouse model [148]. Fur-
ther study uncovered that heterozygous rather than homozy-
gous STMN1 KO mouse model rescued axonal microtubule 
density, motor function and NMJ maturation in SMA [61]. 
In reality, the reduction of STMN1 as a possible patho-
genic modifier of motor neuron diseases was reported to be 
observed in vulnerable motor neurons [155]. By contrast, 
in intermediate SMA mouse model, overexpressed STMN1 
recovered neuromuscular innervation and motor neuron 
preservation and improved lifespan, weight gain and the 
righting reflex by promoting microtubule turnover [156]. 
Contradiction between these findings may be caused by the 
differences in models. STMN1 is suggested to be a poten-
tial therapeutic target for SMA. Despite contributing to the 
improvement in SMA pathology, the reduction of STMN1 
cannot rescue the survival of SMA mice [61]. The potential 
role of STMN1 on cytoskeleton of motor neuron in SMA 
needs further investigation.

Microtubule-associated protein 1B (MAP1B), as 
a member of MAP family, is also related to SMA. It 
mainly expresses in neurons and serves as a constituent 

of crossbridge between microtubules in neurons to axon 
growth, regeneration, growth cone pathfinding and neu-
ronal migration [157–160]. Located on chromosome 5q13, 
MAP1B locus is close proximity to SMN1 locus [161]. The 
human MAP1B gene displays close linkage to SMA muta-
tions in a genetic linkage analysis [162]. Moreover, the 
spatial distribution of MAP1B nearly coincides with SMN 
granules in axons and presynaptic terminals [163]. These 
mapping data and colocalization of SMN and MAP1B sug-
gest that MAP1B may be relevant to the pathomechanism 
of SMA.

Microtubule stability and dynamics are affected by 
acetylation and detyrosinated proteins [164–167]. In SMN-
depleted cells, increased MAP1B up-regulated tubulin 
tyrosine ligase (TTL) activity that subsequently decreased 
α-tubulin detyrosination, impairing microtubule stabil-
ity [149] (Fig. 4). Down-regulation of MAP1B rescued 
the aberrant levels of TTL and detyrosinated α-tubulin in 
SMN-depleted cells [149]. Moreover, damaged microtubule 
dynamics possibly affect axonal transport, which subse-
quently influences mitochondrial distribution along neurites 
in SMA. Decreased MAP1B also ameliorated mitochondrial 
distribution impaired in SMN-depleted cells, which suggests 
the restoration of axonal transport [149, 168, 169].

Although studies are relatively limited compared to 
STMN and MAP1B, several MAPs are also involved in 
the development of SMA. As a structural MAP abundantly 
expressed in neurons such as MAP1B and microtubule-
associated protein 2 (MAP2) has overlapping functions 
with MAP1B in terms of neuronal migration and neurite 
growth, which results in a compensatory mechanism [170, 
171]. MAP2 plays a significant role in microtubule nuclea-
tion and stabilization, which affects neurite outgrowth and 
axonal transport by regulating interactions between motor 

Fig. 4   In SMA, increased 
MAP1B up-regulates tubulin 
tyrosine ligase (TTL) activity 
which increases tyrosinated 
α-tubulin. The breakdown of 
α-tubulin tyrosination balance is 
harmful to microtubule stability. 
Moreover, damaged microtu-
bule dynamics possibly affect 
axonal transport, influencing 
mitochondrial distribution along 
neurites
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proteins and microtubules [170, 172]. In SMN-deficient 
motor neuron cells, the expression of MAP2 exhibits a 
down-regulation independent of MAP1B [150, 173]. In 
neurons, tau protein is another structural MAP affected by 
SMA. Similar to other MAP family members in the nervous 
system, tau maintains the stability of axonal microtubules 
[170]. In motor neurons of SMA mouse models and spi-
nal cord of SMA patient, the hyperphosphorylation of tau 
mediated by cyclin-dependent kinase 5 contributes to the 
dissociation of MAPs from microtubule, subsequently lead-
ing to downregulated microtubule stability, impaired axonal 
transport and neuronal degeneration [151].

As end-binding proteins, plus-end-tracking proteins 
are regulated by major structural MAPs such as MAP1B, 
MAP2 and tau, which affects microtubule dynamics later 
[174–178]. Moreover, MAP1B and MAP2 interplay with 
microtubule end-binding proteins 1 and 3 (EB1 and EB3) 
and modulate their actions [174, 176, 178]. Unlike EB1 
expressed ubiquitously, EB3 is mainly expressed in neu-
rons and accumulates at the distal ends of freshly polym-
erized microtubules, and regulates growth of microtubules 
[179–181]. EB3 rather than EB1 exhibits a significant reduc-
tion in SMN-depleted cells. Furthermore, decreased MAP1B 
can elevate EB3 levels in SMN-depleted cells [173]. Located 
at both the cytoplasm and microtubule tips, EB3 interplays 
with proteins at microtubule tips like p150Glued and dre-
brin, and influences microtubule-dependent transport and 
interactions between F-actin and microtubules [182–185]. 
As shown in a study, the decline binding of EB3 to microtu-
bule tips caused by overexpressed MAP1B, indicating that 
up-regulated MAP1B and decreased EB3, may cooperate in 
the impaired microtubule dynamics of SMA [176]. On top of 
that, comets, which are structures formed by agminated EB3 
at microtubule ends, serve as markers for newly polymerized 
microtubules and are regulated by MAP1B and tau [174, 
176, 179, 180]. They are up-regulated at proximal neurites in 
SMN-depleted cells, which indicates more growing micro-
tubules at proximal neurites in SMA [173].

Neurofilament, a potential biomarker 
of SMA

Neurofilaments, as important structural proteins of neurons, 
are principally expressed in long axons [46]. As subunits 
of neurofilaments, neurofilament light chain and neurofila-
ment heavy chain are common detection indicators. In severe 
SMA patients and mouse models, increased demyelinated 
axons were observed and degenerated rapidly postnatally, 
thereby resulting in release of neurofilament light chain 
[20]. Concentrations of neurofilaments in cerebral spinal 
fluid (CSF), serum, or plasma indicate neuronal damage and 
have been proposed as potential prognostic and treatment 

responsive biomarkers in several neurodegenerative diseases 
such as ALS, AD, PD and SMA [186].

As a potential biomarker of SMA, the scope of applica-
tion of neurofilaments is controversial. Neurofilament light 
chain levels in serum and CSF showed strong correlation 
with motor function in a pediatric control cohort on SMA 
patients [187]. In a single-center pilot study, phosphorylated 
heavy chain and light chain neurofilaments in the CSF of 
SMA patients correlated with disease severity and activity, 
indicating that neurofilaments in CSF may serve as marker 
of neuronal loss and clinical outcome [188]. However, in 
some studies, although decreased after treatment with nusin-
ersen, levels of neurofilaments and neurofilament light chain 
in the CSF of SMA type 3 patients did not exhibit correla-
tion with motor functions, suggesting that neurofilaments 
may be insufficient to serve as an optimal surrogate treat-
ment biomarker [189, 190].

In SMA infants, increased plasma neurofilaments levels 
correlate with age and several markers of disease severity 
including Hammersmith Infant Neurological Examination 
Section 2 motor milestones score, Children’s Hospital of 
Philadelphia Infant Test of Neuromuscular Disorders score, 
and peroneal and ulnar nerve compound muscle action 
potential amplitudes, inversely associated with SMN2 copy 
number [187, 191]. Moreover, in SMA infants and mouse 
model, levels of phosphorylated heavy chain and light chain 
neurofilaments in plasma declined rapidly after nusinersen 
treatment, suggesting their potential as a peripheral marker 
reflecting the pathological status of SMA [186, 187, 191, 
192]. Nevertheless, SMA patients treated with onasemno-
gene abeparvovec monotherapy exhibited a significant rise 
in plasma neurofilaments levels, indicating that neurofila-
ments may be insufficient to function as the single marker to 
predict outcomes [186]. Further studies are needed to deter-
mine the role of neurofilaments in the pathomechanism of 
SMA.

Conclusion

Accumulated evidence suggests that cytoskeletal abnormali-
ties may play an important role in motor neuron degenera-
tion in progression of SMA. In SMA condition, cytoskeleton 
abnormalities induce growth cone formation, neurite exten-
sion and microtubule formation defects, thereby amplifying 
SMN-dependent cellular alterations. SMN deficiency dys-
regulated actin cytoskeleton by interfering with increased 
free PFN2 which led to an up-regulation of the ROCK 
pathway, contributing to neuronal damages such as inhib-
ited neurite outgrowth, growth cone collapse and impaired 
axon pathfinding. PLS3 regulated calcium influx and F-actin 
dynamics to promote pathogenesis of SMA. The alterations 
of microtubule stability which affect axonal transport are 
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associated with the changes of tubulin modifications. The 
collaboration of several MAPs such as STMN1, MAP1B 
and tau contributes to downregulated microtubule stability, 
impaired axonal transport and subsequent neuronal degen-
eration. Existing clinical studies have shown that the level of 
neurofilaments in SMA can increase with the demyelination 
of axon and decrease after nusinersen treatment, suggest-
ing the potential of neurofilaments to serve as prognostic 
and treatment responsive biomarkers for guiding therapeutic 
interventions.

The investigation into cytoskeleton holds significant 
potential for understanding the pathogenesis of SMA and 
other neurodegenerative disorders. However, the existing 
studies still have some limitations. First, the trends in the 
changes of cytoskeleton-associated proteins and influencing 
degrees of impaired cytoskeleton are controversial among 
various SMA models. Secondly, the causal link between 
SMN loss and cytoskeletal dysfunctions is unclear and 
needs further study. Third, investigations about the effect of 
cytoskeletal dysfunctions on SMA have focused on animal 
and cellular models. Although a series of clinical trials have 
suggested the potential of neurofilaments as biomarkers of 
SMA, the role of actin disturbance and microtubule insta-
bility in the pathomechanism of SMA needs to be further 
explored in clinical trials. Despite the constraints of current 
research, comprehending the fundamental mechanisms regu-
lating cytoskeletal proteins is crucial for formulating fresh 
targeted therapies to treat SMA.
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