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1.  INTRODUCTION

Magnetic Resonance Spectroscopic Imaging (MRSI) is a 

well-established molecular MR imaging modality, facili-

tating non-invasive exploration of in vivo metabolism in 

both human and animal models without the use of ioniz-

ing radiation. In particular, 1H-MRSI can simultaneously 

image up to 20 brain metabolites, providing quantifica-

tion of steady-state concentrations (Maudsley et  al., 

2020) and the dynamic change of concentrations under 
functional tasks (Bednarik et al., 2023; Mullins, 2018). In 
addition to measuring intrinsic metabolism without the 
need of contrast agents, MRSI can probe metabolic 
enzymatic rates that are not accessible by nuclear imag-
ing techniques such as PET and SPECT (Davis et  al., 
2020). Many studies demonstrated significant value of 
MRSI for neuroscience (Oz et  al., 2014), but the 
performance of current MRSI is severely lacking behind 
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other MRI methods, which limits its use and wider  
adoption.

Among MRI modalities, MRSI is positioned to benefit 
the most from ultra-high field (UHF ≥ 7T) due to increased 
spectral dispersion and signal-to-noise ratio (SNR). MRSI 
using very short echo-time (≈1 ms) free induction decay 
(FID) excitation (Boer et  al., 2012; Bogner et  al., 2012; 
Henning et al., 2009) has great potential for metabolite 
imaging due to its high SNR. Nevertheless, MRSI is ham-
pered by significant limitations, including low resolution 
and long scan times required for acquiring the 4D(k,t ) 
spatial-temporal space (Bogner et al., 2021). This high-
lights a pressing demand for acceleration strategies in 
high-resolution MRSI to overcome these challenges. This 
is especially pertinent in the context of high-resolution 
whole-brain MRSI, where conventional phase-encoding 
acquisition schemes would require scan time as long as 
several hours. Acceleration of UHF MRSI has been shown 
by parallel imaging such as SENSE, GRAPPA, and CAIP-
IRINHA with uniform undersampling (Hangel et al., 2018; 
Nassirpour, Chang, & Henning, 2018b; Strasser et  al., 
2017), or by Compressed Sensing (CS) with random 
undersampling (Nassirpour, Chang, Avdievitch, & 
Henning, 2018). However, similar to MRI, these tech-
niques, as for MRI, generally do not allow acceleration 
factors (AF) above 6–10 for MRSI. Additionally, spatial-
spectral encoding (SSE) techniques introduce additional 
prospects for accelerating UHF MRSI as demonstrated 
by Otazo et  al. (2006). By combining spatial-spectral 
encoding with undersampling, higher accelerations 
(AF > 50) of UHF MRSI can be achieved (Ma et al., 2016; 
Moser et al., 2019; Saucedo et al., 2021).

So far, SSE has been demonstrated at ultra-high fields 
using either Cartesian (echo-planar) (An et al., 2018; Nam 
et al., 2022; Weng et al., 2022) and non-Cartesian (spi-
rals, rosettes, concentric circles) (Chiew et  al., 2018; 
Esmaeili et  al., 2021; Hingerl et  al., 2020; Moser et  al., 
2019) k-space trajectories.

Nonetheless, integrating SSE at ultra-high field (UHF) 
presents formidable challenges stemming from the 
inverse relationship between the maximum time allocated 
for a trajectory repetition and the desired spectral band-
width (SBW). This difficulty is accentuated at higher spa-
tial resolutions in UHF, where trajectories must cover 
extensive k-space while maintaining even faster repeti-
tion rates for larger SBW at UHF. Consequently, this 
imposes significant technical demands on the gradient 
system in terms of amplitude and slew rate. The employ-
ment of temporal interleaving presents a viable strategy 
to overcome this constraint, facilitating the achievement 
of broad spectral bandwidth and high spatial resolution 
for circle or spiral trajectory (Adalsteinsson et al., 1998; 
Hingerl et al., 2018; Matsui et al., 1985). For echo-planar 

trajectory, achieving high SBW can be achieved by inter-
laced Fourier transform (Ebel et al., 2005) and interleaved 
readout gradients with alternating polarity (An et  al., 
2018; Posse et al., 2007). Nevertheless, these approaches 
concurrently prolong the acquisition duration and might 
introduce spectral side-bands that degrade the signal-to-
noise ratio (SNR) and interfere with metabolite spectra. 
This issue arises if the number of temporal interleaves 
and the SBW are not optimally selected to prevent side-
bands from appearing within the frequency range of 
interest (Bogner et  al., 2021). Additionally, dedicated 
hardware, such as gradient inserts, allows circumvention 
of limitations on SBW (Versteeg et al., 2024).

In this study, we introduce ECCENTRIC method 
(ECcentric Circle ENcoding TRajectorIes for Compressed 
sensing) that benefits from: 1) improved pseudo-random 
sampling for CS with non-Cartesian trajectories, 2) flexi-
ble sampling of the 4D (k,t ) space for optimal SNR, 3) 
low-rank reconstruction for dimensionality reduction and 
denoising of data, and 4) reduced demand on the gradi-
ent system for spectral quality. Traditional trajectory 
designs, as mentioned above, often struggle to achieve 
high-resolution SSE MRSI at UHF without using temporal 
interleaving. To address this limitation, we designed the 
ECCENTRIC sampling pattern with smaller-sized circles. 
These circles, with their reduced radius, require lower 
gradient amplitude and slew rate compared to trajecto-
ries spanning the entire k-space, for identical spatial res-
olution and SBW. Given the upper limit in gradient 
amplitude and slew rate, ECCENTRIC is therefore advan-
tageous as it allows for higher spatial resolution and/or 
SBW than established trajectories before reaching the 
gradient hardware limits, thereby avoiding the need for 
temporal interleaving.

The performance of the new acquisition-reconstruction 
scheme was first investigated by simulations and in a 
structural-metabolic phantom, and subsequently evalu-
ated in vivo in healthy subjects.

2.  THEORY

Circular trajectories, including rosettes and concentric 
circles, provide several advantages over spiral and echo-
planar trajectories in MRSI and MRI (Adalsteinsson et al., 
1998; Furuyama et al., 2012; Posse et al., 1994; Schirda 
et al., 2018). By design, ECCENTRIC’s circular trajecto-
ries need smaller diameter than rosettes and concentric 
circles, which help achieve high-resolution and large 
spectral bandwidth at ultra-high field without temporal 
interleaving. ECCENTRIC trajectories are produced by 
readout gradient wave-forms that: 1) do not need rewind-
ing which eliminates dead-time and the associated loss 
in SNR per unit time, 2) permit high matrix sizes with 
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limited gradient amplitude, and 3) have constant and 
moderate gradient slew-rate that minimizes patient nerve 
stimulation and is not demanding for the gradient hard-
ware. In contrast, MRSI SSE acquisitions are character-
ized by high gradient amplitudes and slew rates, which 
can exacerbate B0 field drift (An et al., 2018) and induce 
eddy current artifacts (Xu et al., 2020) with echo-planar 
trajectories. Spiral SSE trajectories suffer from gradient 
imperfections and eddy currents, leading to trajectory 
distortions (Kim & Spielman, 2006). Similarly, concentric 
ring trajectories experience rotation errors due to timing 
delays and eddy currents, although to a lesser extent 
(Jiang et al., 2016). Additionally, the high demand on the 
gradient system often leads to temperature increases 
(Nam et al., 2023) and mechanical resonances (Dillinger 
et al., 2024).

This effect is particularly pronounced at 7T, where, for 
equivalent spatial resolution, the FID bandwidth is 
approximately doubled compared to 3T, necessitating a 
doubling of the gradient slew-rate for SSE encoding.

Moreover, the implementation of CS acceleration 
(Candes et al., 2006; Donoho, 2006) relies on two prereq-
uisites. The first is that the signal or image exhibits spar-
sity in a known transform domain (Knoll, Clason, et al., 
2011; Michael et al., 2007). The second is that the data 

are randomly undersampled, which can be achieved by 
random undersampling of the k-space in MRI applica-
tions. To enable the random sparse undersampling nec-
essary for CS, we utilized a novel approach where 
successive circular trajectories are randomly positioned 
in k-space, rather than using regular patterns such as 
rosette, concentric, or uniformly distributed circles. The 
acquisition strategy of ECCENTRIC is illustrated in  
Figure 1. The circle centers’ polar coordinates rc,φc( ) are 
chosen randomly with a uniform probability within the 

ranges rc ∈ 0,max kx,y
max − R,R( )⎡

⎣
⎤
⎦ and φc ∈ 0,2π[ ) (Fig. 1A). 

Here, R represents the circle radius, kx,y
max is the largest 

in-plane k-space coordinate (assuming the same spatial 
resolution along all axial plane directions). The majority of 
circles are placed randomly as shown with two succes-
sive circles (c and c +1) in the sketch Figure 1A, but with 
the constraint to avoid significant overlap between circles 
(Fig. 1B): the distance between the centers of each circle, 
Δ , must be larger or equal to the Nyquist distance (the 
inverse of the field-of-view size). When Δ < 2R , there is 
partial overlap between circles; however, this redundant 
sampling is predominantly concentrated in the central 
region of k-space, enabling an enhancement in SNR. In 
addition to the random pattern, a small subset of circles 
(< 5% of the total number) positioned in rosette fashion is 

Fig. 1.  3D ECCENTRIC sampling and acquisition. (A) Circle center positions are parameterized in polar coordinates 
rc,φc( ) that are chosen randomly in the ranges rc ∈ 0,max kx,y

max − r, r( )⎡
⎣

⎤
⎦ and φc ∈ 0,2π[ ]. Two consecutive circles (c and 

c +1) must respect the overlap rule described in (B): the distance between their respective centers, Δ , must be greater or 
equal to the Nyquist distance, ΔNy . (C), to satisfy a systematic full sampling of the k -space center, a small subset (< 5%)  
of circles is positioned in rosette pattern in each ECCENTRIC encoding planes. (D), 3D k-space sampling is achieved 
by a stack of ECCENTRIC encoding planes with variable kx,y

max to realize an ellipsoid coverage. (E) Diagram of the 3D 
ECCENTRIC FID-MRSI sequence. First, a 4-pulse WET water suppression technique is used, followed by the Shinnar–Le 
Roux optimized excitation pulse. After the excitation, the Cartesian encoding is performed along the z-axis, simultaneously 
to the gradient ramp along the x- and y-axes to reach the desired k-space off-center position and velocity. Finally, a 
sinusoidal gradient wave-form is applied along the x- and y-axis during acquisition to produce the circular trajectory.
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Fig. 2.  Comparative analysis of circular k-space encodings. Top left, k-space trajectories for ECCENTRIC, uniform 
distributed circles, concentric circles, and rosette trajectories for a 64 × 64 encoding matrix. Red dots indicate the 
circle center positions. The acceleration factors AF = 1, 2,  3 correspond to ECCENTRIC and uniform distributed circles 
trajectories with 202, 101, and 67 circles respectively; 31, 16, and 11 concentric circles; 101, 51, and 34 Rosette circles. Top 
right, the point spread function (PSF) calculated for each trajectory and acceleration on a log-scale highlight the presence 
of incoherent and coherent aliasing patterns. Bottom, the sampling density for the same trajectories and AFs, represented 
in the 2D k -space (left) and along a radial projection (right).

acquired in the center of k -space (Fig. 1C). This ensures 
complete sampling of the center of k-space, which is 
beneficial for SNR and reconstruction performance 
(Knoll, Clason, et al., 2011; Michael et al., 2007) with neg-
ligible effect on acquisition time. The homogeneous ran-
dom distribution of circle polar coordinates results 
intrinsically in a pseudo-random k-space sampling with 
density following 1/! k ! outside of the rosette sampled 
central region.

The ECCENTRIC design offers the flexibility to choose 

the radius of circles within the range of 0 to kx,y
max

2
. There-

fore, for a given matrix size, field-of-view (FoV), and 
spectral bandwidth, the radius of ECCENTRIC circles 

can be chosen to ensure that, even without temporal 
interleaving, the limits of gradient hardware’s slew rate 
and amplitude are not exceeded. As detailed below, 
ECCENTRIC sampling fulfills better the random under-
sampling required by CS compared to echo-planar (Hu 
et al., 2008, 2010; Iqbal et al., 2016; Kampf et al., 2010; 
Otazo et al., 2009; Santos-Díaz & Noseworthy, 2019), spi-
ral (Chatnuntawech et  al., 2015), and radial (Saucedo 
et al., 2021) trajectories.

In Figure 2, a comparison is made between ECCEN-
TRIC, uniform distributed circles trajectory, concentric cir-
cles, and rosette sampling. The trajectory and sampling 
density in the k-space for each pattern and acceleration 
factor highlight the differences in sampling distribution. 
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While rosette and concentric circle trajectories provide 
high sampling density at the center of k-space, uniformly 
distributed circles exhibit a flat and less optimal sampling 
density in terms of SNR. Accurate reconstruction benefits 
from sampling the center of k-space, which contains data 
with the highest SNR. The density distribution of ECCEN-
TRIC lies between that of rosette and concentric circles 
and uniform distribution. It features a high-density singu-
larity at the k-space center which gradually decreases 
towards the periphery of k-space.

The point spread function (PSF) simulations in Fig-
ure 2 illustrate that ECCENTRIC is inherently suited for 
the random undersampling necessary to achieve optimal 
CS performance (Michael et al., 2007). The PSF reflects 
the interference between voxels in image space resulting 
from undersampling. Simulations reveal an incoherent 
pattern for PSF of ECCENTRIC due to the pseudo ran-
dom k-space sampling, and the PSF pattern spreads 
with the increasing acceleration factor but conserve the 
pseudo-random behavior with undersampling (Fig. 2). In 
comparison, uniform distributed circles, concentric cir-
cles, and rosette trajectories have more compact PSFs 
for fully sampled acquisitions and their PSFs exhibit 
coherent patterns when undersampling is applied, which 
is less favorable for CS acceleration. The PSF was com-
puted on a 64 × 64 matrix and obtained from a single 
point source (Mareci & Brooker, 1991) that was encoded 
in k-space and then reconstructed with Non-uniform 
Fourier transform with Voronoi’s partition density com-
pensation (Rasche et al., 1999).

To extend ECCENTRIC to 3D k-space sampling, a 
stack of ECCENTRIC is employed with circles randomly 
placed in the kx- ky  planes, while kz is encoded using 
Cartesian phase-encoding (Fig.  1D). The 3D k-space  
can be covered using spherical or ellipsoid coverage, 
where the in-plane k-space boundary is defined as 

kx,y
max = n

2FoV
1− kz / kz

max( )2 , with FoV  representing the 

FoV size and n the spatial resolution. The spherical 
k-space coverage yields an additional acceleration factor 
of 1.5 compared to cylindrical k-space coverage. To 
achieve complete sampling in a single kx- ky plane, the 
number of needed ECCENTRIC circles can be derived 

similar to rosette encoding that requires πn
2

 circles 

(Schirda et  al., 2009). Expanding from the number of 
points of a fully sampled rosette trajectory to ellipsoidal 
coverage, the total number of ECCENTRIC circles 
required for complete sampling of a single partition of the 

stack is πnkx,y
max

2R
. To achieve circle encoding with off-

center position rc,φc( ), a brief gradient ramp is used to 
gain an initial momentum kx ,ky( ) position and the neces-
sary velocity. This process is done at the same time as 

the slab excitation rewinder overlapped by z-phase 
encoding and does not increase the echo time, as shown 
in Figure 1E. In implementing CS acceleration, the total 
number of ECCENTRIC circles Nc is reduced uniformly 
across the stacks by a factor of AF. Since each circle pat-
tern for every partition of the ECCENTRIC stack is ran-
domly drawn, this results in sparse and random sampling 
across all three dimensions of the k-space.

Due to the non-uniformity and sparsity of the sam-
pling, a specific model is necessary to reconstruct 4D 
(k, t ) data of ECCENTRIC into image-frequency space. 
In previous studies (Klauser et al., 2019, 2021, 2022), 
we demonstrated the effectiveness of CS-SENSE-LR 
model that combines partial-separability (or low-rank) 
with Total-Generalized-Variation (TGV) constraint for 
reconstructing Cartesian k-space data acquired with 
random undersampling, leading to improved SNR. 
Here, we extended the CS-SENSE-LR approach to 
incorporate non-uniform Fourier sampling necessary 
for reconstructing ECCENTRIC data. Defining the dis-
crete MRSI data in image space to be ρ as an Nr  by T  
array (with Nr  the number of spatial points and T  the 
number of sampling time points), the low-rank hypoth-
esis on the magnetization assumes that the MRSI data 
can be separated into a small number of spatial and 
temporal components:

	 ρ =UV 	 (1)

where U is a Nr  by K array and V  a K  by T  array, with K 
the rank of the low-rank model. These components are 
retrieved by CS-SENSE-LR reconstruction solving the 
inverse problem

	

arg min
U,V,L

W s −FCB UV +L( )( )
2

2

+λ
c=1

K

∑TGV2 Uc{ }.
	

(2)

where s the measured data, F  the non-uniform Fourier 
transform (NUFT) encoding operator, C  the coil sensitivity 
operator, B the B0  frequency shift operator, and L repre-
sent the lipid signal (Nr  by T  array) from skull that is 
reconstructed simultaneously with brain metabolite U 
and V but on a separate spatial support. W  is a weighting 
operator of a Hamming window shape, and decreasing 
with the distance to the center of the k-space (Ban et al., 
2019; Klauser et al., 2021). The NUFT encoding operator 
of ECCENTRIC F  is a discrete non-uniform Fourier trans-
form of type 1:

	
Fρ( ) j,t =

i
∑ei2πk j ⋅ riρi,t

	
(3)



6

A. Klauser, B. Strasser, W. Bogner et al.	 Imaging Neuroscience, Volume 2, 2024

with ri are the uniform image space coordinates and k j  
k-space sampling-point coordinates located on the 3D 
ECCENTRIC circles.

TGV2 is the total generalized variation cost function 
with λ  the regularization parameter (Knoll, Bredies, et al., 
2011). The regularization parameter used in the recon-
struction was adjusted to λ = 3×10−4 by gradually 
increasing it from a low value until the noise-like artifacts 
in the metabolite maps disappeared (Klauser et al., 2022; 
Knoll, Bredies, et al., 2011). The reconstruction rank, K, 
was determined qualitatively as the minimum number of 
components that contain some signal distinguishable 
from noise. For the 3D ECCENTRIC reconstruction, K 
was specifically set to 40. Additional information regard-
ing the determination of K  and an illustration of its impact 
on the results are available in the Supplementary Material 
and depicted in Figures S9–S11.

The contamination of U and V by skull-lipid signal is 
prevented by filtering of the gradient descent during the 
reconstruction (Eq. 2). Lipid signal is removed from each 
step of the gradient descent by applying the operator 
1− P( ) with P  the lipid subspace projection computed 

from the estimated lipid signal at the skull L (Klauser 
et al., 2019). The reconstruction algorithm for U and V, 
along with the detailed utilization of the lipid suppression 
operator 1− P( ), is further described in the Supplemen-
tary Material, accompanied by pseudocode for clarity.

3.  METHODS

3.1.  ECCENTRIC FID-MRSI acquisition parameters

1H-FID-MRSI (Bogner et al., 2012; Henning et al., 2009) 
acquisition was implemented with 3D spherical stack-of-
ECCENTRIC sampling as depicted in (Fig.  1E) on a 7T 
scanner (MAGNETOM Terra, Siemens Healthcare, Erlan-
gen, Germany) running VE12U SP1 software and 
equipped with NOVA head coils (32Rx/1Tx and 32Rx/8Tx). 
The echo-time (TE) was set to the minimum possible: 
0.9  ms with a 27 degree excitation flip-angle (FA) and 
275  ms repetition-time (TR). A slab-selective excitation 
was performed with a Shinnar-LeRoux optimized pulse 
(Klauser et  al., 2021; Pauly et  al., 1991) with 6.5  kHz 
bandwidth and was preceded by four-pulses WET water 
suppression scheme (Klauser et  al., 2021; Ogg et  al., 
1994) (Fig.  1). The FoV was 220 × 220 ×105 mm3 (A-P/ 
R-L/H-F) with 85 mm-thick excited slab. A voxel size of 
3.4 × 3.4 × 3.4 mm3 (40.5 µl ) was realized with a 
64 × 64 × 31 matrix. The ECCENTRIC circles radius R was 

set to 1/ 8
n

FoV
 which corresponds to a diameter that 

encompasses a quarter of the width of the k-space, with 
n being the square matrix size. The radius R was selected 
to maximize the number of sampled points per circle, 

thereby optimizing SSE acceleration, while ensuring not 

to exceed the gradient system limits for the desired spec-

tral bandwidth. With R = 1/ 8 n
FoV

, ECCENTRIC enables 

a spectral bandwidth of 2,280 Hz without the need for 
temporal interleaving for in-plane FoV = 220 x 220 mm2  
and 64 × 64 matrix. The effect of circle radius on the SNR 
and the quality of metabolic maps was investigated in 
Supplementary Figures  S14–S16. With this radius, 
ECCENTRIC circles cover 20 points in k-space, inher-
ently providing an SSE acceleration of 20 without under-
sampling. The FID was sampled with 500 time-points 
which corresponds to the number of revolutions on each 
ECCENTRIC circle, and resulted in a total FID duration of 
220 ms. To obtain the fully sampled (AF = 1) spherical 3D 
stack-of-ECCENTRIC with these parameters, a total 
number of Nc = 4,072 circles is required, which corre-
sponds to 18 min 40 sec acquisition time (TA). For accel-
erated acquisitions, we decreased the number of circles 
to Nc /AF , with TA being shortened proportionally. For 
instance, with the same encoding parameters, AF  =  2 
needs Nc = 2,036 in 9 min 20 sec, AF = 3 needs Nc = 1,357 
in 6 min 16 sec, AF = 4 needs Nc = 1,018 in 4 min 40 sec, 
and so on.

A rapid calibration scan of water reference data was 
performed by turning off water suppression and using the 
same FoV, FA slab excitation, TR, FID duration, and spec-
tral bandwidth, but with rosette trajectory sampling at 
lower resolution (23× 23×19) in 1 min 16 sec.

The B0 shimming of the 85 mm thick whole-brain slab 
was performed using the manufacturer methods that 
adjusted the shim currents over 12 spherical harmonics 
coils: three 1st order, five 2nd order, and four 3rd order. 
The global linewidth of the water over the entire 85 mm 
slab was between 25–42 Hz across all subjects. In the 
majority of the subjects the global water linewidth was 
between 30–35 Hz. Adjustment of the B1+  transmit and 
water suppression was subsequently performed with 
manufacturer methods. The entire adjustment procedure 
took between 1–2 min for every subject.

3.2.  Reconstruction of ECCENTRIC FID-MRSI 
metabolic images

The rapid water reference data were used to compute the 
coil sensitivity maps using ESPIRiT (Uecker et al., 2014) 
(C  operator in Eq. 2) and to estimate a ΔB0 field map with 
multiple signal classification algorithm (MUSIC) (Gruber & 
Hayes, 1997). The field correction operator in Equation 2 
was then determined by B = ei2πtγΔB0, where γΔB0 is the 
spatial frequency shift caused by the field inhomogeneity 
map (in Hz). To reconstruct 3D ECCENTRIC FID-MRSI 
data and obtain the metabolic images, we employed a 
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comprehensive pipeline that included: 1) water removal 
using the HSVD method (Barkhuijsen et al., 1987) for each 
coil channel (Klauser et al., 2019), 2) determination of the 
ΔB0 field map and the coil sensitivity maps from the rapid 
water reference data, 3) CS-SENSE-LR reconstruction 
model from Equation  2, which includes simultaneous 
suppression of scalp lipid signals, and 4) spectral fitting 
by LCModel software (Provencher, 1993) with the recon-
structed rapid water reference data serving as the norma-
tive signal. Because FID gradient-echo excitation does 
not refocus chemical shift evolution during echo-time the 
spectra need first order phase correction, which was per-
formed by backward linear prediction of the evolution 
(Nassirpour, Chang, & Henning, 2018a). A metabolite 
basis obtained by quantum mechanics simulations in 
GAMMA (Smith et al., 1994) was utilized to fit and quan-
tify 21 metabolites: phosphocholine (PCh), glycerophos-
phocholine (GPC), creatine (Cr), phosphocreatine (PCr), 
gamma-aminobutyric acid (GABA), glutamate (Glu), glu-
tamine (Gln), glycine (Gly), glutathione (GSH), myo-inositol 
(Ins), N-acetylaspartate (NAA), N-acetyl aspartylgluta-
mate (NAAG), scyllo-inositol (Sci), lactate (Lac), threonine 
(Thr), beta-glucose (bGlu), alanine (Ala), aspartate (Asp), 
ascorbate (Asc), serine (Ser), and taurine (Tau). Phosphor-
ylcholine and glycerophosphorylcholine were combined 
into total choline-containing compounds (Cho), while cre-
atine and phosphocreatine were combined into total cre-
atine (tCre). Concentration maps were then generated for 
the metabolites included in the simulated basis.

The water reference signal was used as quantification 
reference by LCModel, and the resulting concentration 
estimates were expressed in institutional units (I.U.). This 
allowed for comparisons of metabolite levels across both 
subjects and different metabolites. The ultra-short TE 
used in the ECCENTRIC MRSI data acquisition meant 
that T2 relaxation correction was unnecessary for both 
metabolite and water signals. As a result of employing a 
short TR with Ernst flip angle, metabolite maps may con-
tain T1-weighted contrast. Correcting for this would 
necessitate measuring B1+ field and incorporating prior 
knowledge of metabolite T1. The results of the LCModel 
fitting for each voxel were further used to generate spatial 
maps of the concentration of each metabolite. To assess 
the quality of the MRSI data and the goodness of fit, 
quality control maps of Cramer-Rao lower bounds 
(CRLB), line-width (FWHM), and SNR were generated 
from the LCModel fitting.

3.3.  ECCENTRIC FID-MRSI in  
high-resolution phantom

Experimental performance of ECCENTRIC sampling 
was first tested on a high-resolution structural-metabolic 

phantom. We used a custom-made phantom with 
geometry similar to Derenzo molecular imaging phan-
tom (Derenzo et  al., 1977) containing 5 sets of tubes 
with diameters of 2, 4 , 6, 8 and 10 mm as shown in 
Figure 3. Each set contained 6 tubes of identical diam-
eter separated by a distance equal to twice the inner 
diameter positioned in a triangular configuration. In 
every set, the six tubes were filled with metabolite solu-
tions containing 10  mM of creatine. Magnevist (Gd-
DTPA) was added (1 mL/L) in each tube to shorten T1 
and create T1-weighted contrast for structural MRI. The 
whole tube structure was inserted in a large cylindrical 
container (13.33  cm inner diameter) which was filled 
with 10 mM NaCl solution. Further details of phantom 
manufacturing and chemical composition are men-
tioned in Klauser et al. (2021).

Due to the phantom’s geometric structure being pres-
ent only in the axial section, we opted for a 2D ECCEN-
TRIC acquisition. The sampling scheme for 2D 
ECCENTRIC is identical to the central k -space partition 
used in 3D ECCENTRIC. The 2D ECCENTRIC acquisition 
maintained the same RF-pulse and FA but required 
slightly longer TE to 1.15 ms, and the TR was set to 450 
ms to accommodate the longer T1 relaxation times in the 
phantom. The FID was measured with a spectral band-
width of 2,000 Hz over 350 ms, and successive acquisi-
tions were performed with increased in-plane resolution. 

The circle radius (R ) was set to 
n

8FoV
, 

n
8FoV

, 
n

9FoV
, 

and 
n

10FoV  for 4.6, 3.4, 2.8, and 2.0 mm in-plane  

resolutions, respectively, to avoid temporal interleaving 
for any spatial resolution.

In addition to metabolite imaging, we conducted water 
imaging of the structural phantom at identical spatial res-
olutions to more comprehensively evaluate the spatial 
encoding performance of ECCENTRIC. To accomplish 
this, we employed the 2D ECCENTRIC sequence without 
water suppression, utilizing a short TR of 100 ms and an 
FA of 40 degrees. This choice was made to maximize the 
T1-weighted (T1w) contrast of the tubes within the cylin-
drical phantom. Subsequently, the first point of the 
acquired timeseries was reconstructed to generate the  
T1-weighted water image. Both metabolite and water 
data were acquired with fully sampled ECCENTRIC. To 
investigate accelerations, the fully sampled ECCENTRIC 
data were retrospectively undersampled for acceleration 
factors (AF) between 2−12.

The effect of the acceleration on water and metabolite 
imaging was evaluated by analyzing the structural simi-
larity index (SSIM) and correlation coefficient for all vox-
els inside the phantom with respect to the fully sampled 
data (Fig. 3).
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3.4.  ECCENTRIC FID-MRSI in healthy volunteers

Five healthy volunteers were scanned at Athinoula A. 
Martinos Center For Biomedical Imaging for this study. 
The protocol was approved by the institutional ethics 
committee, and written informed consent was given by 
all subjects before participation. The 3D ECCENTRIC 
FID-MRSI sequence described above was acquired with 
voxel size of 3.4 mm isotropic at AF = 1,2,3 and 4 suc-
cessively. In two volunteers, the performance of 3D 
ECCENTRIC FID-MRSI was also tested at ultra-high res-
olution with voxel size of 2.5 mm isotropic (matrix 
88 × 88 × 43, AF = 4, TA = 10 min 26 sec) and compared 
to 3.4 mm isotropic (matrix 64 × 64 × 31, AF = 2, TA = 9 
min 20 sec). Our objective was to determine the feasibil-
ity of achieving a metabolic imaging protocol that delivers 
close to 3 mm isotropic whole-brain coverage in under 
10 min using ECCENTRIC.

All volunteers were scanned with a T1-weighted ana-
tomical MP2RAGE sequence (Marques et  al., 2010) 
(1 mm isotropic, 4,300 ms TR, 840 ms and 2,370 ms TI) 

for positioning of the MRSI FoV and for the generation of 
skull-masks that are needed for the lipid removal during 
the reconstruction and to exclude voxels located outside 
the head volume.

3.5.  Quantitative analysis

For quantitative analysis of 3D ECCENTRIC FID-MRSI, 
the metabolite concentrations (I.U.) were analyzed in 
each brain lobe and tissue type. This involved segment-
ing MP2RAGE images into gray matter, white matter, and 
cerebrospinal fluid using Freesurfer version 7.1.1 soft-
ware (Fischl et al., 2002). Cerebral lobes were then iden-
tified utilizing a standard atlas, and a general linear model 
was employed to estimate metabolite concentrations 
within each atlas-defined structure (Klauser et al., 2022).

3.6.  Reproducibility analysis

The reproducibility of metabolite maps measured by 3D 
ECCENTRIC FID-MRSI were assessed by repeated 

Fig. 3.  ECCENTRIC imaging of water and metabolites in the high-resolution structural-metabolic phantom. ECCENTRIC 
performance was tested for spatial resolutions of 4.6, 3.4, 2.8, 2.0 mm and acceleration factors between 1–12. Top, 
examples of water and creatine images are shown for all 4 resolutions and 4 acceleration (AF: 1,4,8,12). Bottom, SSIM and 
correlation factors for each resolution and acceleration are calculated considering as ground truth the fully sampled image 
(AF = 1).
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imaging in four healthy volunteers. All scans were con-
ducted sequentially without repositioning the volunteer. 
For the reproducibility analysis, three data sets with AF = 3 
in each volunteer were compared. One data set was 
acquired with AF = 3, and the other two datasets were 
obtained by retrospective undersampling to AF = 3 the 
data acquired with AF = 1 and AF = 2. Coefficients-of-
variation (COV) were computed for individual anatomical 
regions from the three data sets. Both inter-measurement 
and inter-subject COVs were calculated and then aver-
aged across subjects.

4.  RESULTS

4.1.  ECCENTRIC imaging in high-resolution 
phantom

In the series of water imaging experiments, ECCENTRIC 
can resolve the structural details of the phantom up to 
the resolution targeted by the imaging protocol as can be 
seen in Figure 3.

For water images, no visible difference in image qual-
ity can be seen for retrospective accelerations factors up 
to AF = 4, minor changes can be detected for AF between 
4–8, and moderate loss of details for AF between 8–12 
when compared to the fully sampled acquisition (AF = 1). 
Considering AF = 1 as ground truth, quantitative analysis 
reveals that SSIM ≥ 0.99 across all resolutions for accel-
erations up to AF = 4, and SSIM decreases to 0.97 for the 
highest acceleration and resolution tested. Similarly, cor-
relation factors larger than 0.99 are observed up AF = 4, 
which decrease to 0.95 for the lowest resolution and larg-
est acceleration factor. Comparing the different spatial 
resolutions, the higher CS accelerations show better per-
formance for higher resolution images.

In the series of metabolite imaging experiments, 
ECCENTRIC was used to image the creatine metabolite 
present in the tubes with the same resolutions and accel-
eration factors as in the water imaging (Fig.  3). These 
results of these experiments show that: 1) metabolite 
maps exhibit comparable quality for AF between 1–4, 2) 
for AF > 4 there is reduction in image details and an ele-
vation of the noise level. Considering AF = 1 as ground 
truth, across the entire series of measurements SSIM 
range between 0.75–0.89, and correlation factors 
between 0.79–0.96. Unlike the water imaging results, the 
increasing acceleration does not yield higher SSIM and 
correlation factors as the spatial resolution increases. 
This discrepancy is likely attributed to the much lower 
(103 −104 less) SNR of metabolites in comparison to 
water, which becomes critical for the smallest voxel size. 
In particular, we note that for isotropic voxel size of 
3.4 mm and for acceleration factors up to 4 we obtained 

the highest SSIM and correlation factors for metabolic 
imaging.

4.2.  ECCENTRIC FID-MRSI in healthy volunteers

Examples of metabolic images for seven metabolites 
obtained with retrospective AF = 1− 4 are shown in Fig-
ure 4. Very similar structural details and tissue contrast 
of metabolic images are obtained for all accelerations 
compared to the fully sampled data. This is visible also 
by inspecting spectra that show the same metabolic 
profile across acceleration factors (AF = 1− 4 ). The CS 
accelerations (AF = 2,3,4) were achieved by retrospec-
tively undersampling the fully acquired data (AF = 1). 
The purpose of this was to focus the analysis on the 
effects of CS acceleration, while avoiding any image  
differences that could be caused by head motion during 
different acquisitions. To illustrate the effect of each 
component of the CS-SENSE-LR reconstruction, we 
modified the model to isolate and evaluate each feature 
independently. The results are presented in Supplemen-
tary Material Section II.B and Figure  S8, and are con
sistent with previously published data obtained using 
similar reconstruction models for Cartesian CS FID-
MRSI (see supplementary material in Klauser et  al. 
(2021)). To validate the low-resolution rapid water refer-
ence measurement described in Section 3.1 and used 
for the reconstruction and quantification, we compared it 
in Supplementary Figure S12 with a water 3D ECCEN-
TRIC FID-MRSI reference acquisition, which matched 
the spatial resolution of the metabolite measurement.

Visual inspection of metabolic images reveal that: 1) 
tCre, Glu, and GABA have larger signal in gray matter 
than white matter, 2) NAA has more signal in gray than 
white matter, but with lower gray-white matter contrast 
compared to tCre, Glu, and GABA, 3) Cho has higher sig-
nal in frontal white matter than gray matter, and 4) NAAG 
has the largest contrast from all metabolites, with much 
larger signal in white matter compared to gray matter. 
Metabolic images obtained with AF = 1 and AF = 2 are 
largely identical. Minor blurring of fine structural details 
starts to become noticeable for AF ≥ 3, however ade-
quate delineation of gray-white matter folding is main-
tained up to AF = 4 . Additionally, the performance of 
ECCENTRIC to reveal brain structural details was probed 
also by water imaging in four healthy volunteers. Brain 
water imaging by ECCENTRIC shows comparable per-
formance for AF  between 1–10 (Supplementary Fig. S13), 
similar to the phantom results.

Quantitative image analysis shows that the correlation 
between the accelerated and fully sampled metabolic 
images is high (R > 0.7) for metabolites that have a high 
SNR (> 10) such as NAA, Cho, tCre, Glu, and Ins, while 
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metabolites of lower SNR such as Gln, GABA, GSH, and 
NAAG exhibit lower correlations (R = 0.4 − 0.7). The error 
(CRLB) of spectral fitting is below 20%, which indicates 
very high goodness-of-fit by LCModel software. The 
CRLB does not degrade with the acceleration factor, 
except for NAAG and GABA, although even in this case it 
does not exceed the 20% limit. The SNR shows only a 
minor decrease between AF = 1 (SNR = 17) and AF = 4 
(SNR  =  15), while the linewidth does not degrade with 
acceleration.

4.3.  Quantitative analysis of ECCENTRIC  
metabolic imaging

Table  1 presents brain regional concentrations of nine 
metabolites quantified using water signal as reference 
and expressed in institutional units (I.U.). The concentra-
tions were calculated in the gray and white matter of the 

five major brain lobes across the five healthy volunteers. 
Our results indicate that: 1) six metabolites have higher 
concentrations in gray-matter compared to white matter 
(GM/WM = 1.19 tCre, 1.12 NAA, 1.2 Glu, 1.34 Gln, 1.15 
GABA, 1.11 GSH); 2) two metabolites have higher con-
centrations in white-matter compared to gray-matter 
(GM/WM = 0.96 Cho, 0.47 NAAG); and 3) one metabolite 
has region-dependent gray/white-matter ratio (GM/
WM = 1.17–0.87 Ins). The largest gray-white matter con-
trast is exhibited by NAAG due to its specific compart-
mentalization in white matter.

Quantitative parameters for the quality of MRSI data 
are also listed in Table  1, including the precision of 
metabolite quantification by the Cramer-Rao lower 
bounds (CRLB), the SNR, and spectral linewidth (FWHM). 
It is worth noting that the values of spectral SNR and 
fitting CRLB are influenced by our reconstruction 
method. The CS-SENSE-LR reconstruction incorporates 

Fig. 4.  3D ECCENTRIC FID-MRSI metabolic images of human brain acquired in a healthy volunteer with 3.4 mm 
isotropic voxel size and CS acceleration factors AF = 1–4. Top, metabolite maps of seven relevant brain metabolites (NAA, 
tCre, Cho, Glu, GABA, GSH, and NAAG) are shown for all acceleration factors (AF). Spectra from three brain locations 
indicated by red arrows on the anatomical image. At the bottom, the left plot displays the correlation coefficients between 
accelerated images (AF = 2, 3,  4) and fully sampled images (AF = 1), while the right plot shows the LCModel quantification 
error (CRLB), linewidth (FWHM), and SNR.
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a low-rank model, effectively reducing noise, thereby 
enhancing SNR and lowering CRLB values. Conse-
quently, the SNR and CRLB metrics not only reflect the 
acquisition quality but also the effectiveness of the 
reconstruction process. Therefore, these values may 
vary from studies that do not employ similar reconstruc-
tion techniques. It can be seen that mean CRLB is below 
< 20% for all the metabolites across the imaged whole-

Table 1.  Metabolite concentrations (I.U.) and quantification error (Cramér-Rao lower bound, CRLB %) in each brain lobe 
and tissue type.

Mean across  
volunteers Frontal Limbic Parietal Occipital Temporal

Usable 
voxels

(Standard  
deviation) WM GM WM GM WM GM WM GM WM GM

Mean 
% (std)

tCre [I.U.] 3.34 
(0.34)

3.84 
(0.04)

3.22 
(0.35)

4.46 
(0.28)

3.30 
(0.28)

3.95 
(0.28)

3.31 
(0.30)

3.39 
(0.19)

3.09 
(0.25)

3.81 
(0.19)

tCre CRLB [%] 3.25 
(0.24)

3.54 
(0.41)

3.38 
(0.31)

3.18 
(0.30)

3.21 
(0.33)

3.26 
(0.26)

3.45 
(0.62)

3.64 
(0.62)

3.42 
(0.37)

3.33 
(0.26)

73.3 
(3.3)

NAA [I.U.] 4.16 
(0.98)

4.51 
(0.66)

4.07 
(1.01)

5.38 
(0.90)

4.31 
(0.96)

4.84 
(0.88)

4.33 
(0.98)

4.18 
(0.85)

3.91 
(0.84)

4.35 
(0.73)

NAA CRLB [%] 3.13 
(0.34)

3.55 
(0.64)

3.26 
(0.33)

3.07 
(0.36)

2.86 
(0.26)

3.05 
(0.37)

3.30 
(0.54)

3.63 
(0.64)

3.32 
(0.39)

3.32 
(0.34)

73.0 
(3.5)

Ins [I.U.] 3.49 
(0.52)

3.51 
(0.35)

3.65 
(0.60)

4.28 
(0.48)

3.73 
(0.66)

3.58 
(0.29)

3.74 
(0.65)

3.27 
(0.57)

3.56 
(0.65)

3.39 
(0.51)

Ins CRLB [%] 5.33 
(0.64)

6.04 
(0.94)

5.29 
(0.52)

5.36 
(0.42)

5.16 
(0.42)

5.63 
(0.52)

5.38 
(0.48)

5.84 
(0.50)

5.34 
(0.33)

5.68 
(0.40)

73.0 
(3.5)

GPC+PCh [I.U.] 1.03 
(0.10)

0.93 
(0.05)

1.10 
(0.10)

1.24 
(0.08)

1.06 
(0.11)

0.95 
(0.09)

0.94 
(0.12)

0.79 
(0.06)

0.99 
(0.07)

0.98 
(0.12)

GPC+PCh CRLB [%] 3.63 
(0.34)

4.24 
(0.59)

3.46 
(0.31)

3.56 
(0.27)

3.56 
(0.29)

3.97 
(0.33)

4.13 
(0.57)

4.59 
(0.64)

3.68 
(0.29)

3.94 
(0.25)

73.5 
(3.3)

Glu [I.U.] 3.86 
(0.53)

4.50 
(0.29)

3.72 
(0.49)

5.24 
(0.46)

3.86 
(0.39)

4.61 
(0.39)

3.80 
(0.36)

3.82 
(0.38)

3.50 
(0.35)

4.29 
(0.44)

Glu CRLB [%] 4.51 
(0.51)

5.01 
(0.85)

4.72 
(0.59)

4.37 
(0.47)

4.31 
(0.53)

4.48 
(0.55)

4.82 
(1.14)

5.22 
(1.32)

4.80 
(0.74)

4.71 
(0.64)

72.8 
(3.8)

Gln [I.U.] 0.89 
(0.06)

1.24 
(0.25)

0.83 
(0.06)

1.33 
(0.16)

0.80 
(0.16)

1.08 
(0.26)

0.87 
(0.22)

0.91 
(0.21)

0.80 
(0.09)

1.07 
(0.22)

Gln CRLB [%] 15.93 
(2.45)

14.81 
(2.22)

17.72 
(2.68)

14.38 
(2.48)

17.92 
(4.78)

16.22 
(3.24)

18.99 
(5.14)

18.77 
(4.11)

18.30 
(2.95)

16.45 
(2.60)

56.3 
(4.6)

GABA [I.U.] 1.34 
(0.09)

1.48 
(0.29)

1.34 
(0.10)

1.79 
(0.37)

1.37 
(0.14)

1.58 
(0.30)

1.33 
(0.18)

1.37 
(0.18)

1.21 
(0.16)

1.39 
(0.32)

GABA CRLB [%] 8.68 
(1.10)

9.61 
(1.51)

8.86 
(1.50)

8.52 
(1.74)

8.54 
(2.08)

8.78 
(1.76)

9.48 
(2.34)

9.90 
(2.22)

9.60 
(2.16)

9.52 
(2.09)

68.3 
(1.5)

GSH [I.U.] 1.07 
(0.24)

1.22 
(0.05)

1.11 
(0.26)

1.45 
(0.20)

1.10 
(0.20)

1.17 
(0.07)

1.05 
(0.18)

1.00 
(0.09)

1.02 
(0.17)

1.14 
(0.12)

GSH CRLB [%] 8.20 
(0.88)

8.77 
(1.15)

8.29 
(0.93)

7.96 
(0.79)

8.04 
(1.00)

8.43 
(0.87)

9.12 
(2.01)

9.80 
(1.90)

8.65 
(1.23)

8.81 
(1.17)

71.5 
(3.1)

NAAG [I.U.] 0.82 
(0.14)

0.39 
(0.12)

0.90 
(0.13)

0.49 
(0.17)

0.96 
(0.17)

0.34 
(0.13)

0.78 
(0.16)

0.41 
(0.12)

0.76 
(0.11)

0.35 
(0.10)

NAAG CRLB [%] 14.11 
(4.10)

19.02 
(5.07)

12.43 
(3.87)

17.35 
(6.07)

12.01 
(3.14)

18.03 
(5.15)

15.51 
(5.08)

19.40 
(6.62)

15.36 
(5.01)

20.13 
(6.40)

45.3 
(11.6)

SNR 24.64 
(4.41)

23.67 
(3.84)

22.92 
(4.50)

24.53 
(4.02)

25.64 
(4.82)

24.73 
(4.17)

22.48 
(6.13)

21.32 
(5.56)

22.07 
(4.23)

22.40 
(3.37)

∅

FWHM [Hz] 11.43 
(0.91)

12.09 
(0.77)

11.28 
(1.15)

11.13 
(1.13)

10.21 
(0.79)

11.02 
(0.84)

11.64 
(0.91)

12.33 
(1.04)

12.26 
(1.23)

12.38 
(1.22)

∅

The two bottom rows present the SNR and FWHM values. The last column shows the percentage of voxels inside the brain and FoV 
that meet the criteria of good quality: CRLB < 20%, FWHM < 0.07 ppm, SNR > 5. The values are calculated as the average (standard 
deviation) across the healthy volunteers imaged by 3D ECCENTRCIC at 3.4 mm isotropic with AF = 2 (9 min:20 sec acquisition time).

brain volume. In particular, mean CRLB is below < 6% for 
the five metabolites with highest SNR (NAA, tCre, Cho, 
Glu, and Ins), between 8%–10% for two metabolites 
(GABA and GSH) and between 14%–20% for other  
two metabolites (Gln and NAAG). Across the brain, the 
mean SNR after the denoising reconstruction is larger 
than 20 and the mean linewidth is less than 12  Hz 
(0.04 ppm).
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Fig. 5.  Glutamate imaging at 3.4 mm isotropic voxel size in four healthy volunteers scanned with 3D ECCENTRIC FID-
MRSI in four successive acquisitions with increasing accelerations AF = 1, 2, 3, and 4. Three slices are shown for each 
volunteer at each acceleration.

4.4.  Reproducibility of ECCENTRIC  
metabolic imaging

Results from repeated measurements are shown in  
Figure  5 for Glu imaging. Due to high concentration of 
Glu in gray mater, Glu images have high gray-white mat-
ter contrast and show fine structural details of brain that 
can be used to visually assess the stability of the imaging 
with increasing AF. It can be seen that across all four 
scans in all four subjects the metabolite images appear 
visually similar. We note that with repeated measure-
ments some anatomical differences may also be 
attributed to slight head motion. All metabolite maps, 
along with their respective CRLB, SNR, and FWHM maps 
for all four volunteers and AF, are presented in Supple-
mentary Figures S1–S7.

The inter-measurement COV for mapping metabolite 
concentrations across brain regions are presented in 
Table  2 and the inter-subject COV in Table  3. Inter-

measurement COV smaller than 7% are observed for five 
metabolites (NAA, tCre, Ins, Cho, Glu) that are the most 
abundant in the brain. COV between 8%−14% are 
obtained for Gln, GSH, and GABA. NAAG has higher 
COV in brain regions (gray matter) where its concentra-
tion is low.

The results from Tables 2 and 3 show that 3D ECCEN-
TRIC FID-MRSI had reproducible and stable performance 
in three repeat measurements. The inter-measurement 
COV exhibits a markedly lower value (2–4 times smaller) 
compared to the inter-subject COV. The former is primar-
ily influenced by technical variability, whereas the latter 
reflects a combination of technical and biological vari-
ability. The quantification of the five main metabolites that 
have the highest SNR in brain MRSI (NAA, tCre, Cho, Ins, 
Glu) shows the lowest variability, with a slight increase in 
the case of less abundant metabolites (Gln, GABA, and 
GSH). The highest variability is noticed for NAAG outside 
of the fronto-parietal white matter due to its specific 
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localization in this brain area. We note that in-vivo vari-
ability of metabolite quantification in repeat measure-
ments is also influenced by patient motion and scanner 
stability in addition to 3D ECCENTRIC FID-MRSI, hence 
methods that reduce the effects of motion and field drift 
(Andronesi et al., 2021; Bogner et al., 2014) are likely to 
reduce variability.

4.5.  Ultra-high resolution metabolic imaging of 
human brain using 3D ECCENTRIC FID-MRSI

We further explored the performance of 3D ECCENTRIC 
FID-MRSI for ultra-high resolution metabolic imaging in 
several healthy volunteers. Based on the high SNR of the 
3.4  mm data after the denoising reconstruction, we 
expected that smaller voxels at higher resolution will still 
provide sufficient SNR for metabolite imaging. Figure 6 
shows metabolic images obtained using 3D ECCENTRIC 
FID-MRSI with isotropic voxel size of 2.5  mm in two 
healthy volunteers.

To achieve a feasible scan time, we used CS with 
AF = 4. We demonstrated at the beginning of our work 
that AF = 4 provides metabolic maps that are similar to 
those obtained through fully sampled 3D ECCENTRIC 
FID-MRSI. The AF = 4 acceleration enabled the acquisi-
tion of 3D ECCENTRIC FID-MRSI at 2.5 mm isotropic 
resolution in 10  min:26  sec. For comparison, we also 
acquired the typical 3D ECCENTRIC FID-MRSI at 3.4 
mm isotropic with AF = 2 acceleration in 9 min:20 sec. 
As readily apparent by visual inspection, the metabolic 
maps at higher spatial resolution provide sharper delin-
eation of the brain structure. No compromise is visible for 
signal-to-noise, contrast-to noise or other data quality 
metric at ultra-high resolution compared to typical reso-
lution. We note that the acquisition time of 3D ECCEN-
TRIC FID-MRSI at 2.5 mm with AF = 4 is only slightly 
longer (1 min) than at 3.4 mm with AF = 2. However, for 
the same acceleration factor the acquisition time of 3D 
ECCENTRIC FID-MRSI at 3.4 mm is 2.2 times faster than 
at 2.5 mm.

Table 2.  The inter-measurement coefficient of variation (COV) for each metabolite determined in every lobe and tissue 
type for the 3D ECCENTRIC FID-MRSI acquired at 3.4 mm isotropic resolution in 6 min:16 sec (AF = 3).

Inter-measurement COV

Frontal Limbic Parietal Occipital Temporal

WM GM WM GM WM GM WM GM WM GM

NAA 0.06 0.03 0.06 0.05 0.06 0.05 0.05 0.07 0.06 0.06
tCre 0.05 0.05 0.05 0.03 0.03 0.04 0.04 0.03 0.06 0.05
Ins 0.05 0.04 0.07 0.06 0.05 0.05 0.04 0.06 0.06 0.07
GPC+PCh 0.04 0.03 0.03 0.04 0.04 0.06 0.03 0.04 0.03 0.05
Glu 0.05 0.03 0.05 0.05 0.07 0.07 0.07 0.07 0.06 0.07
Gln 0.14 0.10 0.15 0.11 0.12 0.12 0.12 0.07 0.14 0.08
GABA 0.07 0.11 0.05 0.07 0.09 0.12 0.05 0.11 0.06 0.11
GSH 0.12 0.10 0.14 0.13 0.13 0.13 0.13 0.10 0.14 0.11
NAAG 0.23 0.41 0.28 0.33 0.24 0.55 0.26 0.40 0.28 0.54

Table 3.  The inter-subject coefficient of variation (COV) for each metabolite determined in every lobe and tissue type for 
the 3D ECCENTRIC FID-MRSI acquired at 3.4 mm isotropic resolution in 6 min:16 sec (AF = 3).

Inter-subject COV

Frontal Limbic Parietal Occipital Temporal

WM GM WM GM WM GM WM GM WM GM

NAA 0.21 0.15 0.23 0.17 0.23 0.17 0.24 0.23 0.23 0.22
tCre 0.10 0.05 0.12 0.07 0.11 0.05 0.09 0.09 0.11 0.09
Ins 0.18 0.15 0.22 0.17 0.22 0.14 0.21 0.26 0.24 0.19
GPC+PCh 0.06 0.07 0.07 0.06 0.10 0.10 0.12 0.14 0.11 0.15
Glu 0.19 0.13 0.20 0.16 0.20 0.15 0.18 0.18 0.18 0.20
Gln 0.16 0.25 0.12 0.16 0.18 0.21 0.21 0.23 0.17 0.18
GABA 0.37 0.33 0.39 0.38 0.36 0.36 0.38 0.39 0.37 0.40
GSH 0.13 0.09 0.15 0.11 0.13 0.07 0.11 0.13 0.11 0.12
NAAG 0.32 0.37 0.35 0.29 0.45 0.47 0.50 0.48 0.38 0.29
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5.  DISCUSSION

Our results here demonstrate that 3D ECCENTRIC FID-
MRSI at 7T can simultaneously image an extended neu-
rochemical panel of 10–14 metabolites with high SNR at 
high spatial resolution across whole-brain and with 
acquisition times that are feasible for human imaging. 
Particularly, we showed that the acquisition of fast non-
Cartesian MRSI can be further accelerated up to 4-fold 
by CS, allowing metabolic imaging at 3.4 mm isotropic 
resolution in 4 min:40 sec and at 2.5 mm isotropic reso-
lution in 10 min:26 sec, respectively. The CS-SENSE-LR 
reconstruction produces metabolic images with an effec-
tive voxel size identical to the nominal size (Klauser et al., 
2021). This provides an advantage compared to other 
filtered reconstructions (Hangel et al., 2020; Hingerl et al., 
2020) which increase the effective voxel volume. ECCEN-
TRIC preserves the features of metabolic images across 
accelerations. When accelerated up to 4-fold by CS the 
loss of image quality is minor and the metabolic images 
effectively visualize the laminar structure of the brain sim-
ilar to the unaccelerated (AF = 1) ground truth. Through 
the design of ECCENTRIC acquisition and denoising 
reconstruction, SNR is enhanced even at high accelera-
tions. This enhancement is achieved by fully sampling the 

center of k-space and employing a low-rank reconstruc-
tion technique.

Here, we investigated the performance of 3D ECCEN-
TRIC FID-MRSI for two applications scenarios: 1) high 
resolution metabolic imaging (3.4 mm in 4 min:40 sec) for 
studies that need to minimize imaging time, and 2) ultra-
high resolution metabolic imaging (2.5  mm in 
10 min:26 sec) for applications that need to probe brain 
neurochemistry with highest structural detail. Both of 
these protocols represent a significant advancement for 
non-invasive imaging of human brain metabolism by in 
vivo MRSI. Their performance level is comparable to 
other advanced MR imaging methods, such as CEST and 
perfusion imaging.

Results obtained with the 3.4  mm imaging protocol 
show good delineation of brain structures. At 2.5  mm 
ultra-high resolution there is increased gray-white matter 
contrast of metabolites due to less partial volume effect 
which reveals the brain folding more clearly than at 
3.4 mm. Several metabolites show particularly high con-
trast between gray and white matter in healthy brain, 
such as the energy buffer tCre, the neurotransmitter Glu, 
and the dipeptide NAAG. In particular, NAAG is the most 
abundant dipeptide in the brain, which is selectively 
localized in several regions (Pouwels & Frahm, 1998) 

Fig. 6.  Ultra-high resolution metabolic imaging acquired with 3D ECCENTRIC FID-MRSI at 2.5 mm isotropic voxel 
size (AF = 4, TA = 10min : 26s) in two healthy volunteers. The ultra-high resolution metabolic imaging is compared to 3D 
ECCENTRIC FID-MRSI at the typical voxel size of 3.4 mm isotropic (AF = 2, TA = 9min : 20s). Right, two spectra from both 
spatial resolution and corresponding to the red arrow location are shown. The blue line represents the MRSI data, and the 
red line is the fit performed by LCModel.
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where it neuromodulates the glutamatergic synapses 
required for normal brain activity. Importantly, NAAG is 
also implicated in neurodegenerative diseases, schizo-
phrenia, stroke, epilepsy, traumatic brain injury and pain 
(Morland & Nordengen, 2022). Our data show the highest 
resolution of 3D imaging for NAAG to date. 3D ECCEN-
TRIC FID-MRSI provides images of NAAG brain distribu-
tion, which could offer valuable insights into both basic 
and clinical neuroscience questions. Good-quality meta-
bolic images are obtained also for some of the most 
important but challenging metabolites such as GABA, 
Gln, and GSH. The combination of higher SNR and nar-
rower linewidth (FWHM) results in lower CRLB for GABA, 
Gln, and GSH. The potential of short-echo FID spectra to 
detect GABA, Gln, and GSH at ultra-high field is sup-
ported also by previous findings reported in 9.4T studies 
(Nassirpour, Chang, & Henning, 2018a; Ziegs et al., 2023). 
Here, we extend the imaging of NAAG, GABA, Gln and 
GSH from single-slice to whole-brain and show that this 
is feasible at 7T which is more available for ultra-high field 
human imaging compared to 9.4T. As the 7T scanners 
have gained approval by regulatory agencies worldwide, 
the 7T imaging has reached clinical use and we expect 
ECCENTRIC will have a great contribution in clinical 
studies.

While correlation coefficients between the ground 
truth and accelerated ECCENTRIC acquisitions generally 
exhibit lower values for metabolic imaging (Fig. 4) com-
pared to water imaging (Fig. 3; Supplementary Fig. S13), 
visual assessments indicate that the quality of metabolite 
mapping in the healthy brain is consistently preserved 
across all acceleration levels. Notably, the discrepancy 
between the results for metabolites and water images 
arises from the fact that, unlike water images where cor-
relation coefficients are directly determined from recon-
structed images, the correlation coefficients for metabolic 
images are influenced by additional processing steps 
such as water removal, fat removal, and LCModel fitting. 
These additional processing steps of MRSI data intro-
duce variability that contributes to the lower correlation 
coefficients observed in metabolic imaging results.

The 3D ECCENTRIC FID-MRSI showed robust perfor-
mance in healthy volunteers. The low variability in repeat 
measurements indicates high precision of metabolite 
quantification and significant potential for longitudinal 
studies to detect metabolite changes due to disease, 
treatment and functional tests. The high quality of the 
data was achieved through the use of third-order shim-
ming, which provides more uniform B0 field across the 
brain, as well as the shortened scan time, which mini-
mized the scanner drift and possibility of subject motion. 
The scanner drift typically ranged from 5–10 Hz over a 
10 min scan time.

ECCENTRIC encoding is highly versatile with flexible 
choice of FoV, spatial resolution, and spectral bandwidth 
that can be set to optimize SNR and acquisition time. The 
advantage and strength of ECCENTRIC is enabled by the 
possibility to freely choose the radius and position of cir-
cle trajectories in covering the k-space: 1) the free choice 
of circle radius allows freedom in setting FoV, spatial res-
olution, and spectral bandwidth without the need of tem-
poral interleaving, 2) the free choice of circle center 
position allows freedom for random undersampling the 
k-space to accelerate acquisition by CS. This flexibility is 
particularly important for 1H-MRSI at 7T and beyond, due 
to the increased spectral bandwidth required which limits 
the duration of k-space trajectories. In addition, free 
choice of circle position should enable FoV with different 
extent along the axial dimensions for additional time sav-
ing, which cannot be achieved by concentric, rosette and 
spiral trajectories.

ECCENTRIC flexibility in setting FoV, resolution, and 
spectral bandwidth by varying the circle radius and CS 
undersampling to optimize SNR and acquisition time is 
shown in Supplementary Figures S14–S16. These results 
indicate that, when using the same image resolution and 
acquisition time, ECCENTRIC provides a higher SNR for 
protocols that use smaller circle radii and higher accel
eration compared to protocols using larger circle radii  
and lower acceleration. This flexibility allows to adapt 
ECCENTRIC acquisition to resolutions required across a 
range of FoV. Although we demonstrated ECCENTRIC 
for human brain imaging, this method can be used for 
ultra-high resolution metabolic imaging of mice brain 
where submillimeter resolution is required for a centime-
ter FoV. ECCENTRIC sampling was specifically designed 
for MRSI SSE measurements, requiring a trajectory that 
is successively repeated at a high frequency. While this 
high-frequency repeated sampling is not a prerequisite 
for traditional MRI technique, certain imaging techniques 
may demand the rapid acquisition of successive echoes 
and could potentially benefit from ECCENTRIC sampling 
at UHF.

There are some limitations in the current implementa-
tion. In particular, reconstruction time of 3D ECCENTRIC 
data requires several hours. For example, using a 
64 × 64 × 31 matrix size for 3.4 mm isotropic, the water 
removal step took 1 h, the CS-SENSE-LR reconstruction 
took 3 h on a GPU (or 12 h on a CPU), and the parallel 
LCModel fitting took 1 h on a high-performance server 
such as the Dell PowerEdge R7525 (with 64 cores of 
2.9GHz and 128M cache, 512GB RAM, and 3 NVIDIA 
Ampere A40 GPUs). This computation time may be con-
sidered relatively long for routine clinical applications. 
Also, at the moment subject motion or scanner drift is not 
corrected during ECCENTRIC acquisition, which may 
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increase the variability of metabolite quantification. The 
metabolite concentrations were not provided in absolute 
units such as millimolar but expressed in institutional 
units (I.U.) relative to the water reference, which still pro-
vides comparable values across subjects and scanners. 
We note that for absolute quantification of FID-MRSI data 
only the T1 relaxation correction is needed, while ultra-
short (<1 ms) echo-time makes T2 relaxation negligible. 
Our current ECCENTRIC design restricts circle position-
ing to a stack-of-ECCENTRIC configuration without tilt-
ing or rotating the circles. While this simplifies 
reconstruction, it also limits exploration of more complex 
sampling schemes, such as fully tilted circles, which 
could enhance k-space sampling efficiency. However, 
implementing tilted circles in 3D k-space would pose 
practical challenges due to the significantly increased 
computational demands of a full 3D discrete Fourier 
transform. Nevertheless, alternative reconstruction meth-
ods, such as NUFFT-based gridding (Fessler, 2007), may 
offer solutions to overcome these limitations and enable 
more thorough exploration of sampling strategies in 3D 
k-space.

Artificial intelligence is reshaping the landscape of MR 
image reconstruction, demonstrating improved perfor-
mance and enabling more efficient and sparser data 
acquisition (Lin et al., 2021). In the domain of MRSI, the 
application of deep learning for reconstruction is an 
evolving field, marked by notable progress in super-
resolution reconstruction (Dong et  al., 2022; Li et  al., 
2020), learned-subspace approaches (Lam et al., 2020), 
channel combination strategies (Motyka et al., 2021), and 
parallel MRSI methods (Nassirpour, Chang, & Henning, 
2018b). These encouraging findings suggest that the 
integration of deep learning holds substantial potential to 
enhance reconstruction outcomes over the model-based 
CS-SENSE-LR reconstruction employed in this study. 
Such improvement may manifest in improved quality of 
metabolite maps or even enable higher AF, consequently 
leading to faster acquisition.

In summary, we have introduced ECCENTRIC an 
advanced acquisition-reconstruction method for MRSI 
that pushes the boundaries of spatial and temporal capa-
bilities for in vivo metabolic imaging. Although here we 
specifically demonstrated ECCENTRIC for MRSI at 7T 
ultra-high field, this method is not limited to this field and 
could be used at higher (≥9.4T) and lower (3T) fields. 
When combined with FID-MRSI acquisition, ECCENTRIC 
has demonstrated outstanding performance in the com-
prehensive mapping of metabolites throughout the entire 
brain, encompassing crucial neurotransmitters such as 
Glu and GABA. Anticipating that ECCENTRIC will pave 
the way for novel advancements in neuroscience, we 
envision its potential to provide detailed insights into 

brain neurochemistry in both healthy and pathological 
conditions. This innovation is poised to address crucial 
questions and facilitate groundbreaking discoveries in 
both fundamental research and clinical studies.
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