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FrozONE: quick cell nucleus enrichment for
comprehensive proteomics analysis of frozen tissues
Lukas A Huschet1,*, Fabian P Kliem1,*, Peter Wienand2, Claudia M Wunderlich2, Andrea Ribeiro3, Isabel Bustos-Martı́nez4,
Ángel Barco4, F Thomas Wunderlich2, Maciej Lech3 , Maria S Robles1

Subcellular fractionation allows for the investigation of compart-
mentalized processes in individual cellular organelles. Nuclear en-
richment methods commonly employ the use of density gradients
combined with ultracentrifugation for freshly isolated tissues. Al-
though it is broadly used in combination with proteomics, this
approach poses several challenges when it comes to scalability and
applicability for frozen material. To overcome these limitations, we
developed FrozONE (Frozen Organ Nucleus Enrichment), a nucleus
enrichment and proteomics workflow for frozen tissues. By exten-
sively benchmarking our workflow against alternative methods, we
showed that FrozONE is a faster, simpler, and more scalable al-
ternative to conventional ultracentrifugation methods. FrozONE
allowed for the study, profiling, and classification of nuclear pro-
teomes in different tissues with complex cellular heterogeneity,
ensuring optimal nucleus enrichment from different cell types and
quantitative resolution for low abundant proteins. In addition to its
performance in healthy mouse tissues, FrozONE proved to be very
efficient for the characterization of liver nuclear proteome alter-
ations in a pathological condition, diet-induced nonalcoholic
steatohepatitis.
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Introduction

Cellular compartmentalization has played a pivotal role in the
evolution of life and its complexity and has allowed the devel-
opment of specialized regions within cells, known as organelles,
each dedicated to specific tasks (Honigmann & Pralle, 2016). Un-
derstanding molecular processes specifically occurring in these
cellular niches requires efficient subcellular fractionation or iso-
lation techniques to yield compartmentalized organelles for their

individual investigation. Quantitative proteomics is a very powerful
technology that allows the characterization of tissue and cellular
processes with great depth. When combined with organelle en-
richment methods, it also permits the study of subcellular protein
localization, which is crucial for understanding protein function, as
well as the cellular processes and pathologies linked to their
spatial misplacement (Christopher et al, 2021). In addition, sub-
cellular proteomics enable deeper coverage of spatially confined,
low abundant proteins that are otherwise difficult to detect be-
cause of the high dynamic range in whole tissue or cell protein
extracts (Wu & Han, 2006).

The cell nucleus is an organelle that stores the genetic infor-
mation necessary to orchestrate all cellular processes (Rippe, 2007).
The development of nucleus enrichmentmethods dates back to the
1940s (Claude, 1943; Claude & Potter, 1943), commonly employing
the use of density gradients combined with ultracentrifugation to
separate cellular compartments. Among them, sucrose-based
gradient methods using freshly isolated tissues have become
the gold standard, as sucrose is inexpensive and water-soluble and
allows collection of nuclei with a high degree of purity (Lee et al,
2010). However, this approach poses several limitations to the
scalability and robustness of proteomics workflows: (i) ultracen-
trifuges generally have a small number of slots, limiting parallel
processing required in large-scale studies; (ii) not every laboratory
has access to an ultracentrifuge; (iii) preparation of individual
gradients and posterior downstream processing is time- and
resource-consuming; and (iv) the necessity of using fresh tissue
hinders the exploration potential of stored samples such as frozen
human specimens or biopsies.

To address these issues, we established FrozONE (Frozen Organ
Nucleus Enrichment), a subcellular proteomics workflow that is
reproducible, robust, quick, and scalable, for the preparation and
analysis of nuclear proteomes from frozen tissues without the need
for ultracentrifugation. We extensively benchmarked our workflow
and found that FrozONE competed with conventional gradient
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centrifugation methods using both frozen and fresh tissues, in
terms of quantitative depth and reproducibility of nuclear proteins.
Moreover, we demonstrated its performance with three distinct
organs, brain, liver, and kidney, and its availability to resolve their
cellular and spatial proteome heterogeneity. Finally, as a proof of
principle, we employed FrozONE to characterize alterations of the
liver nuclear proteome caused by a high-fat diet (HFD), conven-
tionally used to induce nonalcoholic steatohepatitis (NASH). Our
data revealed that a NASH-inducing diet rewires the nuclear
abundance of numerous proteins in the mouse liver, including a
subset of transcription factors that has been associated with
metabolic disruption. This finding highlights FrozONE’s potential for
use in clinical research.

Results

Comparative proteomics analysis of FrozONE and common
nucleus enrichment methods

To provide a method that allows for the comprehensive charac-
terization of nuclear proteomes from frozen tissues in a rapid,
robust, and scalable manner, we developed FrozONE. This workflow
combines the use of a nucleus enrichment kit that does not require
ultracentrifugation, commonly used to obtain nuclear preparations
for RNAseq (Habib et al, 2017; Bravo González-Blas et al, 2020; Sun
et al, 2020), with mass spectrometry (MS)–based quantitative
proteomics. Using three different mouse tissues (brain, liver, and
kidney), we benchmarked the performance of FrozONE, comparing
it with two density gradient methods using ultracentrifugation of
frozen tissues (iodixanol frozen and sucrose frozen) (Kim et al, 2015;
Ragazzini et al, 2019; Strzelecki et al, 2022), and the traditional gold
standard method that uses fresh material and sucrose-based
gradient ultracentrifugation (sucrose fresh) (Kim et al, 2015;
Ragazzini et al, 2019; Strzelecki et al, 2022) (Fig 1A). We enriched
nuclei from all tissues (n = 3) using all four protocols and measured
the proteomes by single-shot MS-based quantitative proteomics
with data-independent acquisition (DIA) (see the Materials and
Methods section).

Although the methods yielded varying numbers of total proteins
(all quantified confidently between replicates), the fraction of
proteins annotated as nuclear (see the Materials and Methods
section) was quite similar between methods for each individual
tissue (from 2,500 to almost 4,000 corresponding to 45–49% of the
total quantified proteins), indicating that none of the methods
systematically outperform the others (Fig 1B). Overall, the fraction
of proteins that were robustly quantified in every replicate with
FrozONE was 76% (average over tissues) for all proteins and 81% for
proteins annotated as nuclear. This fraction is very comparable to
the values obtained with the other methods (Fig S1A). We therefore
conclude that the use of our quick and low-speed centrifugation
workflow with frozen tissues, FrozONE, achieved equivalent re-
producible quantification depth of nuclear proteins as classical,
more tedious gradient ultracentrifugation–based methods.

After quantification performance, we next assessed the repro-
ducibility of proteomes across methods and tissues by principal

component analysis (PCA). The separation of proteomes in the two
main components showed FrozONE as the method with the
highest correlation of intensities between biological replicates for
all tissues (average Pearson’s r > 0.95, Figs 1C and S1B for nuclear
and non–nuclear-annotated proteins). FrozONE proteomes
showed the least separation in all tissues, even less than those
from the gold standard, sucrose fresh, whereas brain from su-
crose frozen and kidney and liver from iodixanol scattered far
apart. Overall, we observed that the coefficient of variation (CV) of
FrozONE protein quantifications was consistently among the
lowest across methods for total, nuclear, and non–nuclear-
annotated proteins, highlighting the high quantitative repro-
ducibility of our workflow. Furthermore, CVs from nucleus pro-
teomes were generally lower than those from whole-cell
proteomes (Fig S1C), indicating a high quantitative reproducibility
of nucleus proteome preparations from frozen tissues. Similar
quantification reproducibility and robustness were observed for
nuclear subgroups of proteins, such as those from nuclear
membrane, nucleoplasm, nucleolus, and chromatin binding an-
notations (GOCC), as expected better than the CVs from the same
annotations in whole-cell preparations (Fig S1A and C). FrozONE
and the classical sucrose-based gradient ultracentrifugation with
fresh tissue produced the most reproducible and robust pro-
teomes with a high degree of overlap (73–87%) and a similar total
number of nuclear or non–nuclear-annotated proteins (Fig S2A).
Therefore, all further comparisons focused on these two methods.
Both produced equivalent dynamic ranges of protein abundance in
all tissues, with histones being among the most intense proteins,
as expected from efficiently enriched nucleus fractions (Fig 1D).
When compared to whole-cell preparations, FrozONE enriched
nuclear proteins as efficiently as the gold standard (Fig S2B),
showcasing FrozONE’s competitiveness to comprehensively
characterize nuclear proteomes.

As expected, enrichment analysis of significantly up-regulated
proteins in FrozONE nuclei versus whole-cell lysate (WCL) pro-
teomes showed an overrepresentation of nuclear-related terms
(i.e., nucleoplasm, nucleolus, and nucleus) and an underrepresen-
tation of non-nuclear terms (i.e., mitochondria, peroxisome, Golgi
apparatus, and cytoplasm) in all tissues (Table S1). Indeed, the total
number of proteins annotated as localizing to these non-nuclear
organelles is not substantial and similar when comparing FrozONE
and sucrose fresh (Fig S3A). To further show the enrichment capacity
of FrozONE compared to the gold standard method, we compared
protein intensities in nuclear-enriched fractions versus WCL. Overall,
we found that FrozONE enriched nuclear proteins equal or better,
depending on the tissue, than sucrose fresh (Fig S3B). In contrast,
proteins annotated from other cellular organelles show clear de-
enrichment in FrozONE nuclear preparations, again to a better or
similar degree as sucrose fresh preparations (Fig S3C). We can thus
conclude that no organelle is prone to substantially “contaminate”
FrozONE preparations to a higher degree than in current standard
nucleus enrichment methods.

We then investigated the capability of both methods to quantify
low abundant proteins from a wide variety of nuclear processes
(Cleaver, 2004; Brickner et al, 2019; dos Santos & Toseland, 2021;
Stewart, 2022), such as transcription factors (TFs), chromatin
modifiers, DNA repair machinery, and nuclear transport machinery.
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FrozONE quantified, independently of the tissue, hundreds of these
typically low abundant nuclear process proteins, such asmore than
400 TFs and chromatin modifiers. These numbers were equal, or in
some cases higher, than those obtained with the gold standard
method (Fig 1E). Collectively, these benchmark data show that our
newly established proteomics workflow FrozONE is a strong com-
petitor to conventional and tedious nuclear enrichment methods
providing robust and reproducible protein quantifications, high-
lighting its potential for large-scale analysis of nuclear proteomes
using frozen material.

FrozONE allows resolution of tissue-specific nuclear proteomes

Having demonstrated that FrozONE performs as well as the current
gold standards for nucleus enrichment from not only fresh but also
frozen tissues, we sought to investigate its potential to resolve
tissue-specific nuclear protein signatures. To this end, we analyzed
and compared FrozONE proteomes obtained from mouse brain,
liver, and kidney. From the total 8,928 quantified proteins (Table S2),
we found 4,101 common to all three tissues, and 5–20% of each
proteome exclusive to their tissue (Fig 2A). Tissue-specific protein

Figure 1. Comparative proteomics analysis of FrozONE and common nucleus enrichment methods in mouse tissues.
(A)Workflow of nucleus enrichment methods (see the Materials and Methods section for detail). (B) Barplot of the mean number of proteins quantified across at least
two biological replicates in each tissue andmethod (n = 3). Light-colored bars denote total protein quantifications, whereas dark bars denote nuclear-annotated proteins
(see the Materials and Methods section). Error bars indicate the SD. (C) Principal component analysis of protein intensities in biological replicates (n = 3) from each organ
and nucleus enrichment method. (D) Scatter plot of protein abundance sorted by abundance rank percentile comparing FrozONE and sucrose ultracentrifugation with
fresh tissue. Common histones betweenmethods are labeled in blue. (E) Barplot of themean number of proteins quantified across biological replicates (n = 3) in FrozONE
and sucrose gradient with fresh tissue for important groups of nuclear proteins.
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Figure 2. FrozONE allows resolution of mouse tissue–specific nuclear proteomes.
(A) Upset plot illustrating the distribution of protein quantifications between tissues of 8,928 proteins quantified in at least 2/3 replicates in at least one tissue.
(B) Heatmap showing the z-scored label-free quantification of log2-transformed intensities of 5,961 proteins significant in an ANOVA (FDR = 0.001). (A, B, C) Top seven
enrichment analysis results of tissue-up-regulated (B) and tissue-exclusive proteins (A). For brain and liver, KEGG terms, and for kidney, GOBP terms are shown.
(D) Boxplots showing average log2 label-free quantification intensities of nuclear cell-type marker proteins for each tissue and histograms showing overall intensity
distributions for each tissue. AST, astrocyte; MIC, microglia; Neu, neuron; OLI, oligodendrocyte; CHC, cholangiocyte; HC, hepatocyte; HSC, hepatic stellate cell; KC, Kupffer
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signatures can be determined not only by exclusive presence but
also by differential abundance of proteins (Wang et al, 2019). We
therefore compared protein abundance in all tissues (see the
Materials and Methods section) and found that 5,961 proteins (67%)
showed statistically significant differences in their abundance
across tissues (one-way ANOVA, S0 = 0, FDR < 0.05). Furthermore,
13–37% of these proteins exhibited exclusive up-regulation in only
one of the respective three tissues (Fig 2B). By combining tissue-
specific up-regulated and tissue-specific exclusively detected
proteins, we defined lists of tissue signature proteins (Table S2).
Enrichment analysis (Fisher’s exact test, FDR < 0.02) of these sig-
nature proteins highlighted, as expected, enriched processes with
tissue-related functions, such as sensory processing and long-term
potentiation in brain, lipid and drug metabolism in liver, and
nephron cell differentiation and development in kidney (Fig 2C).
Annotations of biological functions that seem specific to a different
tissue are generally due to the alternative roles of those
annotation-containing proteins in other tissues. For example,
proteins from gastric acid secretion are involved in calcium sig-
naling, a key process for brain function. Taken together, our analysis
demonstrates the capability of FrozONE to characterize tissue-
specific nuclear protein signatures.

Given the high degree of cellular heterogeneity within organs, we
next aimed at confirming the capability of FrozONE to enrich nuclei
from different cell types within organs. To this end, we interrogated
our data for cell-type markers defined by published whole-cell
proteomics studies, considering only proteins annotated as nuclear
(see the Materials and Methods section): 192 markers from 4 brain
cell types (Sharma et al, 2015), 54 markers from 5 liver cell types
(Azimifar et al, 2014), and 20markers from 2 kidney cell types (Sigdel
et al, 2020). From all of them, we detected 71% (145) of brain, 40%
(23) of liver, and 65% (13) of kidney cell-type markers that overall
represent all the 11 cell types (Fig 2D). Taking into consideration the
fact that Sharma et al (2015) and Azimifar et al (2014) used peptide
fractionation to enhance quantification depth, while we relied on
DIA, the coverage of our single-shot FrozONE nuclear proteomes is
remarkable. In addition to its great depth, our workflow’s high
quantification reproducibility and robustness allowed us to reca-
pitulate reported distributions of cell types in each tissue by
comparing the intensities of nuclear-annotated cell-type marker
proteins within the tissues (Fig 2D). For example, intensities of
kidney proximal tubular cell marker proteins were higher than
those of glomerular cell markers, in line with their respective 66%
(Balzer et al, 2022) and 5% (Appel & Radhakrishnan, 2012) pro-
portion in this tissue. Similarly, intensity differences of brain cell-
type markers recapitulated the distributions of the corresponding
cell populations: 10%microglia (Ochocka & Kaminska, 2021), 10–20%
astrocytes (Sun et al, 2017), 20% oligodendrocytes, and 50% neurons
(Valério-Gomes et al, 2018). Notably, the proportion of neurons and
oligodendrocytes were even better reflected when using individual
conventional markers (Fig S4A). The same was also observed for the
distribution of the different liver cell types: 3–5% cholangiocytes
(MacParland et al, 2018), 5–10% hepatic stellate cells (Kamm &

McCommis, 2022), 15% Kupffer cells (Sitia et al, 2011), 15–20% liver
sinusoidal endothelial cells (LSECs) (Du & Wang, 2022), and 80%
hepatocytes (Blouin et al, 1977; Bogdanos et al, 2013). Only
oligodendrocytes and LSECs were not precisely recapitulated
because of the large variability of marker intensities. We conclude
that FrozONE is a robust method to profile nuclear proteomes from
highly heterogeneous organs and can sufficiently quantify markers
from low abundant cell types.

Besides general tissue and cell type–specific characterization,
we were particularly interested in exploring potential differences in
protein abundance of TFs across tissues, as TFs drive gene ex-
pression programs to control development and function in an
organ- and a cell type–specific manner (Hammonds et al, 2013;
Jiménez et al, 2023). When filtering our quantified proteins for TFs
listed in the Animal Transcription Factor Database 4.0 (TFDB 4.0
[Shen et al, 2023]), we identified around 10% to be exclusive in one
of the tissues (Fig 2E). When comparing the abundance of TFs
commonly present in all tissues, we found 344 of them showing
statistically significant differences across tissues (one-way ANOVA,
S0 = 0, FDR < 0.05), of which 10–20%were exclusively up-regulated in
single tissues (Fig 2F). Combining both tissue-exclusive and tissue-
up-regulated TFs, we defined TF signature datasets in brain (65),
liver (73), and kidney (145) (Table S2). These signatures included TFs
with known key roles in the development of the respective tissues
(Fig 2F), such as the neurodevelopmental factors BC11, NDF2, and
SOX2 (Lennon et al, 2017; Simon et al, 2020; Tutukova et al, 2021;
Mercurio et al, 2022). Likewise, tissue signatures also contained TFs
that play cell type–specific roles, such as ARI1B and SATB1, which
regulate neurogenesis and senescence, respectively (Cancio-Bello
& Saez-Atienzar, 2020; Moffat et al, 2021), and OLIG1/2, which is
required for oligodendrocyte differentiation (Dai et al, 2015; Tsigelny
et al, 2016).

Together, our data indicate that FrozONE is a suitable method to
study, profile, and classify nuclear proteomes in different tissues
with complex cellular heterogeneity. Our method ensures en-
richment of nuclei from diverse and low abundant cell types, thus
providing quantitative resolution of low abundant proteins.

Spatial resolution of nuclear proteomes from distinct mouse
brain areas

The brain is a heterogeneous tissue with a high degree of diversity
in regard to anatomical structure, cellular composition, and
function (Miterko et al, 2018). Robust and scalable methods able to
generate comprehensive nuclear proteomes from distinct brain
areas could provide relevant molecular insights into the mecha-
nisms that drive context-specific spatial gene expression (Kang
et al, 2011) and epigenetic reprogramming in healthy and patho-
logical brains (Isles, 2018).

To test whether FrozONE is suitable to characterize brain area
specific nuclear proteomes, we applied it to two functionally dis-
tinct brain regions, the hippocampus (HC), involved in memory and
emotion (Lisman et al, 2017), and the hypothalamus (HT), involved in

cell; LSEC, liver sinusoidal endothelial cell; GLOM, glomerulus; PT, proximal duct. (E) as A but filtered for transcription factors (TFs). (F) as B but filtered for TF. Marker TFs
relevant for their tissue transcriptional machinery are indicated.
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hormonal and homeostatic balance, and the regulation of physi-
ological daily rhythms such as the sleep–wake cycle and food
intake (Lechan & Toni, 2000; Van Drunen & Eckel-Mahan, 2021).

FrozONE-enriched nuclear fractions obtained from HC and HT
yielded more than 2,000 quantified nuclear-annotated proteins,
and similar ratios of nuclear annotated over total quantified
proteins as full forebrain preparations (49% and 54%, respectively,
compared with 48% in forebrain; Fig 3A). These ratios exceeded, or
were equal to, those reported in recent studies using nuclear
enrichment strategies by proximity labeling or differential centri-
fugation of either total or specific brain areas (Dumrongprechachan
et al, 2021; Herbst et al, 2021; Kandigian et al, 2022) (Fig S5A). As those
studies employed diverse methodology, we opted for generating
reference nuclear proteomes, using the same MS methods, from
high-purity nuclear preparations. To do so, we used fluorescence-
activated nucleus sorting (FANS) and a mouse model that condi-
tionally expresses SUN1-GFP in CaMKIIα-positive hippocampal
neurons (Fernandez-Albert et al, 2019) (see the Materials and
Methods section). Proteomic measurements of FANS nuclei yielded
3,864 quantified proteins, from which 57% (similar to FrozONE brain
and HC samples) were annotated as nuclear (Table S3), despite
being highly pure nuclei preparations. This points toward an in-
completeness of the protein annotation database, thus concluding
that FrozONE nucleus enrichment is quite efficient and comparable
to, in principle, purer nuclei preparations. Overall, almost 80% of
proteins quantified in SUN1-GFP neuronal hippocampal nuclei were
also quantified in the FrozONE hippocampus preparations. Those
proteins exclusively quantified in FrozONE hippocampus samples
were enriched in non-neuronal cell-typemarkers, as expected from
these samples that contained all cell-type diversity in the hippo-
campal region (Fig S5B and Table S3). Despite not being contained
in FANS proteomes, almost 50% of these FrozONE-exclusive pro-
teins have nuclear annotations, like the overall percentage seen in
the rest of FrozONE, sucrose fresh, and even FANS nucleus-
exclusive or total fractions (Figs S3A and S5B). Dimensionality re-
duction in the three FrozONE brain nuclear proteomes using PCA
revealed high reproducibility within triplicates and a clear sepa-
ration between brain regions, indicating distinct nuclear proteome
composition (Fig 3B). This separation is based on the differential
abundance of commonly quantified proteins across samples (a
requirement for PCA). Hence, it is not surprising that most HC or HT
proteins were also found in the total brain (Fig S5C).

The coverage of specific functional nuclear protein groups was
also very similar in total forebrain, HC, and HT, relative to the
number of total quantified proteins (Fig 3C), differing by less than
3% between areas. As observed, when we compared different or-
gans (Fig 1D), protein abundance ranges of HC and HT closely re-
sembled those of the forebrain, with histones being distributed
toward the highest abundance percentiles (Fig 3D).

As our FrozONE workflow exhibited great separation between
brain region–specific proteomes, we next focused on whether we
could determine region-specific TFs in HC and HT, which play a key
role in brain and cellular lineage development (Scotting & Rex,
1996; Thiel, 2006) and often show area-specific expression and
function (Mason et al, 2009; Co et al, 2020). Similar to total pro-
teomes, most of the TFs quantified in the nuclear preparations of HT
and HC (217 and 245, respectively) were also found in total forebrain.

However, FrozONE allowed us to resolve a few TFs in each area that
were not detected in the others (Fig S5D). Overall, our data show the
power of FrozONE to quantify low abundant nuclear functional
proteins in distinct brain areas, quantifying overall more TFs than
previous studies that performed comprehensive whole tissue
proteomics with elaborate fractionation strategies to boost their
quantification depth (Sharma et al, 2015; Liu et al, 2023) (Fig S5E).

In addition to TFs exclusively detected in brain areas, several
other TFs (4 in HT and 27 in HC) showed statistically significant
abundance differences (one-way ANOVA, S0 = 0, FDR < 0.05, Fig S5F).
Considering both exclusive and significantly up-regulated TFs, we
defined brain area–specific TF signatures, of which more than 25%
are reported to be essential for neuronal development (Fig 3E,
Table S3). For example, NFIB is identified as a HC and PITX2 as a HT
marker, both of which are known to regulate the development of
the respective brain area (Mason et al, 2009; Waite et al, 2013).

Our brain area–derived FrozONE proteomes also contained a
large fraction of proteins annotated with functions in neurode-
generative diseases (183 detected out of 288 present in the KEGG
pathway database) such as amyotrophic lateral sclerosis (ALS), and
Alzheimer’s, Huntington’s, or Parkinson’s disease (Fig 3H). As ab-
errant nuclear mechanisms, including nucleocytoplasmic trans-
port, chromosomal instability, nuclear inclusions, and RNA
processing and transcription, are often a hallmark of neurode-
generative diseases, precise profiling of nuclear protein signatures
in frozen specimens of patients affected by neurodegeneration
could have a great potential for the molecular understanding of
these chronic conditions (Nelson et al, 2022).

In summary, FrozONE is proficient at discerning nuclear pro-
teome patterns specific to small brain regions such as the HC and
HT. Consequently, it offers a great potential for the investigation of
brain area–specific functions in healthy states and pathological
conditions.

High-fat diet rewires the nuclear proteome of mouse liver

After demonstrating that FrozONE allows deep nuclear proteome
quantification from frozen organs and can resolve tissue-specific
protein signatures, we next explored its applicability to the iden-
tification of alterations in the nuclear compartment driven by
pathological conditions. We chose diet-induced nonalcoholic
steatohepatitis (NASH), a condition with increased prevalence in
developed countries that has been linked to hepatocarcinoma
(Pouwels et al, 2022; Teng et al, 2023). Development and progression
of NASH involves transcriptional changes related to lipid and
glucose homeostasis, as well as other associated processes such as
inflammation and fibrosis (Steensels et al, 2020). We therefore
employed FrozONE to investigate changes in the nuclear proteome
composition of livers from mice fed a NASH-inducing high-fat diet
(HFD) (see the Materials and Methods section), compared with mice
fed a control diet (CD).

We found that overall protein quantification, percentage of
nuclear protein annotations (55% and 53% in CD or HFD, respec-
tively), and specific nuclear protein groups were similar in nuclear
preparations of livers from both diets (Fig S6A and B). We therefore
conclude that tissue composition, in this case, higher lipid content
in HFD livers, does not affect FrozONE’s performance. Next, we
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compared protein abundance in the nuclear-enriched liver prep-
arations from the two diets. We found that 26% and 3.2% (1,755 and
215 out of the total 6,721) of quantified proteins showed statistically
significant abundance differences (P- and Q-value < 0.05, log2 fold
change > 1, Fig 4A, Table S4) in HFD and CD livers, respectively. Our
data thus show that diet-induced metabolic challenge rewires the
nuclear proteome composition in the liver, which is consistent with
the extensive transcriptional changes reported in this organ under
the same metabolic condition (Dorn et al, 2014; Steensels et al,
2020).

Furthermore, we observed that nuclear-annotated proteins with
statistically significant higher levels under HFD are enriched in
metabolic-related pathways, such as lipid and fatty acid meta-
bolism, NADP- and NAD-related processes, and lipid binding
(Fisher’s exact test, FDR < 0.05, Table S4). In particular, we detected
HFD-driven higher nuclear accumulation of several enzymes in-
volved in acetyl-CoA metabolism. As acetyl-CoA is used as an acetyl

group donor for histone acetylation, our data indicate that higher
nuclear levels of those enzymes could be amolecular underpinning
driving reported HFD-associated effects in histone acetylation
levels (Arias-Alvarado et al, 2021). For example, higher levels of ATP
citrate lyase (ACLY), a key enzyme mediating the conversion of
citrate to acetyl-CoA in the nucleus, in response to HFD could lead
to an increase of nuclear acetyl-CoA levels to be subsequently
stored in the form of histone acetylation (Boon et al, 2020), linking
thus metabolic to epigenetic state. In addition to epigenetic al-
terations, direct modulation of TF activity by metabolic state can
also contribute to the large hepatic transcriptional changes ob-
served under HFD. Our data support this idea as we found that
among the total 374 TFs quantified, 11% (42) were significantly up-
regulated in HFD and only 1.3% (5) in CD (Fig 4A, Table S4). HFD
nucleus–enriched preparations contained not only increased
levels of TFs but also the exclusive presence of 10 TFs, many of them
playing key roles in metabolic functions (Fig 4B, Table S4).

Figure 3. Spatial resolution of nuclear proteomes from distinct mouse brain areas.
(A) Barplot with the mean number of proteins quantified with FrozONE across three biological replicates from brain areas hippocampus (HC), hypothalamus (HT), and
entire forebrain (Brain). Light-colored bars denote total protein quantifications, whereas dark bars denote nuclear-annotated proteins (see the Materials and Methods
section). Error bars indicate the SD. (B) Principal component analysis of FrozONE proteomes from each brain area in three biological replicates. (C) Barplot of the mean
numbers of proteins quantified across three biological replicates in the brain areas for important groups of nuclear proteins. (D) Scatter plot of protein abundance
sorted by abundance rank percentile comparing the brain areas. Common histones between areas are labeled in blue. (E) Heatmap showing the z-scored normalized
log2-transformed intensities of 53 HC and HT marker transcription factors (ANOVA-significant S0 = 0, FDR = 0.05 or exclusive). (F) Venn diagram showing the number of
proteins quantified in the areas with KEGG pathway annotation for selected neurodevelopmental diseases.
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Furthermore, our data reveal that the pleiotropic transcription
factor PPARγ is exclusively localized to liver nuclear fractions under
HFD conditions (Fig 4B), corroborating previous studies that re-
ported HFD-induced up-regulation of Pparγ gene expression from
basal levels in homeostatic states (Inoue et al, 2005; Wang et al,
2020; Vesting et al, 2022). These results reveal an additional layer of
Pparγ regulation in the context of HFD-induced pathology, not only
at the transcriptional level (Inoue et al, 2005; Pettinelli & Videla,
2011) but also at the protein and subcellular localization levels. In
silico protein–protein interaction analysis using the STRING

network database (Szklarczyk et al, 2023) of significantly up-
regulated and exclusive TFs in HFD nuclei retrieved a core net-
work of interactions, constituted mainly by the STAT, NFkB, RUNX,
and JUN families (Fig 4C). Members of these TF families are known
mediators of metabolic homeostasis in the liver, whose function is,
often indirectly, reported altered under metabolic challenge (Inoue
et al, 2004; Dorn et al, 2014; Dodington et al, 2018; Heida et al, 2021;
Bertran et al, 2022). To date, however, very few, if any, reports have
investigated the precise modulation of their nuclear accumulation
in response to metabolic challenges. Our analysis further offers

Figure 4. High-fat diet rewires the nuclear proteome in the mouse liver.
(A) Volcano plot showing the result of a permutation-based t test comparing protein intensities across biological replicates (n = 3) in control (left) and high-fat diet
(right). Colored points denote significantly up-regulated proteins with a −log (P-value) cutoff of = 1.3 (FDR = 0.05) and a fold change cutoff of log2 1 for each diet (CD, blue;
HFD, red). (B) Heatmap of z-scored protein intensities of quantified transcription factors across biological replicates (n = 3) in CD (right) and HFD (left) with exclusively
quantified TFs in HFD in the bottom part. (C) String physical subnetwork of up-regulated and exclusive transcription factors in HFD. The TF list was loaded into the
STRING app in the Cytoscape platform with Mus musculus as a model species and physical network type, and with default search parameters (0.4 confidence cutoff).
Singletons were not shown, and only the main network was shown. After network generation, manual arrangement of nodes was performed. STAT proteins were colored
yellow; NFkB-related, blue; JUN-related, purple; and RUNX-related, red.
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precise subcellular quantitative information for some of those
factors that have been reported with preferential nuclear locali-
zation, as for the transcription factor JUN (Dorn et al, 2014)—a
central node in our interaction network. Accurate quantification of
nuclear levels is important when assessing treatment options and
could be also used for patient stratification and drug response
predictions.

Collectively, our results highlight FrozONE’s robust capacity to
resolve nuclear protein abundance variations in mouse livers
under metabolic pathological conditions. FrozONE enables the
precise identification and quantification of transcription factors
that may serve as pivotal regulators in the molecular mechanisms
underlying nonalcoholic steatohepatitis pathogenesis.

Discussion

The high dynamic range of cellular protein abundance is a well-
known challenge for the quantification of low abundant proteins,
such as TFs or chromatin modifiers, thus limiting the investigation
of nuclear processes using conventional expression proteomics
(Wu & Han, 2006). A classical approach to overcome this limitation
involves multiple peptide fractionation of individual samples that
allows better quantification depth, which holds, in turn, disad-
vantages such as extensive measurement time and lack of spatial
information about protein localization. In contrast, proteomes of
enriched organelles (Pisitkun et al, 2004; Rezaul et al, 2005; Takatalo
et al, 2006; Wang et al, 2017) display reduced complexity and dy-
namic range, allowing for a deeper quantification of those low
abundant classes of proteins, as well as informing about subcel-
lular protein localization (Christopher et al, 2021). Furthermore,
recent advances in mass spectrometry, namely, data-independent
acquisition (DIA) (Michalski et al, 2011; Barkovits et al, 2020), have
also helped in tackling the dynamic range challenge. Motivated by
the potential of subcellular proteomics and the lack of robust and
scalable methods that permit large-scale investigation of the
nuclear proteome from frozen tissues, we developed FrozONE. Our
workflow combines two key aspects: the use of DIA with a quick,
reproducible, and scalable nuclear enrichment step from frozen
material.

After extensively benchmarking our workflow against conven-
tional density gradient ultracentrifugation–based nucleus enrich-
ment strategies using three mouse tissues, we showed that
FrozONE distinguishes itself in terms of quantification depth, re-
producibility, and robustness, allowing the comprehensive char-
acterization of nuclear proteomes of distinct organs in a single-shot
manner. We indeed obtained a remarkable protein coverage depth,
closely similar (80% of total nuclear proteins and 75% of TFs in liver)
to the one reported in a nuclear proteome study using SILAC la-
beling and multiple peptide fractionation (Wang et al, 2017). Our
comparison with data obtained from recent subcellular studies
(Christoforou et al, 2016; Thul et al, 2017; Go et al, 2021; Cho et al,
2022) showed an overall good overlap (Fig S7, Table S1), despite the
diversity of methods and assayed tissues. This overlap was higher,
as expected, with the high-purity nuclear proteomes we generated
by using FANS from excitatory hippocampal neurons (Fernandez-

Albert et al, 2019). This analysis further pointed to the incom-
pleteness of protein nuclear annotations, which explains the
medium percentage of nuclear proteins contained in all tested
methods and excludes a high degree of nonspecific non-nuclear
proteins in our preparations. We also assessed whether FrozONE
conspicuously missed the quantification of nuclear proteins when
compared to deep profiling studies that employed extensive
sample fractionation strategies, requiring thus much longer
preparation and measuring times. By doing this with our liver data,
we observed that no obvious groups of proteins with specific
nuclear function were not quantified with FrozONE that were
present in the other study (Wang et al, 2017). We found instead that
these proteins were enriched in annotations from non-nuclear
processes/compartments, such as “Lysosome,” “Extracellular re-
gion,” and “Cytoplasm” (Table S3). Given the inherent nature of any
nuclear enrichment, it cannot be expected to obtain a grade of
purity that resembles the one of an isolation method. Despite
FrozONE’s efficiency in depleting proteins from non-nuclear or-
ganelles (Fig S3C) in similar or better degree than the gold standard
method of sucrose gradient, it cannot fully segregate between
different possibilities, such as changes in the levels of actual non-
nuclear proteins because of abundance change within or reloc-
alization to or from a contaminating organelle. This confounding
factor could be further addressed by complementing the quanti-
fication of FrozONE-based nuclear-enriched fractions with WCL to
better distinguish nuclear-specific from confounder changes.

FrozONE was very efficient in retrieving high TF coverage in a
specialized brain area, the hippocampus, compared with analyses
employing prefractionation strategies that lead to large numbers of
samples and long measurement times (Fig S5E) (Sharma et al, 2015;
Liu et al, 2023). Even when compared to a recent characterization of
tissue-type restricted TFs (ttrTFs) using immunoprecipitation with
consensus sequences (Zhou et al, 2017), we obtained 20–40% more
TFs overall and similar tissue-specific abundance of commonly
quantified proteins (Fig S4B).

In addition to demonstrating the applicability of our workflow to
characterize tissue- and brain area–specific nuclear signatures in
healthy conditions, we tested the potential of FrozONE to uncover
changes driven by pathological conditions. To this end, we
employed our workflow to interrogate nuclear liver signatures in a
disease model of diet-induced NASH. FrozONE resolved more
nuclear proteins compared with other proteomics studies of HFD
livers involving multiple fractionation and ultracentrifugation
(3,570, 51% versus 1,891, 38%, respectively) (Liu et al, 2017). Even
when compared to a study employing organellar fractionation of
HFD livers (Krahmer et al, 2018), FrozONE managed to retrieve 84%
of proteins assigned to the nucleus as the main compartment. In
our diet intervention study, FrozONE revealed that a high-fat diet is
capable of reshaping the abundance of liver nuclear proteins, in
particular TFs, some of them already reported to be important for
the initiation and development of this pathology (Kern et al, 2018).
FrozONE captured overall a higher number of differentially
abundant transcription factors in HFD compared with previous
proteomics experiments (Zhi et al, 2022). Our data exposed a cluster
of transcription factors whose liver nuclear abundance is strongly
affected by HFD. These included STAT, JUN, NFkB, and PPARγ
families, all reported, often indirectly via motif analysis of RNAseq
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or their own gene expression, altered in NASH (Dorn et al, 2014;
Grohmann et al, 2018; Kern et al, 2018). In addition, our nuclear
proteome profiling also uncovered nuclear changes in metabolic
enzymes that link organelle metabolic state to the epigenome and
in several therapeutic targets already used in the context of NASH,
such as PPARγ, farnesoid X receptor (FXR), thyroid hormone re-
ceptor (THR), and pregnane X receptor (PXR) (Trauner & Fuchs, 2022;
Umemura et al, 2022). Together, our data indicate that FrozONE
performs well with organs whose composition is altered, such as
fatty liver, and that it can compete with other organellar frac-
tionation strategies that are resource-intensive and time-
consuming.

Collectively, we present FrozONE as a reproducible workflow to
comprehensively characterize nuclear proteomes in a short time
and without the need for fresh tissue processing and ultracen-
trifugation, thereby simplifying experimental logistics and in-
creasing scalability. Furthermore, the successful application of
FrozONE to both healthy and pathological tissues underscores its
potential for diagnostic purposes and the design of therapeutic
strategies. The scalability and efficiency of FrozONE facilitate the
analysis of large cohorts using minimal amounts of stored frozen
samples, offering significant applicability for clinical research. We
believe FrozONE can open new avenues for the molecular char-
acterization of nuclear processes in health and disease using
biobank available material.

Materials and Methods

Animal experiments

Organs were isolated from male C57BL/6N mice of 8–10 wk of age
that were maintained in individually ventilated cages under a 12-h
light/dark cycle and were provided with sterile food and water
under specific-pathogen-free conditions. All procedures were
performed in accordance with the European law regarding pro-
tection of animal welfare and with approval by the local govern-
ment authorities (animal facility registered for breeding and use of
animals for scientific purpose KVR-I/221-TA166/22_03-06).

The animal diet intervention study was carried out under per-
mission and in compliance with animal protection protocols ap-
proved by local government authorities (81-02.04.2022.A396;
Bezirksregierung Köln). Male C57BL/6N animals were purchased
from Charles River at 4 wk of age. Animals were housed in indi-
vidually ventilated cages (IVCs) with a 12-h light/dark cycle at
22–24°C. Animals had ad libitum access to water and a normal
control diet (13% kcal from fat and 42% kcal from carbohydrates,
ssniff E15767-0403; ssniff-Spezialdiäten GmbH). The condition group
received a high-fat diet (40% kcal from fat, 42% kcal from carbo-
hydrates, and 2% cholesterol, E15766-3402; ssniff-Spezialdiäten
GmbH) from 6 wk of age for 10 wk before euthanasia by cervical
dislocation at 16 wk of age.

For FANS experiments, Sun1-GFP x Camk2a-creERT2 mice with a
C57BL/6J genetic background were maintained and bred under
standard conditions, consistent with Spanish and European reg-
ulations. The generation of CaMKIIα-creERT2 ([Erdmann et al, 2007];

from the European Mouse Mutant Archive EMMA strain 02125) and
SUN1-tagged mice ([Mo et al, 2015]; stock no. 021039; Jackson
Laboratory) has been previously described. All the protocols for
animal experimentation were approved by the Animal Welfare
Committee at the Instituto de Neurociencias, the CSIC Ethical
Committee, and the Dirección General de Agricultura, Ganaderı́a y
Pesca of Generalitat Valenciana. In detail, mice were maintained
under specific-pathogen-free (SPF) conditions within the Animal
House at the Instituto de Neurociencias (CSIC-UMH), in a 12-h light/
12-h dark cycle (7:00 AM to 7:00 PM) at 20–24 °C and controlled
humidity (40–60%) with free access to food and water. At 2 mo old,
tamoxifen (20 mg/ml dissolved in corn oil; Sigma-Aldrich) was
administered intragastrically, five times on alternate days, to
produce the recombination of the floxed alleles and the expression
of the Sun1 reporter on the nuclear membrane.

Tissue collection

Mice for the diet intervention study were euthanized 6 h after lights
on. All other animals for centrifugation-based nucleus isolations
were euthanized during light hours (between 2 and 6 h after lights
on). All animals were euthanized by cervical dislocation. Complete
organs were dissected except for the brains, where over a culture
plate olfactory bulbs and cerebellum were removed to isolate
forebrains. These were further referred to as Brain. To isolate the
hypothalamus, brains were placed ventral side up and the hypo-
thalamus was bulged out by gentle pressing with tweezers and then
pulled off. To isolate the hippocampi, brains were split into two
hemispheres using a scalpel and the hippocampi were scooped out
using spatulas as previously described (Bin Imtiaz & Jessberger,
2021) and combined for further processing. After dissection, whole
organs were split for fresh preparation, in which they were im-
mediately processed for nucleus enrichment, and for frozen
preparation, where they were snap-frozen in liquid nitrogen right
after splitting and kept frozen at −80°C until processing. Mice for
FANS experiments were euthanized by cervical dislocation 1 mo
after recombination. Hippocampi were dissected and immediately
frozen with dry ice to preserve the integrity of the tissue.

Centrifugation-based nucleus enrichment

Sucrose gradient
Solutions were prepared ahead of time and kept at 4°C until the day
of processing. Both buffers had the same composition except for
the sucrose molarity (cushion buffer 2.05 M, homogenization buffer
2.2 M). Common elements were as follows: 10 mM Hepes, pH 7.6,
15 mM KCl, 2 mM EDTA, 0.15 mM spermine, and 3.2 mM spermidine.
On the day of processing, fresh components were added to sucrose
buffers: 1:1,000 1 M DTT and cOmplete EDTA-free Protease Inhibitor
Tablets (04693132001; Roche) according to the manufacturer’s
specifications. In ultracentrifugation tubes (cat. no. 355647; Beck-
man Coulter), 3.3 ml of cushion buffer was added and kept on ice. To
culture plates, 700 μl of homogenization buffer was added over ice,
and tissues were preminced thoroughly with scalpels until a fine
degree of mincing was achieved. Using self-made wide 1,000-μl
pipette tips, minced tissues were transferred to 7-ml glass douncers
(cat. no. 357542; Wheaton) labeled previously with a 1.3-ml marking
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on ice and filled with HB until reaching the 1.3-ml mark. Another
1.3 ml of 1x TBS buffer was added, and tissues were dounced first
with 10 strokes with loose pestle “A” followed by 15 strokes with tight
pestle “B.” After homogenization, lysates were filtered through 40-
μm cell strainers (CC8111-0042; Starlab) on falcon tubes and
centrifuged for 2 min at 100g at 4°C. Filtered homogenates were
transferred to falcons containing 8.3 ml homogenization buffer and
mixed by inverting. Homogenates were then layered on top of the
sucrose cushion very slowly and carefully with “passive” force with
a serological pipette, to ensure proper layering and no mixing
between sucrose solutions. Samples were centrifuged for 40 min at
100,000g (XL-90, Rotor SW 40 Ti; Beckman Optima) at 4°C. After
ultracentrifugation, a layer of fat could be observed on top of the
tube and was wiped out with a tissue. Sucrose solutions were
aspirated dry until a small white nucleus pellet could be observed
on the bottom.

Iodixanol gradient
Stable 6x homogenization buffer (30 mM CaCl2, 18 mMMg(Ac)2, and
60 mM Tris–HCl, pH 7.8) was prepared ahead of time and kept at
4°C. On the day of the experiment, first “unstable” 6x homoge-
nization buffer was prepared (stable 6x homogenization buffer
and 1 mM β-mercaptoethanol), and subsequently, 1x “unstable”
homogenization buffer (1:6 unstable 6x homogenization buffer,
320 mM sucrose, 0.1 mM EDTA, 0.1% NP-40, and cOmplete EDTA-
free Protease Inhibitor Tablets) was prepared. Frozen tissues were
brought to ice and left soft/defrost for 10 min. In the meantime,
5.4 ml of 29% iodixanol solution (1:6 unstable 6x homogenization
buffer, 160 mM sucrose, and 29% iodixanol) and 4 ml of 1x ho-
mogenization buffer were added to UC tubes and 7 ml glass
douncer, respectively, and both were left on ice. Soft/defrosted
tissues were prepared the same way as above-mentioned under
Sucrose gradient. After filtering, 3.6 ml of homogenate was taken
and mixed thoroughly with equal parts of 50% iodixanol solution
(1:6 unstable 6x homogenization buffer, 50% iodixanol) to make it
25%. Then, the 25% iodixanol/homogenate mix was layered very
slowly and carefully on top of the 29% iodixanol solution, where a
clear separation between the two phases should be achieved.
Samples were centrifuged for 30 min at 10,000g (XL-90, Rotor SW
40 Ti; Beckman Optima) at 4°C. Gradient solutions were aspirated
dry until a small white pellet could be observed on the bottom
(nuclei).

FrozONE workflow using adapted Nuclei EZ Prep protocol was as
follows:

1. Dissect frozen tissue pieces (~150 mg for whole tissues, for
hippocampus, and for hypothalamus whole tissue) and transfer
into 2-ml tubes.

2. Add one stainless steel ball in each tube and 1ml of cold Nuclei
EZ lysis buffer (NUC101; Sigma-Aldrich) supplemented with protease
inhibitors as in the previous methods.

3. Homogenize 100 mg frozen tissue using the TissueLyser II
(QIAGEN)* at 30 Hz for 30 s in the case of the brain, 20 s for the
kidneys, and 15 s in the case of liver in tube holders previously
cooled at 4°C. Inspect visually homogenates to ensure proper
homogenization. After homogenization, empty tubes over 40-μm
cell strainers (CC8111-0042; Starlab) on top of 50-ml tubes and
centrifuge at 100g for 2 min at 4°C.

4. Tap tubes slightly to dissociate any potential pellets and
transfer to 1.5-ml tubes sitting on ice.

5. Incubate for 5 min in ice, then centrifuge at 500g for 5 min at
4°C.

6. Remove the supernatant by aspiration carefully with a vacuum
pump with a 200-μl pipette tip at the end.

7. Dissociate aspirated pellets bymoving tubes across a tube rack
10 times.

8. Resuspend pellets with 1 ml cold Nuclei EZ lysis buffer and mix
by inverting three times.

9. Repeat steps 6–9 three times and remove the supernatant to
finish the nuclear enrichment.

*Hippocampus and hypothalamus were homogenized in the
glass douncer instead.

FANS for proteomics

To isolate the nuclei for sorting, frozen hippocampi were
mechanically disaggregated in a 2-ml Dounce homogenizer (Sigma-
Aldrich) containing 1 ml nuclear extraction buffer (NEB) whose
composition is as follows: 250 mM sucrose, 25 mM KCl, 5 mM MgCl2,
20 mM Hepes–KOH, 65 mM β-glycerophosphate, 0.5% IGEPAL CA-
630, 0.2 mM spermine, 0.5 mM spermidine, and protease inhibitors
(cOmplete EDTA-free, Roche). Hippocampi were disrupted 15 times
with each pestle (A and B). Then, the homogenized solution was
filtered with 70-μmNylon filters (Corning Falcon) to remove cellular
debris. Afterward, nuclei were transferred to 2-ml Protein LoBind
Eppendorf tubes and stained with 0.01 mM of DAPI for 10 min at 4°C.
To dilute the nuclei and improve the sorting, 1 ml of phosphate
buffer solution 1X with additives (0.2 mM spermine, 0.5 mM sper-
midine, proteinase inhibitors, and 0.01 M MgCl2) was added to the
solution up to a final volume of 2 ml. DAPI- and GFP-positive nuclei
(neurons) were isolated by FANS in a flow cytometer (FACSAria III;
BD Bioscience).

Sorted nuclei were collected in 1.5-ml Protein LoBind Eppendorf
tubes filled with 200 ml of nuclear isolation buffer (NIB), whose
composition is as follows: 340 mM sucrose, 25 mM KCl, 5 mM MgCl2,
20 mM Hepes–KOH, 65 mM β-glycerophosphate, 0.2 mM spermine,
0.5 mM spermidine, and proteinase inhibitors. Nucleus morphology
and integrity after sorting was assessed with a fluorescence mi-
croscope. All buffers used during this protocol (NEB, NIB, and PBS)
were prepared using autoclaved material not washed with soaps to
avoid contamination with detergents and then filtered with 0.22-μm
sterile filters (VWR). Nuclei were centrifuged for 10 min at 1,500g
(4°C), and the supernatant was removed. Immediately after, nuclei
were snap-frozen in liquid nitrogen.

Proteome sample preparation

Dry nucleus pellets were dissociated by moving tubes across EPPI
racks. Afterward, proteomes were prepared based on the EasyPhos
method for proteomes (Humphrey et al, 2018). Buffers were dis-
solved in Milli-Q water unless stated differently. In detail, 300 μl of
lysis buffer (2% SDC [sodium deoxycholate, 30970; Sigma-Aldrich],
100 mM Tris, pH 8.5) was added to pellets and samples were im-
mediately boiled at 95°C for 5 min with agitation (1,500 rpm,
Eppendorf ThermoMixer C) to inactivate phosphatases and
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proteases. After boiling, samples were cooled off in ice for 2 min
before sonication for 45 cycles 30-s on and 30-s off at maximum
output (Bioruptor Plus). After sonication, protein concentration was
determined by BCA assay (Pierce BCA Protein Assay Kits). Aliquots of
10 μg protein were taken, and volumes were equilibrated with
leftover lysis buffer. Afterward, 10x alkylation/reduction buffer
(100 mM TCEP-HCl, 400 mM 2-chloroacetamide at pH ~7 adjusted
with KOH) was added 1:10 and incubated for 5 min at 45°C with
agitation (1,500 rpm, Eppendorf ThermoMixer C). Samples were
subsequently digested simultaneously with trypsin (cat. no. T6567;
Sigma-Aldrich) and LysC (cat. no. 129-02541; Wako Chemicals) at a 1:
100 protein:enzyme ratio overnight at 37°C with agitation. Tryptic
digests were acidified by adding equal amounts of SDB-RPS loading
buffer (2% TFA, 98% isopropanol). Acidified digests were then
loaded in two steps of 150 μl on in-house-made three-layer SDB-
RPS StageTips (CDS Empore SDB-RPS Extraction Disks [Rappsilber
et al, 2007]) supported in 3D-printed adaptors for 2-ml tubes and
centrifuged for 8 min at 1,500g or until liquid is completely through.
After loading, StageTips were washed with 100 μl of SDB-RPS
loading buffer and centrifuged for 5 min at 1,500g. After this,
samples were washed with 100 μl of SDB-RPS wash buffer (0.2% TFA,
5% acetonitrile (ACN)) and centrifuged for 5 min at 1,500g. For
elution, right before usage, NH4OH was added to the SDB-RPS
elution buffer (80% ACN, 0.3125% NH4OH). StageTips were placed
on a 3D-printed 96-well centrifuge adapter on PCR tubes. After this,
60 μl of SDB-RPS elution buffer was added and samples were
centrifuged for 5 min at 1,500g or until completely through. Im-
mediately afterward, tubes were placed on an evaporative con-
centrator (Eppendorf Vacuum Concentrator Plus) and centrifuged
till dryness for 30 min at 45°C. Then, samples were resuspended
with 10 μl A*-buffer (20% ACN, 0.1% TFA) and kept frozen at −20°C
until measurement.

LC-MS/MS

Two hundred nanograms of desalted peptides was loaded into in-
house–packed 50-cm reversed-phase columns (75 cm diameter,
1.9 mm C18 ReproSil particles, Dr. Maisch GmbH) with the EASY-nLC
1,200 system (Thermo Fisher Scientific) at 60°C. Livers and brains for
method comparison were measured with a gradient length of 120 min
(5–30% buffer B for 105 min, to 95% for 5 min, constant for 10 min) with
a flow rate of 300 nl/min. Kidneys and the livers for the pathological
study weremeasured with a gradient length of 90min (5–30% buffer B
for 75 min, to 95% for 5 min, constant for 10min) with a flow rate of 300
nl/min (Vanquish HPLC, Thermo Fisher Scientific), which were found to
produce highly comparable data to the longer one. Elution and
separation of peptides were achieved using a binary buffer system
between buffer A (0.1% formic acid, MS-grade water) and buffer B (80%
ACN, 0.1% formic acid, MS-grade water). Eluted peptides were elec-
trosprayed into an Exploris 480 mass spectrometer (MS) (Thermo
Fisher Scientific). Full scans (MS1) were set with Orbitrap resolution
120,000, scan range 350–1,000 m/z, maximum injection time 45 ms,
data type “Profile,” and normalized AGC target to 300%. DIA scans (MS2)
were set with Orbitrap resolution 15,000, scan range 350–1,000 m/z,
windowoverlap 1m/z, normalized AGC target to 1,000%, andmaximum
injection time to automatic. For DIA isolation window calculation, the
median retention time was calculated from previous DDA runs of the

same length and divided by the number of desired data points per
peak (n = 6) to obtain cycle time. The number of DIA windows was
calculated by subtracting cycle time with MS1 transient time at a
resolution of 120,000 (259ms), and then dividing by MS2 transient time
at a resolution of 15,000 (32 ms). The isolation window was then
calculated by rounding the result of subtracting scan range values
(1,000-350 m/z) and dividing it by the number of DIA windows.

Data analysis

MS raw files were processed with DIA-NN (Demichev et al, 2020)
(version 1.8.2 beta 22) with all tissues together using default
parameters unless stated: spectral library generation ON with
mouse FASTA files UP000000589_10090 and UP000000589_1009
0_additional (obtained on 27/10/2022). The peptide length range
was set for 7–35 and precursor m/z range 350–1,000. Protein
inference was set to “Protein names (from FASTA)” and quanti-
fication strategy to “Composite (high precision).” After quantifi-
cation, protein group output files “pg_matrix.tsv” were imported
into the Perseus platform (version 2.0.10.0). Raw intensities were
log2-transformed to make them normally distributed, and pro-
teins were annotated using GO terms (GOBP, GOCC, and GOMF),
KEGG database (Kanehisa & Goto, 2000), UniProt keywords, the
COMPARTMENTS database (Binder et al, 2014), and AnimalTFDB
4.0 (Shen et al, 2023) for Transcription Factors and Cofactors. We
considered proteins as “nuclear” if they were annotated with
“Nucleus” in UniProt or COMPARTMENTS keywords or both. To
annotate important functional groups of nuclear proteins, we
used the following filters: nuclear shuttling (“Nucleus” and
“Cytoplasm” in UniProt keywords), chromatin modifiers (“chro-
matin modification|chromatin remodeling|chromatin assembly|
chromatin silencing|chromatin maintenance|chromatin orga-
nization” in GOBP or “chromatin remodeling complex|chromatin
silencing complex|chromatin assembly complex|chromatin ac-
cessibility complex” in GOCC), DNA repair machinery (“DNA re-
pair|base-excision repair|nucleotide-excision repair|double-
strand break repair|interstrand cross-link repair” in GOBP),
and nuclear transport machinery (“nuclear import|nuclear ex-
port|nuclear transport|import into nucleus|protein targeting to
the nucleus|protein export from nucleus” in GOBP).

Proteins were considered confidently quantified if they had at
least two values among triplicates in at least one group (tissue,
method, and/or condition). This filter was applied before each
comparison with a different set of groups. The only exceptions to
this filter were for PCA, proteins were filtered for 100% valid value
quantifications, and for valid value distributions (Fig S1A), no filter
was applied.

For reproducibility analysis, Pearson’s correlation and CVs were
calculated in Perseus and plotted with ggplot. For t test analysis,
missing values were imputed by replacing them from a normal
distribution (width 0.3, down shift 1.8, separately for each column);
they were calculated in Perseus (two-sided, 250 randomizations,
FDR < 0.05, S0 = 0.1, and no group preserving during randomizations)
and visualized with ggplot.

Exclusive identifications were obtained after applying the valid
value filter above-mentioned and averaging log2 intensities
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between replicates, and UpsetR was used for visualization. Tissue-
up-regulated proteins were determined by imputing missing values
from the sample normal distribution (width 0.3, down shift 1.8),
followed by multiple-sample testing (ANOVA as indicated in figure
legends) in Perseus. Exclusive and up-regulated proteins were
combined, and subsequent enrichment analysis was performed
using Fisher’s exact test in Perseus (BH FDR and P < 0.02) taking all
quantified proteins as background. Liver and Brain KEGG terms
were further filtered to have an intersection size of at least 10
before plotting. Cell-type marker proteins for brain, liver, and
kidney were obtained from published literature (Azimifar et al, 2014;
Sharma et al, 2015; Sigdel et al, 2020). ggplot2 was used to plot their
log2 protein intensities and overall distributions, and patchwork
was used to combine plots. The neurodegenerative disease Venn
diagram was created using ggVennDiagram.

For the diet intervention analysis, protein group output files
“report.pg_matrix.tsv”were imported into thePerseusplatformanddata
were treated the sameway as stated above. For the volcano plot, a valid
value filter of two out of three values in at least one group was applied,
and then, missing values were imputed by replacing them from a
normal distribution (Perseus’s default parameters). A t test was per-
formed using Perseus’s volcano plot function with default parameters,
and the significance threshold was set for an absolute log2 fold change
of 1 and −log10 (P-value) of 1.3 (permutation-based q < 0.05). Tran-
scription factors significant in HFD under this threshold were combined
with the ones exclusively found in HFD (at least two out of three ex-
clusively in one condition and not the other). Then, missing values were
imputed by replacing them with the smallest intensity value found in
thismergeddataset, to thenbe row-wise–z-scoredandsplit into the two
clusters. After separation, missing values were replaced back to NaN in
each dataframe separately, and then, they were merged back together
to represent them in the heatmap. For network analysis, gene list of
exclusively quantified and up-regulated TFs (defined by ATFDB 4.0) in
HFD was loaded into the STRING app (version 2.0.1) in the Cytoscape
platform (version 3.10.1), with Mus musculus as a model species and
physical network type, and with default search parameters (0.4 confi-
dence cutoff). Singletons were not shown, and only the main network
was shown. After network generation, manual arrangement of nodes
wasperformed, and thenetworkwas exported as aPDF for further visual
processing in the InkScape platform (version 1.1.2).

For reporting overlapping quantification with nuclear proteins from
indicated literature (Fig S7), Go et al proteins were filtered for those
they predict with NMF and SAFE as nucleolus, nuclear body, nuclear
outer membrane–ER membrane network, nucleoplasm, chromatin,
splicing speckles, nuclear pore, and paraspeckles, Thul et al and
Christoforou et al proteins were filtered for nucleus, Cho et al (2022)
proteins were filtered for grade 3 (very prominent localization) nuclear
proteins, and all nonhuman proteins were matched to mouse
orthologs using the Ensembl database before matching by mouse
protein group UniProt id and plotting overlaps using UpsetR.

Data Availability

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE (Perez-

Riverol et al, 2022) partner repository with the dataset iden-
tifier PXD050658.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202403130.
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Jiménez S, Schreiber V, Mercier R, Gradwohl G, Molina N (2023)
Characterization of cell-fate decision landscapes by estimating
transcription factor dynamics. Cell Rep Methods 3: 100512. doi:10.1016/
j.crmeth.2023.100512

Kamm DR, McCommis KS (2022) Hepatic stellate cells in physiology and
pathology. J Physiol 600: 1825–1837. doi:10.1113/JP281061

Kandigian SE, Ethier EC, Kitchen RR, Lam TT, Arnold SE, Carlyle BC (2022)
Proteomic characterization of post-mortem human brain tissue
following ultracentrifugation-based subcellular fractionation. Brain
Commun 4: fcac103. doi:10.1093/braincomms/fcac103

Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 28: 27–30. doi:10.1093/nar/28.1.27

Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AMM, Pletikos M, Meyer
KA, Sedmak G, et al (2011) Spatio-temporal transcriptome of the
human brain. Nature 478: 483–489. doi:10.1038/nature10523

Kern L, Mittenbühler MJ, Vesting AJ, Ostermann AL, Wunderlich CM,
Wunderlich FT (2018) Obesity-induced TNFα and IL-6 signaling: The
missing link between obesity and inflammation—driven liver and
colorectal cancers. Cancers 11: 24. doi:10.3390/cancers11010024

Kim JY, Kwak PB, Gebert M, Duong HA & Weitz CJ (2015) Chapter ten -
purification and analysis of PERIOD protein complexes of the
mammalian circadian clock. In Methods in Enzymology, Sehgal A (ed),
pp 197–210. Cambridge, MA: Academic Press

Krahmer N, Najafi B, Schueder F, Quagliarini F, Steger M, Seitz S, Kasper R,
Salinas F, Cox J, Uhlenhaut NH, et al (2018) Organellar proteomics and
phospho-proteomics reveal subcellular reorganization in diet-
induced hepatic steatosis. Dev Cell 47: 205–221.e7. doi:10.1016/
j.devcel.2018.09.017

Lechan RM, Toni R (2000) Functional anatomy of the hypothalamus and
pituitary. In Endotext, Feingold KR, Anawalt B, Blackman MR, Boyce A,
Chrousos G, Corpas E de Herder WW, Dhatariya K, Dungan K, Hofland J,
et al (eds). South Dartmouth, MA: MDText.com, Inc.

Lee YH, Tan HT, Chung MCM (2010) Subcellular fractionation methods and
strategies for proteomics. PROTEOMICS 10: 3935–3956. doi:10.1002/
pmic.201000289

Lennon MJ, Jones SP, Lovelace MD, Guillemin GJ, Brew BJ (2017) Bcl11b—a
critical neurodevelopmental transcription factor—roles in health and
disease. Front Cell Neurosci 11: 89. doi:10.3389/fncel.2017.00089
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