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Abstract
Introduction  While ≥ 40 CAG repeat expansions in HTT present a well-established cause of Huntington’s disease (HD), an 
enrichment of HTT repeat expansions was recently reported also in patients with amyotrophic lateral sclerosis (ALS) and 
frontotemporal dementia (FTD), including FTD/ALS patients with additional HD neuropathology. This raises the question 
whether the phenotypic spectrum of HTT expansions can be extended to ALS and FTD, and whether HTT should be consid-
ered as a new causative gene of FTD/ALS. If HTT repeat expansions were indeed systematically related to FTD/ALS, one 
would expect an increased frequency of HTT carriers in FTD/ALS, who can clinically/neuropathologically not be explained 
better than by the presence of the HTT repeat expansions.
Methods  Screening of HTT repeat expansions in 249 consecutive patients with ALS or FTD by short-read genome sequenc-
ing took place. The post-mortem neuropathological examination was performed in the identified HTT repeat expansion 
carrier.
Results  One HTT repeat expansion [40/22 repeats (± 1)] was identified in an ALS patient, giving a frequency of 0.4% (1/249) 
(frequency in the general population: 0.03–0.18%). This patient showed a classic ALS phenotype, but no clinical or imaging 
signs of HD. Post-mortem brain examination revealed—in addition to ALS-typical degeneration of upper and lower motor 
neurons with TDP-43 inclusions—HD-typical polyQ-aggregates in gyrus cinguli, striatum and frontal lobe, yet without 
evidence of striatal degeneration.
Conclusions  Our study does not support the notion of an increased frequency of HTT repeat expansions in FTD/ALS. 
Moreover, the phenotype of the HTT carrier identified can be better explained by two co-existent, but independent diseases: 
(i) ALS and (ii) presymptomatic HD, which—given the low repeat number—is likely to become manifest only later in life. 
These findings corroborate the concept that HTT repeat expansions are likely co-existent/coincidental, but not causative in 
FTD/ALS.
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Introduction

While ≥ 40 CAG repeat expansions in HTT present a well-
established cause of Huntington`s disease (HD), an enrich-
ment of HTT repeat expansions was recently reported also 
in patients with amyotrophic lateral sclerosis (ALS) or 
frontotemporal dementia (FTD), including FTD/ALS 
patients with additional HD neuropathology [1]. Specifi-
cally, Dewan and colleagues found: (i) a frequency of 
0.12% (3/2442) and 0.14% (5/3674) HTT-carriers, respec-
tively, in FTD/ALS cohorts compared to 0.03% (10/31372) 
in the general population; and (ii) both FTD/ALS-typical 
TDP-43-pathology and HD-typical polyQ-inclusions with-
out evidence of striatal degeneration in autopsy of two 
HTT-carriers with an ALS-phenotype [2]. These findings 
raise the question whether the phenotypic spectrum of 
HTT expansions can be extended to ALS and FTD, and 
whether HTT should be considered as a new causative 
gene of FTD/ALS.

Given the recent controversy on this notion [3, 4] and 
the need for validation by independent screening studies 
and post-mortem studies (as emphasized by the authors 
themselves, [1, 5]), we here investigated the following 
two-fold hypothesis: if HTT repeat expansions were indeed 
systematically related to FTD/ALS, one would expect (1.) 
an increased frequency of HTT carriers in FTD/ALS, (2.) 
who can clinically/neuropathologically not be explained 
better than by the presence of the HTT repeat expansions. 
This hypothesis was tested by a large screening of HTT 
repeat expansions by short-read genome sequencing (SR-
GS) of 249 patients with ALS or FTD, combined with 
post-mortem neuropathological examination in the HTT 
carrier identified by this large screening.

Methods

Genome‑based HTT expansion screening 
of a consecutive FTD/ALS series and in‑depth 
phenotyping

A consecutive series of 249 subjects with ALS (N = 188), 
FTD (N = 52) or FTD/ALS (N = 9)—each diagnosed to 
standard criteria (ALS: [6–8]; FTD: [9, 10]; FTD/ALS: 
[11])—was recruited by the FTD/ALS outpatient clinics 
of the Center of Neurology, Tuebingen, between 2019 and 
2022 and investigated by short-read genome sequencing 
(SR-GS). The sequencing libraries were generated using 
the Illumina DNA PCR-Free protocol and sequenced 
on an Illumina NovaSeq 6000 sequencer with a target 
depth of 38x. The sequencing reads were mapped to the 

GRCh38 reference genome using BWA-mem2 v.2.2.1 
(https://​github.​com/​bwa-​mem2/​bwa-​mem2) and repeat 
expansions were detected with ExpansionHunter v5.0.0 
(https://​github.​com/​Illum​ina/​Expan​sionH​unter). In-depth 
phenotyping was performed in the identified patient with 
a pathological CAG HTT expansion by clinical, imaging, 
electrophysiological and fluid biomarker studies, followed 
by autopsy and post-mortem neuropathology examination. 
All subjects provided written informed consent before par-
ticipation and publication according to the Declaration of 
Helsinki.

Neuropathological examination

The identified patient with a HTT repeat expansion, who 
died at age 63 years, underwent autopsy of brain and spinal 
cord, performed at the Brain Bank Unit Tuebingen of the 
DZNE Brain Bank. Neuropathological evaluation was per-
formed on formalin-fixed paraffin embedded tissue sections 
from 20 standardized neuroanatomical regions (including 
various neocortical regions, basal ganglia, thalamus, amyg-
dala, hippocampus, brain stem, cerebellum and spinal cord) 
following guidelines for the assessment and diagnosis of 
neurodegenerative diseases including hematoxylin and eosin 
staining and immunohistochemistry with antibodies against 
phosphorylated TDP-43 (clone 1D3, [12]), phosphorylated 
tau (clone AT8, Thermo Fisher), α-synuclein (clone 4D6, 
Origene), beta-amyloid (clone 4G8, Covance), polyQ (clone 
1C2, Millipore), p62 (BD Transduction Laboratories) and 
GFAP (clone GA5, Diagnostic BioSystems) using the Ven-
tana BenchMark XT automated staining system with the 
Optiview DAB detection kit (Ventana). The 1C2 antibody 
against polyQ is widely used in neuropathological evaluation 
of postmortem HD brains against expanded polyglutamine 
tracts [13, 14].

Results

Frequency of HTT repeat expansions in FTD/ALS

HTT repeat expansion screening by SR-GS in 249 FTD/ALS 
patients identified one ALS patient with a pathogenic HTT 
repeat expansion (40/22 CAG repeats (± 1) (repeat size con-
firmed by fragment length analysis)), giving a frequency of 
0.4% (1/249) (HTT repeat expansion allele frequency in the 
literature: 0.03 [2]—0.18% [15]) (for cohort characteristics 
in terms of family history and further genetic findings, see 
Supplement 1). 18 patients (7.2%) had a predicted intermedi-
ate expansion within the range 27–35 CAG repeats; 1 patient 
a pathogenic repeat expansion with reduced penetrance (37 
CAG repeats).

https://github.com/bwa-mem2/bwa-mem2
https://github.com/Illumina/ExpansionHunter
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No other second mutation was identified in the ALS 
patient with a pathogenic HTT repeat expansion which might 
have explained either his clinical ALS phenotype or the late-
onset dementia syndrome in his ancestors (see below); except 
a variant in microtubule associated protein tau (MAPT), 
NM_001123066.4: c.509del, p.(Pro170LeufsTer24), 
GRCh38(chr17):g.45983312del. This was formally cat-
egorized as variant of uncertain significance (VUS), but 
was unlikely to have a pathogenic impact as it was located 
only deep-intronic in the main brain expressed MAPT tran-
scripts (ENST00000351559.10, ENST00000446361.7, 
ENST00000535772.6). Furthermore, in those weakly 
brain expressed transcripts, where it was located exonic 
(ENST00000262410.10,  ENST00000344290.10, 
ENST00000415613.6, ENST00000571987.5), it predicts 
a premature stop – yet loss-of-function does not present a 
mutational mechanism known to lead to disease in MAPT. 
Two wildtype C9orf72 alleles were predicted by Expansion-
Hunter, and a C9orf72 repeat expansion was additionally 
also ruled out by PCR-based fragment length analysis (for 
further details on the sequencing statistics and coverage of 
genes of interest, see Supplement 2).

In‑depth phenotyping

The male patient showed a classic ALS phenotype, with dis-
ease onset at age 61 years with progressive dysarthria, dys-
phagia, paralysis and death after 2 years due to global respir-
atory insufficiency. The neurological examination revealed 
an involvement of both upper and lower motor neuron, with-
out any clinical signs or changes of behaviour characteristic 
of HD even on repeated investigations by independent move-
ment disorders neurologists. Furthermore, the patient scored 
only 8 points on the Unified Huntington's Disease Rating 
Scale (UHDRS [16]), likely reflecting the effects of ALS 
rather than (even incipient) HD, as they included: gait distur-
bances from paresis, severe dysarthria, and difficulties with 
tandem walking. There were no specific clinical signs of 
HD, including no abnormalities of tongue protrusion, chorea 
or dystonia. CSF NfL levels were substantially increased 
to 4090 pg/mL (cut-off < 916 pg/mL). Cerebral and spinal 
MRI ruled out competing diagnoses like ischemic lesions, 
tumors and spinal stenosis. No regional atrophies including 
frontal lobe, insula, striatum and caudate nucleus were found 
(see Fig. 1a, b, c). Overall Huntington's Disease Integrated 
Staging System (HD-ISS [17]) disease stage was 0. Fam-
ily history was positive for late-onset (> 60 years) dementia 
syndromes in several generations, including reported behav-
ioural changes, progressive speech decline and parkinson-
ism in the index patient´s father (see Fig. 1d), indicating an 
autosomal-dominant family history for a, partly complex, 
late-onset neurodegenerative dementia syndrome.

Neuropathology

Macroscopically, the spinal cord revealed atrophic anterior 
roots, otherwise the CNS was unremarkable. The histologi-
cal analysis showed mild to moderate loss of Betz’s cells 
in the precentral gyrus, as well as moderate loss of motor 
neurons in the hypoglossal nucleus and anterior horns of the 
spinal cord (Fig. 2a). TDP-43 immunoreactive inclusions, 
characteristic for ALS (neuronal cytoplasmic inclusions and 
oligodendroglial inclusions), were present in the spinal cord, 
brain stem and precentral gyrus (Fig. 2b, c).

No obvious cell loss and gliosis were seen in H&E stains 
in HD-characteristic brain regions such as the caudate 
nucleus (Fig. 2d) and putamen. However, GFAP-immuno-
histochemistry revealed mild to moderate gliosis in the head 
of the caudate nucleus (Fig. 2e), in line with Vonsattel grade 
1 [18]. Moderate numbers of anti-polyQ labelled neuronal 
nuclei as well as more compact intranuclear inclusions were 
found in the striatum (Fig. 2f), frontal cortex (Fig. 2g) and 
gyrus cinguli, as characteristic for HD.

As an additional minor comorbid finding, mild Alzhei-
mer’s Disease associated neuropathological changes (ABC 
score A2, B1, C1) were present.

Discussion

Our work tested the recently reported hypothesis that the 
phenotypic spectrum of HTT expansions might be extended 
to ALS and FTD, and that, correspondingly, HTT might be 
considered as a new causative gene, or at least genetic risk 
factor, of FTD/ALS [1]. Combining a large-scale genetic 
screening plus in-depth phenotyping and post-mortem neu-
ropathology investigations, we did not find an increased 
frequency of HTT repeat expansions in 249 WGS datasets 
(1/249 = 0.4%, compared to the HTT repeat expansion allele 
frequency of 0.03 [2]—0.18% [15] in the general popula-
tion). Moreover, the phenotype and neuropathology of the 
only HTT repeat expansion carrier identified by this large 
screening was better explained by two independent diseases: 
(i) ALS and (ii) as of yet still presymptomatic HD stage, 
which, given the low repeat number, is likely to become 
manifest only later in life. Given that polyQ-inclusion 
pathology was still mild, and atrophies absent, it is more 
parsimonious to assume that this very mild HD neuropa-
thology is indicative of a presymptomatic HD stage, rather 
than the putative cause of the full-blown, fatal ALS disease.

These results question the presumed causality of HTT 
repeat expansions in FTD/ALS. This notion had been 
especially based in a prior study on two findings: (i) a fre-
quency of 0.12% (3/2442) and 0.14% (5/3674) HTT-carri-
ers, respectively, in FTD/ALS cohorts compared to 0.03% 
(10/31372) in the general population; and (ii) both FTD/
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ALS-typical TDP-43-pathology and polyQ-inclusions 
without evidence of striatal degeneration in autopsy of 
two HTT-carriers with an ALS-phenotype [1]. These find-
ings have already been criticized on conceptual grounds 
[3]: (i) The clinical phenotype with cognitive symptoms 
and language disturbance described in five out of eight 
presumable “FTD patients” of this series might be compat-
ible with HD (especially in one patient with apathy and 
irritability) rather than with FTD, rendering it likely that 
the observed HTT repeat expansions simply caused HD, 
rather than FTD. (ii) In the three identified ALS patients 
with HTT repeat expansions, the CAG repeat expansions 
size was near the threshold of 40 repeats, rendering it pos-
sible that also in these three instances, like probably the 
case in the patient reported here, these respective patients 
were carrying two independent conditions: a manifest ALS 
disease, and an, as of yet presymptomatic, Huntington’s 
disease. This would also present the most parsimonious 

explanation for the neuropathology investigations per-
formed in two of the three subjects: the presence of polyQ 
and p62 staining, in the absence of striatal degeneration, is 
best indicative of a presymptomatic HD stage [19]. Given 
the well-established correlation between repeat length and 
severity of clinical symptoms, age at onset and extent of 
striatal degeneration [20] as well as the small expansion 
of the repeat size, HD would only become manifest later 
in life in these subjects, allowing other concomitant dis-
eases, such as ALS, to manifest earlier in life. Supporting 
this notion, in the 63-year-old subject reported here with a 
small expansion of the HTT repeat, we also found typical 
signs of full-blown ALS pathology with atrophy of first 
and second motor neuron, accompanied by TDP-43-posi-
tive inclusions; but with only mild levels of polyQ- aggre-
gates without striatal atrophy, in sum indicative of con-
comitant HD, which was, in contrast to the ALS disease, 
yet a still very early stage. HD would likely have become 

Fig. 1   Cerebral magnetic resonance imaging (cMRI) in the index 
patient. cMRI at age 61 years revealed no evidence of atrophy in the 
frontal lobe, insula or caudate nucleus (a: frontal T2 FLAIR image 
showing intact insula; b: axial T2-weighted image demonstrating 
absence of frontal atrophy; c axial T2-weighted image indicating 
no caudate nucleus atrophy). Pedigree of the index patient. Fam-
ily history of the index patient (marked by an arrow) is positive for 

Parkinson`s disease and dementia (d). His father was diagnosed 
with a “Parkinsonian syndrome” at about age of 60 years, developed 
symptoms of a dementia with 73 years comprising language decline 
and changes in behaviour, and died at age 83  years. Two paternal 
aunts and one paternal uncle out of in total six siblings as well as 
their mother were also diagnosed with a late-onset neurodegenerative 
dementia syndrome. None of the relatives were suffering from ALS
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manifest later in life, possibly with a complex late-onset 
neurodegenerative dementia syndrome as in the patient’s 
ancestral generations.

This notion proposed here would also provide the most 
parsimonious explanation for other recent findings. Hickman 
et al. found both HD and ALS neuropathology in 6 out of 
751 brains from the New York Brain Bank. While exceeding 
the prevalence of ALS in the USA (0.8% vs. 0.0052%), all of 
these patients had HTT repeat expansions in the range from 
41 to 44 CAG repeats [21], and detailed clinical informa-
tion was available only for 2/6 subjects. In at least 1 of the 
2 cases, where clinical information was available (Case #1; 
41 CAG repeats; ALS disease, but only HD neuropathol-
ogy grade 1), the HTT repeat expansion is likewise most 
parsimoniously explained as a coincidental finding of a not 
yet-manifest HD disease, coexistent, but not causative, to 
the ALS disease. Correspondingly, like our study, another 
study could also not confirm an increased frequency of 
pathogenic HTT repeat expansions in ALS, observing only 
2 patients with intermediate, but no patient with pathogenic 
HTT repeat expansions in a screening cohort of 608 ALS 
patients [22]. However, our study is limited by the fact that 
we identified only a single ALS patient with a HTT repeat 
expansion, allowing no robust statistical comparison on the 
HTT repeat carrier frequency in our ALS cohort vs general 
population. To test this further, future studies of additional 

larger existing FTD/ALS cohorts vs general population 
data—ideally from the same ethnic origin and sequencing 
technique—are warranted.

In summary, our findings suggest a parsimonious notion 
to explain our and others’ observations of HTT repeat expan-
sions in FTD/ALS patients. Specifically, they suggest that 
there is yet no sufficient evidence for extending the phe-
notypic spectrum of HTT mutations beyond HD to include 
also ALS and FTD phenotypes. A more likely explanation 
is that, in some patients, HTT repeat expansions are simply 
a coincidental finding, at a yet presymptomatic HD stage, 
coexistent, but not causative, to an ALS/ FTD disease.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00415-​024-​12822-2.
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