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Abstract

The increased sensitivity of novel DNA sequencing techniques has made it possible to identify somatic mutations in small circulating clones of hae-
matopoietic stem cells. When the mutation affects a ‘driver’ gene, the mutant clone gains a competitive advantage and has the potential to expand 
over time, a phenomenon referred to as clonal haematopoiesis (CH), which is emerging as a new risk factor for various non-haematological con-
ditions, most notably cardiovascular disease (e.g. heart failure). Dilated cardiomyopathy (DCM) is a form of non-ischaemic heart failure that is char-
acterized by a heterogeneous aetiology. The first evidence is arising that CH plays an important role in the disease course in patients with DCM, and a 
strong association of CH with multiple aetiologies of DCM has been described (e.g. inflammation, chemotherapy, and atrial fibrillation). The myo-
cardial inflammation induced by CH may be an important trigger for DCM development for an already susceptible heart, e.g. in the presence of 
genetic variants, environmental triggers, and comorbidities. Studies investigating the role of CH in the pathogenesis of DCM are expected to increase 
rapidly. To move the field forward, it will be important to report the methodology and results in a standardized manner, so results can be combined 
and compared. The accurate measurement of CH in patients with DCM can provide guidance of specific (anti-inflammatory) therapies, as mutations 
in the CH driver genes prime the inflammasome pathway.

Keywords Dilated cardiomyopathy • Clonal haematopoiesis • Heart failure • Sequencing • Somatic mutations • CHIP

Introduction
Dilated cardiomyopathy (DCM) is defined by the presence of left ven-
tricular dilatation and systolic dysfunction unexplained solely by ab-
normal loading conditions or coronary artery disease.1 The causes 
of DCM are heterogeneous, including both genetic and environmental 
factors, also determining the disease progression and outcome.2,3

Chronic myocardial inflammation is often present in patients with 
DCM, and can be either the cause or consequence of disease progres-
sion.4 A broad and aggressive immunosuppressive therapy may be 
beneficial in DCM patients with increased myocardial inflammation,5,6

but more targeted immunomodulation strategies are lacking.7 Given 
the connection between clonal haematopoiesis (CH) and inflamma-
tion, CH may be a marker and target for immunomodulatory therapy 
in patients with DCM.8 Recent studies indicate an age-independent ef-
fect of CH on the prognosis of DCM, suggesting that CH may also be 
involved in its pathogenesis. The current review elaborates on (i) the 
current evidence of CH involvement in DCM, (ii) the knowledge gaps 
in the road towards clinical impact, and (iii) the future prospects 
(Graphical Abstract).

General background on clonal 
haematopoiesis
The advent of next-generation DNA sequencing methodologies and 
their increasing utilization in large human cohorts have led to a new 
era in human genetics and genomics for clinical and research purposes. 
Within the specific setting of cardiovascular disease (CVD), investiga-
tions into the influence of human genetics have predominantly concen-
trated on germline variants, which are heritable and therefore present 
uniformly across all cells within an organism. Numerous inherited gen-
etic variants clearly contribute to a diverse set of different cardiovascular 
pathologies.9–12 However, research during the last decade has exposed 
a similarly important role of certain somatic variants. These variants are 
non-inherited and accumulate in a mosaic manner within an individual 
from conception onwards as a result of DNA damage or random errors 
in DNA replication and repair.13 The clinical implications of this somatic 

genome mosaicism are particularly relevant in the haematopoietic sys-
tem. Haematopoietic stem cells (HSCs) accumulate random mutations 
continuously as an individual grows older.14–16 While most of these mu-
tations are deemed neutral ‘passenger’ mutations, a select subset will affect 
a ‘driver’ gene, providing a competitive advantage to the mutant hemato-
poietic stem cells (HSC) by promoting its proliferation, survival or self- 
renewal. Consequently, these mutations drive the progressive expansion 
of the mutant cell population over time, a phenomenon commonly re-
ferred to as somatic mutation-driven CH (Figure 1).17,18

Clonal haematopoiesis-driving mutations are typically detected 
through next-generation DNA sequencing of blood samples, which al-
lows the detection of expanded somatic mutations by calculating vari-
ant allele frequency (VAF), representing the proportion of reads that 
support a mutant allele out of the total sequencing reads (Figure 1). 
Such sequencing analyses have unveiled a diverse array of mutations 
detectable in blood, including base substitutions [known as single- 
nucleotide variants (SNVs)], small insertions and deletions (indels), 
cytogenetic aneuploidies, and structural chromosomal variants. 
Consequently, it is possible to define different forms of CH based 
on the detected mutation type. In this context, the type of CH that 
is gaining more clinical relevance, particularly in the cardiology and 
haematology fields, is a condition referred to as CH of indeterminate 
potential (CHIP). CHIP is defined as the presence in blood or bone 
marrow of an expanded SNV or indel in a known gene associated 
with haematological malignancies, typically myeloid-biased, with a 
VAF of at least 2%, and in the absence of overt haematological abnor-
malities.19 Although a diverse range of cancer-related genes have been 
identified as potential drivers of CHIP, most mutations occur in a lim-
ited subset of genes, most frequently in those encoding the epigenetic 
regulators DNMT3A, TET2, and ASXL1. Additionally, other frequently 
mutated CHIP genes encode for DNA damage response (DDR) pro-
teins (e.g. TP53 and PPM1D), splicing factors (e.g. SF3B1, SRSF2, and 
U2AF1) and signalling mediators (e.g. JAK2).

CHIP is strongly associated with aging20–23 and with age-related dis-
eases.24–38 Unsurprisingly, CHIP mutations increase the risk of incident 
haematological malignancy.20,22,39 However, CHIP is also emerging as a 
new risk factor for various non-haematological conditions, most not-
ably CVD.13,24,28,29,31,34,36,37 First, a robust correlation between 
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CHIP mutations and an increased risk of developing atherosclerotic 
conditions, such as coronary artery disease and peripheral artery dis-
ease, independent of age, sex, or traditional cardiovascular risk factors 
have been described.24,28,31,34 Furthermore, recent studies suggest 
that CHIP may also be associated with cardiac dysfunction and disease 
beyond its effects on coronary arteries, as further discussed below 
(Table 1, Figure 2).

From a mechanistic standpoint, it is important to note that the clonal 
expansion of CHIP mutations primarily occurs among the HSC popu-
lation in the bone marrow, resulting in a variable proportion of progeny 
immune cells carrying the CHIP mutation. Consequently, CHIP has the 
potential to significantly influence inflammatory responses, which play a 
central role in CVD and heart failure (HF). Experimental studies in ani-
mal models in various contexts are elucidating the specific immunomo-
dulatory pathways and mechanisms dysregulated in CHIP.28,51–54 While 
some common mechanisms are emerging, the links between CHIP and 
CVD appear to be dependent on the specific mutated gene, offering 
avenues for the development of precision medicine approaches to pre-
vent or treat CVD by targeting the pro-inflammatory effects of specific 
CHIP mutations.

Clonal haematopoiesis in patients 
with heart failure
The association between CH and various forms of HF have been ex-
tensively described,55 either in relation to the prognosis of patients 

with HF, or the incidence of HF in the general population 
(Figure 3). The methodology and cohort characteristics (e.g. the 
number of individuals and types of HF included) significantly differ 
between studies, which is important to take into account when inter-
preting the results.

The association of CH with the incidence of HF remains uncertain 
(Table 1),29,30,40,41 although several predictors and modifiers have 
been identified. The association is modified by age: CH is mainly as-
sociated with new-onset HF in younger individuals (<65 years).29

The largest study with the longest follow-up showed a significant as-
sociation of CH with incident HF, but mainly due to mutations in 
ASXL1, TET2, and JAK2 independent of age.30 Most studies distinguish 
between HF with preserved (HFpEF) or with reduced ejection frac-
tion (HFrEF), creating the opportunity to compare the effect of CH 
between these types. Two population studies identified TET2 muta-
tions associated with incident HFpEF, but not in HFrEF.40,41

Concluding, CH is predominantly associated with the incidence of 
HFpEF and not HFrEF, which is mainly attributable to mutations in 
TET2, with the effect being modified by age. However, we require 
more studies investigating (gene-specific) CH and HF development 
to draw definite conclusions.

Most studies investigating the association between CH and prognosis 
were conducted in patients with ischaemic HF, where CH was a pre-
dictor of worse outcome, independent of age (defined as cardiac death 
and HF hospitalization).43–50,56 As such, the presence of a CH driver 
mutation is an independent prognostic marker for a worse outcome 
in patients with an ischaemic form of HF (Figure 3).

Figure 1 Clonal haematopoiesis in relation to secondary haematological diseases and genetic testing of clonal expansion. When clonal haematopoiesis 
is followed by cytopenia and dysplasia it results in myelodysplastic syndrome that can lead to acute myeloid leukaemia. Clonal haematopoiesis is char-
acterized by expansion of a clone that gained a selective advantage due to a somatic mutation (in this example in the DNMT3A and TP53 gene). Genetic 
testing at a certain time point will detect the variant allele frequency (VAF): the percentage of sequencing read with the specific mutation, reflecting a 
somatic mosaicism which is different from germline mutations. Clonal haematopoiesis is defined as the presence of a clone with a mutation in a known 
gene associated with haematological malignancies and a VAF of at least 2%

Clonal haematopoiesis in the pathogenesis of dilated cardiomyopathy                                                                                                             4799



..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

T
ab

le
 1

 
O

ve
rv

ie
w

 o
f c

lin
ic

al
 s

tu
di

es
 in

ve
st

ig
at

in
g 

th
e 

as
so

ci
at

io
n 

of
 c

lo
na

l h
ae

m
at

op
oi

es
is

 w
it

h 
th

e 
de

ve
lo

pm
en

t 
or

 p
ro

gn
os

is
 o

f h
ea

rt
 fa

ilu
re

St
ud

y
P

at
ie

nt
  

po
pu

la
ti

on
Si

ze
 p

op
ul

at
io

n 
 

co
ho

rt
Si

ze
 c

oh
or

t
A

ge
 (

ye
ar

s)
d

C
H

C
ut

-o
ff

  
V

A
F 

(%
)

O
ut

co
m

e 
de

fin
it

io
n

A
ss

oc
ia

ti
on

  
(h

az
ar

d 
ra

ti
o)

D
om

in
an

t 
 

ge
ne

s

In
cid

en
ce

Sh
i e

t a
l.29

H
Fr

EF
 +

 H
Fp

EF
85

92
37

4 
(4

.3
%

)
65

 [5
8–

70
]

66
 (1

8%
)

2
N

A
1.

2 
[0

.9
–1

.7
]a

D
N

M
T3

A,
 T

ET
2

Yu
 e

t a
l.30

H
F

56
 5

97
4.

69
4 

(8
.3

%
)

N
R

41
4 

(9
%

)
2

N
A

1.
3 

[1
.1

–1
.4

]
AS

X
L1

, T
ET

2,
 JA

K2

Sc
hu

er
m

an
s 

et
 a

l.40
H

Fp
EF

80
90

45
9 

(5
.7

%
)

N
R

N
R

2
N

A
1.

3 
[0

.9
–1

.8
]

TE
T2

b

H
Fr

EF
33

9 
(4

.2
%

)
0.

8 
[0

.5
–1

.3
]

Re
in

er
 e

t a
l.41

H
Fp

EF
52

14
30

1 
(5

.8
%

)
N

R
N

R
2

N
A

1.
4 

[1
.1

–1
.9

]
TE

T2

H
Fr

EF
21

3 
(4

.1
%

)
N

R

Pr
og

no
sis

Si
kk

in
g 

et
 a

l.42
D

C
M

N
A

52
0

58
 [5

3–
66

]
10

9 
(2

1%
)

0.
01

C
ar

di
ac

 d
ea

th
2.

0 
[1

.1
–3

.7
]

D
N

M
T3

A

Pa
sc

ua
l-F

ig
al

 e
t a

l.43
N

IC
M

P
N

A
32

74
 [6

9–
79

]
12

 (3
8%

)
2

H
F 

m
or

ta
lit

y 
+ 

ho
sp

ita
liz

at
io

n
2.

0 
[1

.1
–3

.7
]

D
N

M
T3

A,
 T

ET
2

IH
F

30
12

 (4
0%

)

W
u 

et
 a

l.44
D

C
M

N
A

52
62

 (2
6–

94
)

10
 (1

9%
)

5
A

ll-
ca

us
e 

m
or

ta
lit

y 
+ 

 
ho

sp
ita

liz
at

io
n

1.
7 

[0
.6

–4
.9

]
D

N
M

T3
A,

 T
ET

2

IH
F

48
69

 (2
6–

94
)

6 
(1

3%
)

1.
4 

[0
.4

–4
.7

]
D

N
M

T3
A,

 C
U

X

Sc
ol

ar
i e

t a
l.45

N
IC

M
Pc

N
A

44
6

55
 ±

 1
5

14
9 

(2
2%

)
2

A
ll-

ca
us

e 
m

or
ta

lit
y

2.
7 

[1
.3

–5
.7

]
TE

T2
, A

SX
L1

IH
Fc

21
3

A
ss

m
us

 e
t a

l.46
IH

F
N

A
40

4
63

 (2
5–

87
)

22
7 

(5
6%

)
0.

5
A

ll-
ca

us
e 

m
or

ta
lit

y
1.

8 
[1

.1
–2

.9
]

D
N

M
T3

A,
 T

ET
2

D
or

sh
ei

m
er

 e
t a

l.47
IH

F
N

A
20

0
65

 [5
6–

72
]

38
 (1

9%
)

2
A

ll-
ca

us
e 

m
or

ta
lit

y 
+ 

 
ho

sp
ita

liz
at

io
n

2.
1 

[1
.1

–4
.0

]
D

N
M

T3
A,

 T
ET

2

C
oc

hr
an

 e
t a

l.48
H

Fp
EF

N
A

81
77

 ±
 7

36
 (4

4%
)

0.
5

H
os

pi
ta

liz
at

io
n

5.
1 

[1
.1

–2
4.

2]
TE

T2

C
re

m
er

 e
t a

l.49
IH

F
N

A
41

9
63

15
4 

(3
7%

)
0.

5
A

ll-
ca

us
e 

m
or

ta
lit

y
2.

8 
[1

.5
–5

.2
]

D
N

M
T3

A,
 T

ET
2

A
m

an
ch

er
la

 e
t a

l.50
H

Tx
N

A
47

9
N

R
77

 (1
6%

)
2

C
ar

di
ac

 a
llo

gr
af

t 
va

sc
ul

op
at

hy
1.

4 
[0

.9
–2

.3
]

D
N

M
T3

A

C
H

, c
lo

na
l h

ae
m

at
op

oi
es

is;
 D

C
M

, d
ila

te
d 

ca
rd

io
m

yo
pa

th
y;

 H
F,

 h
ea

rt
 fa

ilu
re

; H
Fp

EF
, h

ea
rt

 fa
ilu

re
 w

ith
 p

re
se

rv
ed

 e
je

ct
io

n 
fr

ac
tio

n;
 H

Fr
EF

,  
he

ar
t f

ai
lu

re
 w

ith
 r

ed
uc

ed
 e

je
ct

io
n 

fr
ac

tio
n;

 H
Tx

, h
ea

rt
 tr

an
sp

la
nt

; I
H

F,
 is

ch
ae

m
ic

 h
ea

rt
 fa

ilu
re

; N
A

, n
ot

 
ap

pl
ic

ab
le

; N
R,

 n
ot

 r
ep

or
te

d;
 N

IC
M

P,
 n

on
-is

ch
ae

m
ic

 c
ar

di
om

yo
pa

th
y;

 V
A

F,
 v

ar
ia

nt
 a

lle
le

 fr
eq

ue
nc

y.
 

a A
ss

oc
ia

tio
n 

w
as

 s
ig

ni
fic

an
t 

in
 t

he
 s

ub
-c

oh
or

t 
of

 p
at

ie
nt

s 
yo

un
ge

r 
th

an
 6

5 
ye

ar
s: 

H
R 

2.
1 

[1
.3

–3
.3

]. 
b A

ss
oc

ia
tio

n 
w

as
 s

ig
ni

fic
an

t 
fo

r 
TE

T2
: H

R 
2.

4 
[1

.3
–4

.1
]. 

c St
ud

y 
in

cl
ud

in
g 

pa
tie

nt
s 

w
ith

 c
ar

di
og

en
ic

 s
ho

ck
 w

ith
 d

iff
er

en
t 

he
ar

t 
fa

ilu
re

 a
et

io
lo

gi
es

. 
d Th

e 
ag

e 
of

 in
cl

ud
ed

 p
at

ie
nt

s 
w

ith
 h

ea
rt

 fa
ilu

re
 r

ep
or

te
d 

ei
th

er
 a

s 
m

ea
n 

±
 st

an
da

rd
 d

ev
ia

tio
n,

 m
ed

ia
n 

[in
te

r-
qu

ar
til

e 
ra

ng
e]

, o
r 

m
ed

ia
n 

(a
bs

ol
ut

e 
ra

ng
e)

.

4800                                                                                                                                                                                     Verdonschot et al.



Impact of clonal haematopoiesis 
in patients with dilated 
cardiomyopathy
Studies investigating the role of CH in the prognosis of patients with 
DCM are scarce, and thus far only one dedicated DCM cohort.42

Two cohorts included a low number of non-ischaemic (and ischaemic) 
HF patients,43,44 and one study reported on non-ischaemic HF in pa-
tients in cardiogenic shock45 (Table 1). The constitution of the patients 
with non-ischaemic patients was not further specified in the latter stud-
ies, it remains therefore unknown how many patients with DCM were 
included. The largest cohort including 520 patients with DCM, detected 
CH in 109 patients (21%) using a VAF of 0.01% to detect small clones.42

Interestingly, relatively large clones (>2%) were already detected in pa-
tients below the age of 30, which is higher compared to that observed 
in the general population.57 CH significantly increased the risk of cardiac 
death (hazard ratio of 1.98) independent of the clone size, where 
even a VAF threshold of 0.36% predicted worse outcome. Notably, 
these clone sizes are smaller than the 2% threshold that is used by 
the DNA sequence technologies in many of the other studies. In an-
other study, 10 out of 52 patients (19%) with DCM had CH using a 
VAF threshold of 5%, to detect only relatively large clones.44 The 

statistical power was too low to draw any conclusions on the prog-
nostic impact of CH. Noteworthy, large CH clones were already de-
tected at a young age in patients with DCM in contrast to the 
included patients with ischaemic HF. In a cohort of 32 patients 
with HF of non-ischaemic origin, 12 patients (38%) had CH using a 
VAF threshold of 2%.43 In the overall cohort (also including patients 
with ischaemic HF), CH was associated with HF hospitalization and 
HF-related death, which was independent of ischaemic or non- 
ischaemic aetiology. A study investigating the role of CH as predictor 
of mortality in patients with cardiogenic shock included 686 patients, 
of which 65% had a non-ischaemic cardiomyopathy.45 Patients with 
cardiogenic shock had a higher prevalence of CH mutations com-
pared to ambulatory HF patients, which was also associated with a 
decreased survival. However, there was no further distinction in aeti-
ology in the analysis.

Overall, there is a large variation in (i) the sensitivity of DNA sequen-
cing methodologies, (ii) cohort sizes providing well-powered studies, 
(iii) outcomes reported, and (iv) patient selection. With regard to the 
latter, the definition of the HF aetiology remains often unclear (i.e. non- 
ischaemic could indicate hypertrophic, dilated, arrhythmogenic, or even 
valvular cardiomyopathy). Comparing or aggregating study results, 
therefore, remain difficult to interpret. We propose the following re-
porting criteria that should be included in future studies investigating 

Figure 2 The association between clonal haematopoiesis, inflammation, and disease development. Somatic mutations origin in haematopoietic stem 
cells in the bone marrow due to environmental triggers or as a result of ageing (1). When the mutation affects a (driver) gene that provides the cell a 
competitive advantage, that cell can expand, leading to a mutant cell population (2). The size of the clone can be measured by the variant allele frequency 
(VAF). The mutated cell progeny enter the circulation (3) where they may infiltrate organ tissue (4) resulting in elevated levels inflammation (5) and 
consequently leading to tissue damage and organ failure (6)
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the prognostic impact of CH in patients with DCM (and by extension 
different cardiac diseases) to better interpret the current evidence and 
possibilities for future translation: 

(1) Definition of HF aetiology (e.g. definition of DCM), and the exact 
number of patients included with this diagnosis.

(2) Sequencing methodology used, required to interpret the number 
of genes and their coverage, including the sensitivity of the assay 
to detect clones.
(a) If a high sensitivity assay is used (VAF below 2%), still report a 

separate analysis using a cut-off value of 2% allowing to com-
pare with earlier studies.

(3) Outcome parameters, especially all-cause mortality and further dif-
ferentiate into cardiac, or HF-related outcome. We would propose 
to always include all-cause mortality as an outcome, as this informa-
tion will be available in all cohorts. Adding more details to the cause 
of death is recommended in subsequent analysis.

(4) Impact on structural, functional, and/or electrical remodelling is to 
be determined. We appreciate including any data on the associ-
ation of CH with follow-up information on echocardiography 
and/or magnetic resonance imaging.

Second hit model in patients with dilated 
cardiomyopathy
The exact role or relative contribution of CH in the pathogenesis of 
DCM remains unclear, as current studies are only associative. The 
fact that large clones are already present at a younger age in DCM pa-
tients44 might suggest a direct role of CH in the development of DCM. 
Still, the environmental triggers causing DCM, could also be the 

ones driving CH mutations such as cardiotoxic chemotherapy and in-
flammation (Figure 4). Although these associations are described indir-
ectly, they render the blueprint of the design for future studies.

Cardiac arrhythmias and dilated 
cardiomyopathy
Arrhythmias such as atrial fibrillation (AF) occur commonly in patients 
with DCM, but can also be involved in the development of DCM (e.g. 
tachycardiomyopathy).4,58,59 The presence of CH is also associated 
with supraventricular arrhythmias, bradyarrhythmias, and ventricular ar-
rhythmias independent of the presence of HF or coronary artery dis-
ease.36 In this study, the increased risk was mainly observed in carriers 
of TET2, ASXL1, PPM1D, or TP53 mutations. In a separate study using 
an East Asian cohort, CH was independently associated with AF, with 
carriers of DNMT3A, TET2, or ASXL1 being most commonly mutated.37

CH driver mutations were associated with a more progressive nature of 
AF (longer AF duration, larger atrial volume, and elevated E/E′) and un-
favourable clinical outcomes defined as HF, ischaemic stroke, or death. 
Overall, CH seems to play a role throughout the disease course of (su-
pra)ventricular arrhythmias, and potentially the evolution towards HF. 
Therefore, the interplay between arrhythmias, DCM, and CH in disease 
progression seems interesting, but remains uninvestigated.

Myocardial inflammation as driver of 
progression of dilated cardiomyopathy
The presence of leucocyte infiltrates and subsequent inflammation in 
the myocardium is detected in ∼20% of patients with DCM, and it is of-
ten termed as inflammatory DCM or chronic myocarditis.59,60 Whether 
the inflammation is causal or secondary to the disease progress is in a 

Figure 3 Association between clonal haematopoiesis on the development and prognosis of heart failure. The width of the arrow indicates the number 
of independent studies that investigated the association. Further details on the studies can be found in Table 1
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chronic situation often unknown, but studies with immunosuppressive 
therapies have shown beneficial effects in a selection of patients with 
chronic DCM.5,6 Additionally, there is ample evidence that CH driver 
mutations induce inflammation. Loss of function or deletion of TET2 
leads to a higher expression of interleukin (IL)-6 and IL-1β, as well as 
heightened secretion of IL-1β via the NLRP3-inflammasome in mouse 
models.51,61–63 Mutations in DNMT3A have been associated with mye-
loid up-regulation of NLRP3, IL-1, and IL-6,64 and studies suggest that 
the inflammatory environment can subsequently be beneficial for clonal 
expansion of DNMT3A clones.65 It could be worthwhile to determine 
CH in patients with inflammatory DCM to investigate whether the in-
creased myocardial inflammation could be a consequence of CH driver 
mutations. Elucidation of the role of CH in the disease progression of 
(inflammatory) DCM could provide a better patient stratification for no-
vel and specific immunomodulatory treatment regimens. As an example, 
an ongoing phase II study investigates the beneficial effects of colchicine 
in patients with CH and ischaemic HFrEF (2021-001508-13 in the 
European Union Clinical Trials Register). The question remains if colchi-
cine is the medication of choice to go forward, as is it a broad-spectrum 
anti-inflammatory agent that acts by inhibiting microtubule polymeriza-
tion. Among many other actions, resulting in partial inhibition of the 
NLRP3-inflammasome although this might depend on the dosage of col-
chicine.66 The primary outcome of this study is endothelial function as-
sessed by flow-mediated dilation after 60 days of treatment, which is not 
an outcome relevant for patients with DCM. Specific studies and trials to 
investigate CH-guided immunomodulatory therapy for patients with (in-
flammatory) DCM are still absent.

Inflammation and (cardiac) fibrosis are intertwined by multiple path-
ways.67 Fibrosis in the heart is a well-known risk factor for malignant 
ventricular arrhythmias and sudden cardiac death in patients with 
DCM.68 However, studies including patients with DCM investigating 
the association of CH with cardiac fibrosis are absent. A recent study 
identified that monocytes isolated from patients with HF and mutations 
in DNMT3A stimulate the release of heparin-binding epidermal growth 
factor-like growth factor, thereby facilitating activation of cardiac fibro-
blasts and subsequent cardiac fibrosis.69 Large CH clones in patients are 
associated with increased myocardial fibrosis as measured with cardiac 
magnetic resonance imaging.36 Additionally, a murine model of HFpEF, 
Tet2-mediated CH led to greater cardiac fibrosis.63 Thus, CH might also 
prime cardiac fibrosis, independent of the association with 
inflammation.

Chemotherapy-induced cardiomyopathy
Cardiomyopathies can arise from patient exposure to anthracyclines 
and other cytotoxic therapies. Some cytotoxic therapies promote 
the formation of a distinct form of CH that results from mutations in 
the DDR pathway genes that include TP53, PPM1D, CHK1, CHK2, 
and ATM.70–73 This type of CH has been referred to as therapy-related 
CH (t-CH). Unlike the driver genes that give rise to age-related CH by 
promoting the proliferation and self-renewal of HSCs (e.g. DNMT3A, 
TET2, and ASXL1), t-CH driver genes confer a selective advantage to 
HSC by promoting their survival under conditions of genotoxic 
stress,73,74 which has been previously reviewed.75 This form of CH is 

Figure 4 Role of environmental factors in the development of dilated cardiomyopathy, and the association with clonal haematopoiesis. Although 
there are no studies that have directly investigated the association between clonal haematopoiesis and the incidence of dilated cardiomyopathy, there 
are associations between drivers of dilated cardiomyopathy development and clonal haematopoiesis. Additionally, clonal haematopoiesis directly im-
pacts the prognosis of patients with dilated cardiomyopathy
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of potential interest because patients with cancer and cancer survivors 
exhibit an increased risk of CVD.75,76 While cytotoxic agents can dir-
ectly damage the heart by acting on cells of the myocardium, it has 
been proposed that the cardiac toxicity associated with long latency 
periods could be due in part to the effects of t-CH that develops in 
this patient population.77 Of particular interest is the t-CH found in 
childhood cancer survivors, as it would be assumed that, due to their 
youth, they would be largely void of age-associated CH and hence ex-
hibit a simplified mutational landscape compared to elderly cancer sur-
vivors. Notably, childhood cancer survivors display accelerated 
biological aging78,79 and a markedly increased risk of CVD.80,81

Although conflicting data on the prevalence of CH among the survivors 
of childhood cancer has been presented,82,83 Novetsky Friedman 
et al.84 recently reported that there is a nearly two-fold increase in 
the frequency of CH in childhood cancer survivors compared to 
healthy controls when they were assessed by ultradeep, error- 
corrected DNA sequencing. As expected, childhood cancer survivors 
showed a significant enrichment of DDR gene-mutant clones com-
pared with clonal mutations in DNMT3A, TET2, or ASXL1 genes. 
Furthermore, the enrichment of CH in the survivor cohort was also ob-
served relative to a treatment-naïve cohort with solid tumours suggest-
ing that the overrepresentation of CH in the childhood cancer survivors 
resulted from exposure to some cancer therapies.

Could t-CH be contributing to this increased risk of DCM in this pa-
tient population? Recent experimental studies have shown that Trp53 
and Ppm1d driver genes can contribute to HF and/or atherosclerotic 
CVD.28,85,86 An experimental study examined the effects of t-CH on 
cardiac function by transplanting mice with Trp53 heterozygous- 
knockout bone marrow cells or bone marrow cells harbouring a com-
mon TP53 missense mutation, Trp53R270H.86 To establish a model of 
t-CH, mice were treated with a course of the chemotherapeutic agent 
doxorubicin. Doxorubicin accelerated the expansion of haematopoietic 
Trp53-mutant cells, and these mice displayed worse doxorubicin-induced 
cardiotoxicity compared with mice transplanted with wild-type bone 
marrow. Mechanistic studies revealed that doxorubicin promoted greater 
Trp53-mutant neutrophil infiltration of the myocardium, leading to great-
er reactive oxygen species production and greater inflammatory cytokine 
production.86 While these experimental findings suggest that t-CH can 
contribute to the development of DCM in cancer survivors, clinical evi-
dence in support of this hypothesis is lacking and could potentially be ad-
dressed by examining the associations between CH and CVD outcomes 
in cancer survivors. If validated by further studies, these data would 
suggest that t-CH is predictive of DCM in cancer survivors and that this 
subset of patients could have heightened therapeutic responses to anti- 
inflammatory medications.

Future perspectives
Regulation of the dynamics of clonal 
haematopoiesis
As our understanding of the mechanisms linking CH to CVD deepens, it 
becomes essential to also identify the factors regulating mutant cell ex-
pansion. Highly sensitive DNA sequencing suggests that very low levels 
of blood cells carrying CH-related mutations can be found in virtually 
every middle-aged individual.73,87 However, only a fraction of indivi-
duals develop a marked clonal expansion of those mutant cells. Since 
such expansion is likely a prerequisite for the pathophysiological effects 
of CH, it is of high clinical value to identify the factors determining 
whether a mutant HSC remains quiescent and indolent or instead 

expands to a substantial clone size. To date, our understanding of the 
regulation of the dynamics of mutant cell expansion is limited, as 
most previous CH studies were based on cross-sectional sequencing 
analysis at a single timepoint. An important advancement in this context 
is the development of a mathematical approach for inferring the fitness 
advantage conferred by a given somatic mutation based on a single 
whole genome sequencing time point.88 Applying this tool to a large se-
quencing dataset led to the identification of inherited genetic variance in 
the TCL1A gene as an important modulator of the fitness advantage of 
several commonly mutated driver genes in CH.88 Similar analyses in 
other large sequencing datasets could deepen our understanding of 
the biology of CH. Additionally, an increasing number of human cohorts 
with serially sampled blood over years are allowing for longitudinal se-
quencing analyses of the dynamics of CH.72,89–93 The data available to 
date lead to two major conclusions. First, the expansion rates of mutant 
haematopoietic clones is substantially different among different driver 
genes. Although further research is needed, available evidence suggest 
that mutations in epigenetic regulatory genes expand slower than those 
in genes encoding splicing regulators or involved in the DDR.89–91

Second, even when considering the same mutated gene or the same 
hotspot mutation, the expansion rates of mutant clones vary consider-
ably between individuals, suggesting that the dynamics of CH are mark-
edly influenced by non-mutational factors that remain to be 
determined. The clinical implications of identifying the factors or me-
chanisms controlling clonal outgrowth are manifold. For example, it 
may aid the development of interventions to slow down or even re-
verse the expansion of mutant clones, blunting their adverse effects 
on health. Furthermore, it may lead to new algorithms that enhance 
the predictive and prognostic value of CH in the setting of CVD, as a 
small mutant clone identified at a given timepoint may have a substantial 
long-term impact on health if it undergoes rapid expansion.

Anti-inflammatory therapies
Therapeutic targeting of CH in HF is an emerging area of research with 
several potential approaches. Understanding the mechanistic link be-
tween CH and HF may lead to new drug targets that can specifically 
modulate the detrimental effects of mutated blood cells on the heart. 
One can inhibit the enhanced activation of inflammatory pathways re-
lated to CH, including IL-1β, IL-6, TNF, NLRP3, or the JAK pathway,64

helping to reduce the inflammatory burden caused by CH. Whereas 
this approach is not specific for CH itself, it opens the way for tailored 
medicine in HF and DCM patients. In murine models of HF, CH 
associated with TET2 loss-of-function leads to worsened cardiac re-
modelling and function, through an IL-1β-mediated mechanism.62

Thus, individuals with TET2-mediated CH might respond better to 
IL-1β-NLRP3-inflammasome inhibition, an example of personalized 
medicine. An illustration of this is the finding that the IL-1β neutralizing 
antibody, canakinumab, reduced the relative risk of major adverse car-
diovascular events by 62% in high-risk CVD patients with TET2 muta-
tions compared with 7% in those without CH.8 Furthermore, it is 
conceivable that DNA methyltransferase inhibitors could potentially 
be used to prevent the hypomethylation related to DNMT3A muta-
tions, but these can still have widespread effects on healthy cells. 
Moreover, histone deacetylase inhibitors, which could alter chromatin 
structure to activate the transcription of genes that are silenced in the 
presence of DNMT3A mutations, may potentially counteract some of 
the negative effects on gene expression.

Eliminating the mutated blood cells themselves by selectively killing 
these cells is another therapeutic option. The precise identification of 
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cell surface antigens specific to CH cells is crucial in this regard. 
Chimeric antigen receptor T-cell therapy, which would work by modi-
fying a patient’s T-cells to recognize and attack CH cells expressing spe-
cific antigens, is one approach to eliminate these cells.94 Another 
approach is bispecific T-cell engagers, which are engineered proteins 
that can simultaneously bind to a T-cell and a target cell. These T-cell 
engagers would bring T-cells and CH cells into close proximity leading 
to the destruction of CH cells.95 Since the mutations driving CH pre-
dominantly occur in genes that regulate DNA methylation, histone 
modification, and chromatin organization (e.g. DNMT3A, TET2, and 
ASXL1), rather than genes that encode cell surface proteins, identifying 
specific antigens remains a major challenge. However, another more in-
vasive approach in severe cases could include gene editing with 
CRISPR–Cas9 to correct the mutations in HSCs responsible for 
CH.96 This approach would involve collecting HSCs from the patient, 
correcting the mutation ex vivo, and then re-infusing the corrected cells 
back into the patient, a quite challenging but potentially impactful thera-
peutic approach in HF patients.

In summary, targeting CH in cardiomyopathies could involve a multi-
faceted approach, including targeting CH specific inflammatory, meta-
bolic and methylation pathways, developing therapies to eliminate 
mutated cells, and even considering stem cell transplantation in severe 
cases. Developing therapies that effectively target mutated cells without 
harming healthy cells is a significant challenge, and it will require more 
research to identify CH specific cell surface antigens and CH mediated 
intracellular pathways that can be therapeutically exploited.

Conclusion
The increased sensitivity of novel DNA sequencing techniques has sig-
nificantly increased the accessibility of CH sequencing. CH might be the 
consequence of aetiologies of DCM (e.g. chemotherapy) but can also 
lead to triggers that subsequently contribute to DCM development 
and progression (e.g. inflammation, AF). The tissue inflammation trig-
gered by CH provides a specific treatment target. The exact involved 
inflammatory pathways differ per mutated CH driver gene, thus the 
benefit of immunomodulatory therapy might differ per individual pa-
tient with DCM and CH. However, the number of studies that are cur-
rently investigating the role of CH in DCM are low, and the individual 
studies strongly differ in their set-up and definitions. It will be important 
for future studies to systematically report on the specification of the 
DNA sequencing technique, accurate phenotyping of the cohort, and 
the statistical analysis in order to compare the results of different stud-
ies towards developing clinical trials investigating CH-based treatment 
stratification.
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