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Abstract

Objectives To develop and externally validate a fully automated diagnostic convolutional neural network (CNN)
model for cirrhosis based on liver MRI and serum biomarkers.

Methods This multicenter retrospective study included consecutive patients receiving pathological evaluation of liver
fibrosis stage and contrast-enhanced liver MRI between March 2010 and January 2024. On the training dataset, an MRI-
based CNN model was constructed for cirrhosis against pathology, and then a combined model was developed
integrating the CNN model and serum biomarkers. On the testing datasets, the area under the receiver operating
characteristic curve (AUC) was computed to compare the diagnostic performance of the combined model with that of
aminotransferase-to-platelet ratio index (APRI), fibrosis-4 index (FIB-4), and radiologists. The influence of potential
confounders on the diagnostic performance was evaluated by subgroup analyses.

Results A total of 1315 patients (median age, 54 years; 1065 men; training, n= 840) were included, 855 (65%) with
pathological cirrhosis. The CNN model was constructed on pre-contrast T1- and T2-weighted imaging, and the
combined model was developed integrating the CNN model, age, and eight serum biomarkers. On the external
testing dataset, the combined model achieved an AUC of 0.86, which outperformed FIB-4, APRI and two radiologists
(AUC: 0.67 to 0.73, all p < 0.05). Subgroup analyses revealed comparable diagnostic performances of the combined
model in patients with different sizes of focal liver lesions.

Conclusion Based on pre-contrast T1- and T2-weighted imaging, age, and serum biomarkers, the combined model
allowed diagnosis of cirrhosis with moderate accuracy, independent of the size of focal liver lesions.

Critical relevance statement The fully automated convolutional neural network model utilizing pre-contrast MR
imaging, age and serum biomarkers demonstrated moderate accuracy, outperforming FIB-4, APRI, and radiologists,
independent of size of focal liver lesions, potentially facilitating noninvasive diagnosis of cirrhosis pending further
validation.
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Key Points
● This fully automated convolutional neural network (CNN) model, using pre-contrast MRI, age, and serum biomarkers,
diagnoses cirrhosis.

● The CNN model demonstrated an external testing dataset AUC of 0.86, independent of the size of focal liver lesions.
● The CNN model outperformed aminotransferase-to-platelet ratio index, fibrosis-4 index, and radiologists, potentially
facilitating noninvasive diagnosis of cirrhosis.

Keywords Deep learning, Liver cirrhosis, Magnetic resonance imaging, Neural networks, Computer

Graphical Abstract

Based on the CNN model on pre-contrast T1- and T2-weighted imaging, age, and serum biomarkers, the combined 
model allowed diagnosis of cirrhosis with moderate accuracy, independent of size of focal liver lesions. These 
results need further validation.
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Schematic of CNN model development

Methods-Patients
This multicenter retrospective study included consecutive 
patients receiving pathological evaluation of liver fibrosis stage 
and contrast-enhanced liver MRI between March 2010 and 
January 2024.

Results
• 1315 patients included
• Training set/internal testing set 

1/internal testing set 2/external 
testing set: 840/94/266/115

• Combined model achieved an 
external testing set AUC of 0.86

• Performances independent of size 
of focal liver lesions

Development of the combined model
Integrating the convolutional neural network (CNN) model with 
relevant clinical characteristics.

Introduction
Cirrhosis is the end stage of liver fibrosis and results from
chronic liver injury commonly caused by hepatitis B,
hepatitis C, and alcohol [1]. Cirrhosis is the 11th leading
cause of death globally [2] and represents the strongest
risk factor for hepatocellular carcinoma (HCC) regardless
of the etiology [3]. In patients with chronic liver disease, a
diagnosis of cirrhosis not only affects prognosis, but also
influences surveillance strategies, diagnosis, and suitability
for surgical treatments of HCC [2, 4–6].
The gold standard for the diagnosis of cirrhosis is his-

topathological examination based on liver biopsy, resec-
tion, or transplantation. However, histopathological
examination is prone to sampling bias [7, 8]. Furthermore,
liver biopsy is invasive, while resection and transplanta-
tion cannot diagnose cirrhosis preoperatively. These

drawbacks lead to the development of noninvasive diag-
nostic methods, with serum laboratory tests (e.g., fibrosis-
4 index [FIB-4] and aminotransferase-to-platelet ratio
index [APRI]) and liver stiffness measurement by ultra-
sound or MR elastography techniques being the most
common [9, 10]. However, FIB-4 and APRI have insuffi-
cient diagnostic accuracy for cirrhosis (areas under the
receiver operating characteristic curve [AUC], 0.65 to
0.74) [11, 12], and liver stiffness measurement is limited
by a lack of consensus on cut-off values regarding dif-
ferent etiologies and vendors, confounded by the effects of
several other non-fibrosis factors (e.g., liver inflammation,
cholestasis), and requires dedicated hardware [13].
Routine MRI can depict the morphologic and functional

changes of the liver and thus can also be used for cirrhosis
diagnosis. MRI is particularly suitable for patients
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with suspected or confirmed malignancies for concurrent
tumor detection, diagnosis, staging, aggressiveness eva-
luation and resectability assessment [14, 15]. However, the
sensitivity (~ 70%) and reproducibility (moderate agree-
ment) of manual assessment remained suboptimal based
on MRI [16, 17]. In this context, two recent studies suc-
cessfully applied convolutional neural network (CNN) to
diagnose cirrhosis based on the hepatobiliary phase MR
images, with AUCs reaching 0.84–0.85 [18, 19]. However,
hepatobiliary contrast agents are less used in Western
countries and may have degraded image quality in
patients with severe liver dysfunction [20]. Furthermore,
relevant serum biomarkers (e.g., markers of liver function
and portal hypertension) that might potentially improve
diagnostic accuracy were not analyzed in these models
[13]. The effects of potential confounding factors (e.g.,
size of liver tumors) on liver morphological and texture
alterations were not investigated.
Therefore, this study aimed to (1) develop and exter-

nally validate a fully annotated CNN model for diagnosis
of cirrhosis based on liver MRI and serum biomarkers, (2)
investigate the effects of potential confounders on model
accuracies, and (3) compare the model performances with
FIB-4, APRI and radiologists.

Materials and methods
This multicenter, retrospective study was approved by the
institutional review boards at four tertiary-care hospitals
with waived informed consent.

Patients
Between March 2010 and January 2024, consecutive adult
patients who fulfilled the following inclusion criteria were
identified: (1) adequate pathological evaluation of liver
fibrosis through liver resection, transplantation, or biopsy;
(2) underwent contrast-enhanced liver MRI within
3 months prior to surgery or around liver biopsy. Patients
were excluded if they: (1) underwent any previous liver-
directing treatment (e.g., liver resection and ablation)
before MRI or between MRI and surgery/liver biopsy; (2)
with inadequate MR image quality for assessment (e.g.,
severe MRI artifact); (3) with incomplete key lab test results
(detailed below) within 3 months prior to surgery or liver
biopsy. For patients with multiple qualified liver MRI, the
one closest to surgery or liver biopsy was selected.
All patients included from center 1 between March

2010 and May 2021 were divided into a training dataset
and an internal testing dataset 1 with a ratio of about 9:1
in a stratified manner to ensure a similar prevalence of
cirrhosis between the two datasets. Patients included from
center 1 between June 2021 and March 2023 were the
internal testing dataset 2, while patients included from
centers 2 to 4 were the external testing dataset.

Patient demographics, etiologies of the underlying liver
diseases, type of histopathological specimen, and key
laboratory results (e.g., aspartate aminotransferase [AST]
and alanine aminotransferase [ALT]) within 3 months
prior to surgery or liver biopsy were collected. FIB-4 and
APRI were calculated as previously described [9, 10].

Reference standard
Pathologic data retrieved from routine reports were used as
the reference standard for the diagnosis of cirrhosis. In
compliance with the institutional standard practice proce-
dures, two liver pathologists who were aware of the clinical
and imaging data reviewed all specimens in consensus. The
liver fibrosis stage was determined according to grading and
staging criteria for chronic hepatitis (Beijing, 1995) [21],
which is modified from the Scheuer system, as follows: S0,
no fibrosis; S1, enlargement and fibrosis of portal area; S2,
formation of fibrous septum, but intact lobular structure;
S3, fibrous septum with lobular structure distortion but no
cirrhosis; and S4, early cirrhosis or definite cirrhosis.
Fibrosis stage S4 was diagnosed as cirrhosis.

MRI examination
The MR images were acquired on several 3.0-T or 1.5-T MR
scanners (Supplementary Material 1 and Table S1). Liver
MRI protocols included dual-echo images, T2-weighted
images, and fat-suppressed T1-weighted dynamic phases.

Imaging analysis
For the testing datasets, all MRIs were independently
reviewed by two radiologists at center 1 with seven
(radiologist 1) and three (radiologist 2) years of experience
in liver MRI, respectively. The reviewers were blinded to
the histopathologic, clinical and laboratory information.
Each reviewer analyzed the MR images for the presence or
absence of radiological cirrhosis, which was defined as
unequivocal morphological alterations of the liver (e.g.,
surface nodularity, segmental volume redistribution, and
parenchymal nodules), with or without manifestations of
portal hypertension (portal-systemic collaterals, spleno-
megaly and/or ascites) [6, 22]. Radiologist 1 assessed
image artifact (Supplementary Material 2) and presence of
iron overload and liver steatosis.
Data on the number, size, location, and imaging diag-

nosis of focal liver lesions, bile duct dilatation and ascites
were extracted from routine MRI report and verified by
radiologist 1.

Development of the CNN model
Image processing
Four major steps, including image co-registration, liver
segmentation, image normalization, and augmentation
were performed for image processing.
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Specifically, the images of different sequences were first
registered to the portal venous phase images using a self-
developed rigid registration network (Supplementary
Material 3 and Table S2). For liver segmentation, the
outline of the liver was automatically extracted from each
sequence using a self-developed segmentation framework
to form the liver mask (Supplementary Material 4, Figs.
S1 and S2, and Table S3), which helped the model to pay
more attention to the liver area and reduce information
redundancy of original images. Five slices were selected
from the original MR images of each sequence, including
the slice with the largest liver area and four slices located
on the positions of 15 and 25% of the slice numbers above
and below the maximum section within the liver region,
and the corresponding liver mask of each slice was
selected as input. Extreme values in individual pixels
within the MR images were corrected by taking the 99.9%
percentile of the image intensity range and clipping the
pixels above this value. To keep the aspect ratio, each slice
of the input was padded with a constant value of 0 to get
the same width and height. Then the input was resized to
512 × 512 to provide rich image information for CNN
model training. The interpolation methods adopted for
original MR images and liver masks were linear inter-
polation and nearest neighbor interpolation, respectively.
The input was finally normalized with min-max scaling.
To reduce the potential bias caused by unbalanced data,
the input was augmented in parallel online using rotation,
zoom, contrast adjustment, Gaussian noise, and elastic
distortion methods during the training process.

Development of the CNN model
Fivefold cross-validation strategy was applied to the
training dataset during CNN training, and the averaged
predicted probabilities served as the result (Supplemen-
tary Material 5).

Different combinations of pre-contrast T1- and T2-
weighted imaging, and portal venous phase images were
used to train separate CNN models, and the model with
the optimal diagnostic performance for cirrhosis was
selected for further analyses.
The CNN model was trained on a GeForce GTX 1080Ti

(NVIDIA) graphic processing unit using Python 3.7 and
PyTorch 1.7 backend. The architecture of the model is
illustrated in Fig. 1 and detailed in Supplementary
Material 5. ResNet-18 was applied as the model backbone
[23]. The processed input was fed into the network, and
the predicted probability was obtained. The network was
trained using the Adam optimizer with an initial learning
rate (LR) of 1e-3, and the LR was updated by Redu-
ceLRonPlateau schedule. Weight decay was set to 1e-5.
Binary cross-entropy loss was applied as loss function.
Batch size was set to 32 and dropout rate was 0.3. For
above hyperparameter optimization, manual search
technique was used during CNN training. The network
was trained for a maximum of 500 epochs or until the
early stopping condition had been met, storing the net-
work weights with the best validation AUC value.

CNN model visualization
Grad-CAM method was utilized to generate activation
maps, which would indicate the areas that contributed
most to the diagnosis of cirrhosis. We obtained Grad-CAM
attributions using the pytorch-grad-cam library [24].

Development of the combined model
Based on the training dataset, the combined model was
established by integrating the CNN model with relevant
clinical characteristics (Supplementary Material 6). Speci-
fically, variance inflation factor (VIF) was first computed to
detect multicollinearity. In cases of substantial collinearity
(VIF > 5), univariable logistic regression analyses were
performed to identify the variables with the strongest

Fig. 1 Schematic of convolutional neural network model development. avgpool, average pooling; conv, convolution; f, filter size; fc, full connected; k,
kernel size; maxpool, max pooling; p, padding; s, stride
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associations with cirrhosis (characterized by the largest
absolute value of β coefficient). Afterwards, feature selec-
tion was performed among the remaining independent
variables using the Select FromModel algorithm combined
with Random Forest estimator, where feature importance
was computed using Gini importance (or mean decrease
impurity). Finally, selected features were used to build the
combined model using Random Forest. During training,
grid search was used to determine the optimal hyperpara-
meters of the estimator. Consistent with the CNN model,
fivefold cross-validation method was also applied to the
development of the combined model.

Model evaluation
Based on the testing datasets, the combined model was
validated and compared with the CNN model, FIB-4,
APRI, and interpretations of two radiologists. Diagnostic
performances were characterized by AUC, sensitivity,
specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), and accuracy.

Statistical analysis
AUCs were compared using Delong test. PPVs and NPVs
were compared using the weighted generalized score test
proposed by Kosinski, while sensitivities, specificities, and
accuracies were compared using McNemar’s test. Cali-
bration plot was used to assess the agreement between the
predicted risk and the actual risk. Decision curve analysis
was conducted to calculate the clinical net benefit of the
proposed models.

All statistical analyses were performed using SPSS
software (version 26.0, IBM), Medcalc (version 20.100-64-
bit) and R statistical software. Two-sided p < 0.05 was
considered statistically significant.

Results
Patient characteristics
A total of 1315 patients (median age, 54 years; interquartile
range (IQR), 47–63 years; 1065 men) were included, 1200
(91%) (training dataset, n= 840; internal testing dataset 1,
n= 94; internal testing dataset 2, n= 266) and 115 (9%)
from center 1 and centers 2 to 4 (center 2, n= 66; center 3,
n= 8; center 4, n= 41), respectively (Fig. 2, Table 1).
Among them, 91% (1199/1315) of patients had chronic
hepatitis B, and 65% (855/1315) had pathologically con-
firmed cirrhosis. Pathologic specimens were obtained by
liver resection, transplantation, and biopsy in 94% (1231/
1315), 2% (21/1315), and 5% (63/1315) of patients,
respectively. The median time between liver MRI and
surgery/biopsy was 9 days (IQR, 3–16 days).
Regarding focal liver lesions, 8% (104/1315) of patients

had no intrahepatic lesions, 80% (1056/1315) had HCC,
and 13% (172/1315) had other kinds of liver lesions,
excluding simple cysts, cavernous hemangiomas, or
regenerative nodules. Solitary and multiple liver lesions
were observed in 77% (1014/1315) and 15% (197/1315) of
patients, respectively. The median size of the largest liver
lesion was 3.5 cm (IQR, 2.3–5.5 cm).
The proportion of pathological cirrhosis was consistent

between the training and testing datasets (all p < 0.05).

Fig. 2 Flowchart of patient inclusion
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Table 1 Demographic and clinical data of the total cohort, training dataset, and testing datasets

Characteristic Total cohort

n= 1315

Training

dataset n= 840

Internal testing

dataset 1

Internal testing

dataset 2

External testing dataset

n= 94 p-valuef n= 266 p-valuef n= 115 p-valuef

Agea 54 (47, 63) 53 (46, 63) 54 (47, 62) 0.79 57 (49, 66) < 0.001 53 (48, 58) 0.55

Sex 0.30 0.32 0.60

Male 1065 (81.0) 689 (82.0) 73 (77.7) 211 (79.3) 92 (80.0)

Female 250 (19.0) 151 (18.0) 21 (22.3) 55 (20.7) 23 (20.0)

Etiology of liver diseaseb

HBV 1199 (91.2) 804 (95.7) 90 (95.7) 1.00 206 (77.4) < 0.001 99 (86.1) < 0.001

HCV 33 (2.5) 15 (1.8) 5 (5.3) 0.06 10 (3.8) 0.06 3 (2.6) 0.81

Alcohol 11 (0.8) 5 (0.6) 2 (2.1) 0.15 3 (1.1) 0.63 1 (0.9) 0.54

Others or unknownc 98 (7.5) 36 (4.3) 2 (2.1) 0.47 48 (18.0) < 0.001 12 (10.4) 0.005

Child-Pugh classd 0.001 0.006 0.133

A 1229 (93.5) 800 (95.2) 85 (90.4) 240 (90.2) 104 (90.4)

B 77 (5.9) 38 (4.5) 6 (6.4) 23 (8.6) 10 (8.7)

C 8 (0.6) 2 (0.2) 3 (3.2) 3 (1.1) 0 (0.0)

MELD scorea 7 (7, 8) 7 (6, 8) 7 (7, 9) 0.51 7 (7, 8) 0.11 8 (7, 9) 0.04

ALBI grade 0.004 0.26 < 0.001

1 968 (73.6) 634 (75.5) 64 (68.1) 208 (78.2) 62 (53.9)

2 332 (25.2) 200 (23.8) 26 (27.7) 54 (20.3) 52 (45.2)

3 15 (1.1) 6 (0.7) 4 (4.3) 4 (1.5) 1 (0.9)

BMIa,d 23.4 (21.4, 25.4) 23.2 (21.3, 25.5) 23.3 (21.1, 25.3) 0.95 23.6 (22.0, 25.4) 0.17 23.5 (21.3, 25.0) 0.64

Pathology specimen 0.03 0.049 < 0.001

Biopsy 63 (4.8) 34 (4.0) 2 (2.1) 7 (2.6) 20 (17.4)

Resection 1231 (93.6) 797 (94.9) 88 (93.6) 251 (94.4) 95 (82.6)

Transplantation 21 (1.6) 9 (1.1) 4 (4.3) 8 (3.0) 0 (0.0)

Liver fibrosis stage 0.11 < 0.001 0.04

S0 34 (2.6) 29 (3.5) 4 (4.3) 1 (0.4) 0 (0.0)

S1 60 (4.6) 27 (3.2) 6 (6.4) 18 (6.8) 9 (7.8)

S2 187 (14.2) 121 (14.4) 7 (7.4) 45 (16.9) 14 (12.2)

S3 179 (13.6) 129 (15.4) 10 (10.6) 22 (8.3) 18 (15.7)

S4 855 (65.0) 534 (63.6) 67 (71.3) 180 (67.7) 74 (64.3)

Liver lesionsb

None 104 (7.9) 60 (7.1) 9 (9.6) 0.39 20 (7.5) 0.84 15 (13.0) 0.03

HCC 1056 (80.3) 676 (80.5) 75 (79.8) 0.87 212 (8.0) 0.78 93 (80.9) 0.92

ICC 75 (5.7) 45 (5.4) 2 (2.1) 0.27 24 (9.0) 0.03 4 (3.5) 0.39

cHCC-CCA 22 (1.7) 11 (1.3) 3 (3.2) 0.33 7 (2.6) 0.23 1 (0.9) 1.00

Metastases 12 (0.9) 10 (1.2) 0 (0.0) 0.59 2 (0.8) 0.79 0 (0.0) 0.49

Perihilar

cholangiocarcinoma/

carcinoma of the gall

bladder affecting the

liver

19 (1.4) 18 (2.1) 1 (1.1) 0.75 0 (0.0) 0.03 0 (0.0) 0.22

Otherse 44 (3.3) 32 (3.8) 5 (5.3) 0.67 4 (1.5) 0.07 3 (2.6) 0.71

Size of the largest liver

lesiona,d
3.5 (2.3, 5.5) 3.5 (2.4, 5.7) 3.0 (2.0, 5.9) 0.20 3.0 (2.1, 5.0) 0.008 4.0 (2.5, 6.6) 0.03

Magnetic field 0.16 < 0.001 < 0.001

1.5 T 652 (49.6) 519 (61.8) 51 (54.3) 67 (25.2) 15 (13.0)
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Child-Pugh class (p= 0.001), albumin-bilirubin grade
(p= 0.004), and source of pathology specimen (p= 0.03)
were different between the training dataset and internal
testing dataset 1. Compared with the training dataset, the
internal testing dataset 2 and external testing dataset
patients had less frequent HBV infection (both p < 0.001),
smaller (internal testing set 2) or larger (external testing
dataset) liver lesions (p= 0.008 and p= 0.03), more fre-
quent 3.0-T MRI (both p < 0.001) and hepatobiliary con-
trast agent-enhanced MRI (both p < 0.001).

Development of the CNN and combined models
The final CNN model was constructed based on pre-
contrast T1- and T2-weighted imaging due to optimal
training dataset AUC and balanced sensitivity and speci-
ficity among all sequence combinations (Table S4).
For the combined model, no multicollinearity was found

among variables (Table S5), and the CNN model-based
cirrhosis probability, age, platelet count, total bilirubin,
albumin, AST, ALT, alkaline phosphatase (ALP), gamma-
glutamyl transferase (GGT), and international normalized
ratio were selected to build the combined model. CNN
model-based cirrhosis probability and platelet count had
the highest importance score in all folds, which ranged
from 0.32–0.60 and 0.10–0.15, respectively (Table S6).
Figure S4 shows the receiver operating characteristic

(ROC) curves of the CNN and combined models on the
training dataset.

Comparing the performance between the models
Table 2 summarizes the diagnostic performance of dif-
ferent models and two radiologists for cirrhosis on
the testing datasets and the ROC curves are shown in
Fig. 3.

Briefly, the combined model achieved an external test-
ing dataset AUC of 0.86 (95% confidence interval [CI],
0.78–0.91) for diagnosing cirrhosis, which was higher than
the CNN model (AUC: 0.81, 95% CI: 0.73–0.88, p= 0.02),
FIB-4 (AUC: 0.69, 95% CI: 0.59–0.77, p= 0.001), APRI
(AUC: 0.67, 95% CI: 0.58–0.76, p < 0.001) and two radi-
ologists (radiologist 1 AUC: 0.73, 95% CI: 0.64–0.81,
p= 0.02; radiologist 2 AUC: 0.71, 95% CI: 0.61–0.79,
p= 0.006).
The sensitivity, specificity, PPV, NPV, and accuracy of

the combined model on the external testing dataset were
84%, 73%, 85%, 71%, and 80%, respectively. The sensitivity
of the combined model was higher than FIB-4 (62%,
p= 0.003) and APRI (65%, p= 0.007).
As shown in calibration plots, the combined model

revealed better consistency between the predicted deci-
sion and actual diagnosis than FIB-4 and APRI (Fig. S5A,
C, E). Decision curves showed that the prognostic score of
the combined model provided good net benefit across
the reasonable range of threshold probabilities (Fig. S5B,
D, F).
Representative activation maps of patients with cir-

rhosis who were correctly classified by the CNN model
indicated that liver parenchyma, liver surface, portal
hepatis, and spleen contributed most to the diagnostic
decisions (Fig. 4).
Figure 5 shows the MR images of a patient with cir-

rhosis who was correctly diagnosed by the combined and
CNN models but misdiagnosed by both radiologists.

Subgroup analyses of the combined model
On the internal testing dataset 1, the AUC of the com-
bined model was higher in the female group than in the
male group (1.00 vs. 0.85, p= 0.01) (Fig. 6A). On the

Table 1 continued

Characteristic Total cohort

n= 1315

Training

dataset n= 840

Internal testing

dataset 1

Internal testing

dataset 2

External testing dataset

n= 94 p-valuef n= 266 p-valuef n= 115 p-valuef

3.0 T 663 (50.4) 321 (38.2) 43 (45.7) 199 (74.8) 100 (87.0)

Contrast agent 0.21 < 0.001 < 0.001

Extracellular 812 (61.7) 622 (74.0) 64 (68.1) 98 (36.8) 28 (24.3)

Hepatobiliary 503 (38.3) 218 (26.0) 30 (31.9) 168 (63.2) 87 (75.7)

Unless otherwise specified, data are number of patients, with percentages in parentheses. The bold values are significantly different between the training and testing
datasets. For example, the percentage of HBV etiology was higher in the training dataset compared to internal testing dataset 1 (95.7% vs. 77.4%, p < 0.001)
ALBI albumin-bilirubin, BMI body mass index, cHCC-CCA combined hepatocellular-cholangiocarcinoma, HBV hepatitis B virus, HCC hepatocellular carcinoma
a Data are median with interquartile range in parentheses
b More than one etiology or liver lesion could be present in each patient. Liver lesions do not include cyst, cavernous hemangioma, or regenerative nodule
c Others include autoimmune liver disease, non-alcoholic steatohepatitis, and drug-induced liver injury
d Data presented from patients who have complete data of Child-Pugh class, BMI or who have at least one liver lesion
e Others include other neoplasms, premalignant lesion, focal nodular hyperplasia, inflammatory pseudotumor, abscess, and parasite infection
f p-values were computed by comparing the training and testing sets with the use of the Mann–Whitney U test for continuous variables (i.e., age, MELD score, BMI, and
size of the largest liver lesion) and either the χ2 test or Fisher’s exact test, where applicable, for categorical variables (e.g., sex and etiology of liver disease)
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Table 2 Comparison of diagnostic performance of the combined model, CNN model, FIB-4, APRI, and radiologists for cirrhosis on the
internal and external testing datasets

Combined model CNN model FIB-4a APRIa Radiologist 1 Radiologist 2

Internal testing dataset 1

Cut-offb > 0.53405 > 0.54343 > 2.26352 > 0.54094 / /

AUC 0.89 (0.81–0.95) 0.87 (0.78–0.93) 0.74 (0.64–0.82) 0.71 (0.61–0.80) 0.74 (0.64–0.83) 0.78 (0.69–0.86)

p-valuec / 0.36 0.008 0.003 0.006 0.04

Sensitivity 90% (80%–96%) 87% (76%–94%) 69% (56%–79%) 72% (59%–82%) 82% (71%–90%) 72% (59%–82%)

p-valuec / 0.50 0.001 0.02 0.23 0.004

Specificity 81% (62%–94%) 74% (54%–89%) 67% (46%–83%) 63% (42%–81%) 67% (46%–83%) 85% (66%–96%)

p-valuec / 0.50 0.29 0.18 0.34 1.00

PPV 92% (84%–96%) 89% (81%–94%) 84% (75%–90%) 83% (74%–89%) 86% (78%–91%) 92% (83%–97%)

p-valuec / 0.12 0.04 0.03 0.15 1.00

NPV 76% (60%–87%) 69% (54%–81%) 46% (35%–57%) 47% (36%–59%) 60% (46%–73%) 55% (45%–65%)

p-valuec / 0.07 < 0.001 0.002 0.06 0.006

Accuracy 87% (79%–93%) 83% (74%–90%) 68% (58%–77%) 69% (59%–78%) 78% (68%–86%) 76% (66%–84%)

p-valuec / 0.13 < 0.001 0.003 0.08 0.03

True positive 60 58 46 48 55 48

False positive 5 7 9 10 9 4

False negative 7 9 21 19 12 19

True negative 22 20 18 17 18 23

Internal testing dataset 2

Cut-offb > 0.53405 > 0.54343 > 2.26352 > 0.54094 / /

AUC 0.88 (0.83–0.91) 0.85 (0.80–0.89) 0.71 (0.65–0.76) 0.67 (0.61–0.73) 0.74 (0.68–0.79) 0.81 (0.76–0.85)

p-valuec / 0.03 < 0.001 < 0.001 < 0.001 0.01

Sensitivity 87% (81%–91%) 81% (75%–87%) 64% (56%–71%) 59% (52%–67%) 74% (67%–81%) 71% (64%–78%)

p-valuec / 0.01 < 0.001 < 0.001 0.002 < 0.001

Specificity 71% (60%–80%) 79% (69%–87%) 64% (53%–74%) 62% (51%–72%) 73% (63%–82%) 91% (82%–96%)

p-valuec / 0.09 0.36 0.18 0.86 0.002

PPV 86% (82%–90%) 89% (84%–92%) 79% (73%–83%) 76% (71%–81%) 85% (80%–89%) 94% (89%–97%)

p-valuec / 0.13 0.01 0.001 0.78 0.008

NPV 72% (63%–79%) 67% (59%–73%) 46% (40%–52%) 42% (36%–48%) 58% (51%–64%) 60% (54%–66%)

p-valuec / 0.09 < 0.001 < 0.001 0.006 0.02

Accuracy 82% (76%–86%) 80% (75%–85%) 64% (58%–70%) 60% (54%–66%) 74% (68%–79%) 77% (72%–82%)

p-valuec / 0.70 < 0.001 < 0.001 0.03 0.27

True positive 156 146 115 107 134 128

False positive 25 18 31 33 23 8

False negative 24 34 65 73 46 52

True negative 61 68 55 53 63 78

External testing dataset

Cut-offb > 0.58556 > 0.57295 > 3.03248 > 1.03125 / /

AUC 0.86 (0.78–0.91) 0.81 (0.73–0.88) 0.69 (0.59–0.77) 0.67 (0.58–0.76) 0.73 (0.64–0.81) 0.71 (0.61–0.79)

p-valuec / 0.02 0.001 < 0.001 0.02 0.006

Sensitivity 84% (73%–91%) 77% (66%–86%) 62% (50%–80%) 65% (53%–76%) 73% (61%–83%) 70% (59%–80%)

p-valuec / 0.13 0.003 0.007 0.10 0.05

Specificity 73% (57%–86%) 68% (52%–82%) 66% (49%–80%) 54% (37%–69%) 73% (57%–86%) 71% (54%–84%)

p-valuec / 0.73 0.58 0.08 1.00 1.00

PPV 85% (77%–90%) 81% (73%–87%) 77% (67%–84%) 72% (64%–79%) 83% (74%–89%) 81% (72%–88%)

p-valuec / 0.30 0.08 0.005 0.67 0.48
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internal testing dataset 2, the AUC of the combined
model was higher in the BMI ≤ 25 group than in the
BMI > 25 group (0.96 vs. 0.84, p= 0.003) (Fig. 6B). On the
external testing dataset, the AUC of the combined model
was higher in the 1.5-T MRI group (1.00 vs. 0.83,
p < 0.001), extracellular contrast agent group (0.97 vs.
0.82, p= 0.01) and minor image artifact group (0.96 vs.
0.83, p= 0.03) (Fig. 6C).
There was no significant difference in the AUCs of the

combined model among subgroups with different size of
the largest liver lesion (≤ 2 cm vs. > 2 cm, ≤ 5 cm, all
p > 0.05; ≤ 2 cm vs. > 5 cm, all p > 0.05).

Discussion
Noninvasive diagnosis of cirrhosis is critical for patient
management but challenging with conventional MRI. In
this study, we developed and externally validated a con-
volutional neural network-based model for fully auto-
mated diagnosis of cirrhosis by integrating liver MRI and
relevant clinical characteristics. The combined model
based on pre-contrast T1- and T2-weighted imaging, age,
and eight serum biomarkers allowed diagnosis of cirrhosis
with an external testing dataset area under the receiver
operating characteristic curve (AUC) of 0.86, independent
of other radiological and clinical factors that might impact
the diagnostic performances of the model, and out-
performed fibrosis-4 index (AUC: 0.69, p= 0.001),
aminotransferase-to-platelet ratio index (AUC: 0.67,
p < 0.001), and two radiologists (AUC: 0.73, p= 0.02;
AUC: 0.71, p= 0.006).
While most existing diagnostic techniques for cirrhosis

required manual annotations during modeling [18,
25, 26], the CNN model developed in this work was based

on fully automated segmentations of the liver. This
approach may provide a more easily applicable and
reproducible diagnostic tool for cirrhosis. Interestingly,
the CNN model based on pre-contrast T1- and T2-
weighted imaging demonstrated the optimal diagnostic
performance among all sequence combinations. Despite
our initial efforts in investigating as many imaging
sequences (including post-contrast images) as possible
during modeling to maximize the diagnostic performance,
the information on cirrhosis seemed to have been well-
represented by pre-contrast images, which might be due
to complementary image information of T1- and T2-
weighted imaging and limited incremental value of vas-
cular changes added by portal venous phase images.
These results were clinically relevant, as our model may
be extrapolated to a wider range of clinical applications
without the need of contrast agents.
Recently, Yosaka et al [18] and Hectors et al [19]

reported on CNN systems for diagnosis of cirrhosis using
hepatobiliary phase MR images with AUCs of 0.84 and
0.85, which were comparable to that of our CNN model
(AUC: 0.81). Nowak et al [26] developed a deep transfer
learning system for detecting cirrhosis based on T2-
weighted imaging, which achieved an almost perfect AUC
of 0.99 for the testing dataset. However, in their study,
only patients with histologically or clinically defined liver
cirrhosis and those with healthy livers were enrolled,
which may limit model generalizability.
Serum biomarkers were incorporated into the com-

bined model in this study. These biochemical markers
reflect liver synthetic function (albumin), damage and
inflammation (AST, ALT and GGT), cholestasis (total
bilirubin, ALP and GGT), and portal hypertension

Table 2 continued

Combined model CNN model FIB-4a APRIa Radiologist 1 Radiologist 2

NPV 71% (59%–81%) 62% (51%–72%) 49% (40%–58%) 46% (36%–56%) 60% (50%–69%) 57% (47%–66%)

p-valuec / 0.045 0.001 < 0.001 0.08 0.04

Accuracy 80% (72%–87%) 74% (65%–82%) 63% (54%–72%) 61% (51%–70%) 73% (64%–81%) 70% (61%–79%)

p-valuec / 0.12 0.003 < 0.001 0.20 0.11

True positive 62 57 46 48 54 52

False positive 11 13 14 19 11 12

False negative 12 17 28 26 20 22

True negative 30 28 27 22 30 29

Data in parentheses are 95% confidence interval
APRI aminotransferase-to-platelet ratio index, AUC area under the receiver operating characteristic curve, CNN convolutional neural network, FIB-4 fibrosis-4 index, NPV
negative predictive value, PPV positive predictive value
a The calculation formulas were as follows: FIB-4 = (age [year] × AST [U/L]) / (platelet count [109/L] × (ALT [U/L])1/2); APRI = (AST (/upper limit of normal) / platelet
count [109/L]) × 100 [9, 10]
b Cut-off values were selected based on the receiver operating characteristic and Youden index in the training dataset. Cut-offs of combined and CNN models
represent the model outputs for the combined model and the CNN model
c p-values were calculated in comparison to the combined model. AUCs were compared using Delong test. PPVs and NPVs were compared using the weighted
generalized score test proposed by Kosinski, while sensitivities, specificities, and accuracies were compared using McNemar’s test
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(platelet count) [13], and thus may facilitate the diagnosis
of cirrhosis. In fact, AST, ALT, albumin and platelet count
have been incorporated into several established scores for
noninvasive assessment of liver fibrosis (e.g., FIB-4, APRI,

and non-alcoholic fatty liver disease fibrosis score (NFS))
[11, 13]. The combined model outperformed the widely
used FIB-4 and APRI and two radiologists, which high-
lights the incremental values of the combined model to
supplement existing systems for noninvasive diagnosis of
cirrhosis.
The combined model developed in this study was robust

in variable clinical settings. In particular, over 90% of
patients enrolled in our study had focal liver lesions, mainly
HCC (80%). Subgroup analyses indicated that the diag-
nostic performance of the combined model was indepen-
dent of the size of focal liver lesions, which implies its
potential clinical application to facilitate surgical treatment
decision in patients with suspected or confirmed liver
cancer. However, there were significant differences in the
diagnostic performance across subgroups with different
sex, BMI, magnetic field, contrast agent, presence or
absence with minor artifact. These differences may indicate
better or worse performance in specific subgroups but may
also result from underpowered subgroup analyses due to
small or unbalanced sample sizes. Future studies are
required to validate these differences, particularly in small
subgroups (e.g., female group and BMI ≤ 25 group) that
tend to be under-presented. Furthermore, the use of dif-
ferent manufacturers (GE vs. uMR vs. Philips vs. Siemens)
could potentially influence the diagnostic performance of
our model. However, the data from our study do not sup-
port making meaningful comparisons between manu-
facturers in subgroup analyses. Platelet count decrease due
to other reasons (e.g., non-cirrhotic portal hypertension)
might contribute to false positives, while no significant
imaging feature and normal lab test results might lead to
false negatives (Table S7).
Noteworthily, the expandability of deep learning is cri-

tical for confident clinical adoptions. Despite the pre-
liminary efforts to reveal the important regions focused by
the CNN model on the activation maps, the details of how
the CNN model could perform better than radiologists
are still unclear. Therefore, future studies are encouraged
to further unveil the “black box” of deep learning for
cirrhosis diagnosis.
This study had several limitations. First, as a retro-

spective study, potential selection bias may exist and
impact our results. Particularly, over 90% of the included
patients had an etiology of hepatitis B virus infection and
Child-Pugh class A and pediatric patients were not
included in our study. This may limit the extrapolations to
patients with other etiologies or worse liver function and
pediatric patients. Second, the Beijing criteria for liver
fibrosis staging was employed as the reference standard,
which is not frequently used in Western practice. Third,
the diagnostic AUC achieved by the combined model was
moderate (below 0.90), which may be insufficient for

Fig. 3 Receiver operating characteristic curves for diagnosis of cirrhosis
on the internal testing dataset 1 (A), internal testing dataset 2 (B), and
external testing dataset (C). The area under the receiver operating
characteristic curve of the combined model was higher than those of FIB-
4, APRI and radiologists. APRI, aminotransferase-to-platelet ratio index;
AUC, area under the receiver operating characteristic curve; CNN,
convolutional neural network; FIB-4, fibrosis-4 index
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establishing a diagnosis of cirrhosis in clinical practice on
its own. In future research, we will continuously optimize
the model by exploring additional strategies, including
refining the input variables, expanding the dataset, and
employing advanced modeling techniques. Fourth,
although subgroup analyses revealed robust diagnostic
performance across patients with different sizes of the
largest liver lesions, the selected input slices may not
cover all the liver lesions. Therefore, further studies are

required to evaluate model utility in patients with liver
lesions. Fifth, although our model achieved similar diag-
nostic performance with MR elastography as reported in
recent meta-analyses (AUC: 0.92 to 0.93) [27, 28], our
retrospective design lacked sufficient data for a head-to-
head comparison because MR elastography is not routi-
nely used in our medical centers. Future prospective study
is needed to evaluate our combined model against MR
elastography. However, despite the high accuracy of MR

Fig. 4 Representative activation maps overlaid on pre-contrast T1-weighted (A–D) and T2-weighted (E–H) axial images in patients with cirrhosis who
were correctly classified by the CNN model. The liver parenchyma, liver surface, portal hepatis, and spleen are highlighted in these maps, which indicates
that information from these areas contributes to the prediction of cirrhosis. Note the hepatocellular carcinoma lesions in the liver (B, F, asterisk). CNN,
convolutional neural network

Fig. 5 Extracellular contrast agent-enhanced MRI of a 67-year-old male patient with cirrhosis and chronic hepatitis B. In- and opposed-phase images
(A, B), T2-weighted image (C), pre-contrast T1-weighted image (D), and portal venous phase images (E, F) revealed no surface nodularity or other
morphological changes and no manifestations of portal hypertension. Activation maps overlaid on T2-weighted (G) and pre-contrast T1-weighted (H)
images showed highlights in liver parenchyma, liver surface, and spleen. The combined model- and CNN model-based cirrhosis probability were 0.77
and 0.64, respectively, which both lead to a diagnosis of cirrhosis. Neither radiologist diagnosed this case as cirrhosis
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elastography in diagnosing cirrhosis, it may be less avail-
able at different centers. Sixth, the model performance
compared with a combination of radiologists and serum

biomarkers and the model performance on a healthy
population is unknown. Further validation is needed with
prospective cohort. Finally, although each step was fully
automated, we have not integrated it into a single pipeline.
We acknowledge that this may necessitate some manual
input within the process. Developing a software is the
future direction of our research.
In conclusion, based on 1315 patients with pathological

evaluation of liver fibrosis stage who underwent contrast-
enhanced liver MRI within 3 months, we developed and
externally validated a combined model integrating pre-
contrast T1- and T2-weighted imaging, age, and eight
serum biomarkers. The model allowed diagnosis of cirrhosis
with moderate accuracy, independent of size of focal liver
lesions, and outperformed FIB-4, APRI and radiologists.
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GGT Gamma-glutamyl transferase
HCC Hepatocellular carcinoma
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NPV Negative predictive value
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VIF Variance inflation factor
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