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Abstract
Science-informed decisions are best guided by the objective synthesis of the totality of evidence around a particular question and 
assessing its trustworthiness through systematic processes. However, there are major barriers and challenges that limit science- 
informed food and nutrition policy, practice, and guidance. First, insufficient evidence, primarily due to acquisition cost of generating 
high-quality data, and the complexity of the diet-disease relationship. Furthermore, the sheer number of systematic reviews needed 
across the entire agriculture and food value chain, and the cost and time required to conduct them, can delay the translation of 
science to policy. Artificial intelligence offers the opportunity to (i) better understand the complex etiology of diet-related chronic 
diseases, (ii) bring more precision to our understanding of the variation among individuals in the diet-chronic disease relationship, (iii) 
provide new types of computed data related to the efficacy and effectiveness of nutrition/food interventions in health promotion, and 
(iv) automate the generation of systematic reviews that support timely decisions. These advances include the acquisition and 
synthesis of heterogeneous and multimodal datasets. This perspective summarizes a meeting convened at the National Academy of 
Sciences, Engineering, and Medicine. The purpose of the meeting was to examine the current state and future potential of artificial 
intelligence in generating new types of computed data as well as automating the generation of systematic reviews to support 
evidence-based food and nutrition policy, practice, and guidance.
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Introduction
Science-informed decisions are guided by the objective synthesis 

of the totality of evidence around a particular question and as-

sessing its trustworthiness through the process of conducting a 

systematic review (SR). This approach has become fundamental 

to evidence-based food and nutrition policy, practice, and guid-

ance (1–3). Evidence synthesis and evaluation considers the 

strength of all forms of scientific data and is used across medicine, 

public health, and the social sciences.

SRs guide the process for setting essential nutrient intake rec-
ommendations for individuals and populations, such as the 

Dietary Reference Intakes (DRIs) (4), and for food-based intake rec-

ommendations, including the Dietary Guidelines for Americans 

(3). Guidance on nutrient and other food substances is based 

on derived normative values and include the Recommended 
Dietary Allowance, the Estimated Average Requirement, and the 
Tolerable Upper Intake Level. The DRIs inform food and nutrition 
policies, including the Dietary Guidelines for Americans (5); food 
fortification policies (6); food assistance programs (7); food safety, 
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labeling, and other regulatory decisions (8); and nutrition educa-
tion programs (9), and can influence food production systems 
(8). The food and agriculture economy contributes $1.53 trillion 
to the United States gross domestic product (∼5.6% of overall) 
(10), while food-related health effects due to cardiometabolic dis-
eases including hypertension, stroke, type 2 diabetes, and heart 
disease, account for $50 billion per year in healthcare costs (11), 
highlighting the importance of bringing the very best and current 
science available to policy and other decision makers. However, 
there are major barriers and bottlenecks that limit the opportun-
ity to achieve science-informed food and nutrition policy. These 
include a dearth of high-quality scientific data to inform policy de-
cisions, the costs of generating high-quality food and nutrition ex-
perimental data, and the vast and rapidly growing literature base; 
the sheer number of SRs required to address all policy-related 
questions across the entire agriculture and food value chain; 
and the cost and time required to conduct SRs, among others. 
These challenges have been reviewed elsewhere (12, 13).

The landscape is further complicated by the increasing interest 
in setting food and nutrition guidance and policies to lower rates 
of diet-related chronic diseases, which are a major driver of 
healthcare costs in the United States (11). Historically, the DRIs 
and the Dietary Guidelines for Americans were established to in-
form food and nutrient intakes in “apparently healthy” individu-
als to maintain nutritional adequacy and avoid diseases of 
nutrient deficiencies. Compared with diet-related chronic dis-
eases, nutritional deficiency in otherwise healthy individuals gen-
erally has a single cause, which is a lack of dietary intake of a 
particular essential nutrient. Furthermore, virtually all healthy 
individuals respond similarly to dietary deficiency of a particular 
nutrient in terms of the dose-response relationship and resulting 
clinical manifestations. This is not the case when diet-related 
chronic disease is the outcome used for setting food and nutrition 
guidance, programs, and policies. The etiologies of chronic dis-
eases are highly complex, resulting from the interactions among 
many essential nutrients and nonessential dietary components. 
In addition, chronic disease etiologies are modified by differences 
in individual biology as well as by multiple lifestyle factors and ex-
posures including physical activity, sleep, stress, diet, eating be-
haviors, immune responses, and toxins, among other factors. 
The contextual factors that modify connections between food 
and health are even more complex in low- and middle-income 
country settings. Hence, it is not surprising there is significant 
population heterogeneity in the diet-chronic disease relationship 
compared with that between diet and nutrient deficiencies, indi-
cating the need for new approaches to stratify populations to im-
prove the precision of recommendations based on various 
contexts (14).

Population-based diet, food, and nutrition recommendations 
have focused on avoiding essential nutrient deficiencies with 
consideration for “apparently healthy individuals,” because 
the disease process can alter nutritional requirements (15). 
However, when considering chronic disease reduction as an 
endpoint for nutrient intake recommendations, individuals at 
risk for or who have chronic disease cannot be excluded be-
cause diet-related chronic diseases can initiate as early as dur-
ing embryonic development and manifest over a lifetime. More 
than 60% of US adults are affected by a chronic disease, and 
food- and nutrient-based guidance based on avoidance of nu-
tritional deficiency may not apply to them (16). Globally, essen-
tial nutrient deficiencies occur in the obese state. Hence, 
inclusion of chronic disease outcomes for food and nutrition 
guidance greatly expands the population under consideration 

and adds additional heterogeneity in response to dietary and 
nutrient intake.

Consideration of chronic disease endpoints also expands the 
number of food components under consideration from essential 
nutrients to any food component that, while not essential, confers 
a health benefit (17), further increasing the complexity of food and 
nutrition guideline development. As such, inclusion of chronic 
disease endpoints in food and nutrition guidance requires expan-
sion of the populations under consideration. Considering these 
issues, the National Academies of Sciences, Engineering, and 
Medicine recently expanded the definition of the target popula-
tion for DRI values to include those with or at risk for chronic 
disease, with each expert committee being responsible for estab-
lishing exceptions that apply specifically to the nutrient(s) under 
review (18). This expansion of the population under consider-
ation adds to the complexity of data required for establishing 
recommendations.

Technology terms and applications to nutrition 
evidence synthesis
Broadly defined, artificial intelligence (AI) refers to technologies 
capable of mimicking human intelligence, including having the 
capacity to solve complex problems and inclusive of various terms 
and types of strategies as it pertains to evidence synthesis (19). 
Over the past decade, AI has emerged as an important technology 
that may provide decision support, early on with specialized deep 
learning architectures and more recently with general, pretrained 
large language models (LLMs) (20, 21).

Modern LLMs have emerged because of (i) parameter estima-
tion algorithms that make it possible to train models with billions 
or trillions of parameters; (ii) computing infrastructure such as 
graphics processing units that make it possible to fit models in 
days or weeks, rather than in decades, but may be cost prohibitive 
to most researchers; and (iii) Internet-scale training data cor-
puses, enabling an arsenal of applications, some of which are 
deeply embedded in our everyday lives (22, 23). In food and nutri-
tion, AI is now being utilized to guide more precise and accurate 
food and nutrition guidance to improve health (24). Data science 
methods offer the opportunity to (i) automate and thereby accel-
erate the process of synthesizing data and generating SRs, saving 
cost and providing decision makers with up-to-date and compre-
hensive scientific information to make timely decisions; (ii) pro-
vide new types of computed data with respect to the complex 
etiology of the diet-disease relationship; and (iii) identify and clas-
sify variation in individual responses to diet. As such, AI offers a 
timely and cost-effective avenue to develop the strong evidence 
base necessary to establish effective nutrition/food interventions 
that prevent and/or manage chronic disease, including data such 
as electronic medical records (EMRs), as well as take advantage 
of new types of personalized data from wearables. However, the 
quality and sparsity of data currently available for such 
AI-based analyses limit its utility.

Purpose of the summary
This perspective summarizes a meeting convened at the National 
Academy of Sciences, Engineering, and Medicine (Tables S1, S2). 
The purpose of the meeting was to examine the current state 
and future potential of AI in generating new types of computed 
data as well as in automating the generation of SRs to support 
evidence-based food and nutrition policy, practice, and guidance. 
Participants included expert computational, data, and nutrition 
scientists, as well as scientists from federal research and 
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regulatory agencies. The conference agenda was organized into 
two main areas (i.e. “parts”) as outlined subsequently.

Part I: emerging sources of scientific 
evidence
Establishing scientific recommendations for chronic disease risk 
reduction through food and nutrition presents an enormous 
data challenge. This is due to the complexity of food and food 
components that individuals are exposed to, the variation in indi-
vidual response to food and nutrient exposures, the number of 
chronic diseases that are affected by food, and the latency and cu-
mulative effects of nutrition on the progression of diet-related dis-
eases that manifest over a lifetime, among many other factors 
that have been described elsewhere (17). This complexity and 
the associated costs limit the generation of high-quality scientific 
evidence through randomized controlled trials (RCTs) that are 
most often short in duration due to the funding structure of re-
search. The availability of large EMR databases and related real- 
world health and exposure data, coupled with advances in AI 
models that mine and automate the synthesis of these resources, 
provides additional inputs into causal inference models that may 
provide a less expensive approach to understand the diet-disease 
relationship and its inherent individual variation. However, EMRs 
currently have limited data on dietary intakes, nutritional bio-
markers and other relevant variables at present. With all AI mod-
els, a key consideration is the nature of the training or input data. 
Cross-sectional data, for example, are limited for making causal 
claims, whereas longitudinal data are logistically challenging 
to collect, and experience confounding, but represent the longer 
latency of nutritional exposures and chronic disease risk. 
Ultimately, the quality of any synthesis of any data relies on the 
scientific rigor and data available for (i.e. “garbage in, garbage 

out”). Training AI models to advance evidence synthesis can be co-
ordinated and managed by efforts to collect the optimal combina-
tions of data needed to leverage the potential of and amount of 
data needed to seed AI models.

Lessons learned from cancer drug response 
prediction models
Deep neural networks are actively being deployed in sophisticated 
models for predicting therapeutic responses in cancer (25). 
However, two major challenges continue to prevent their integra-
tion into broader clinical practice (26). The first is lack of model in-
terpretability. The ability to scrutinize the inner workings of a 
model is critical to building trustworthy AI tools, especially in 
high-stakes applications such as precision medicine. Visible neur-
al networks (VNNs) enable direct model interpretation by map-
ping the neural network architecture to hierarchical knowledge 
graphs of biological components and functions (Figure 1) (27, 
28). A recently published VNN predicted palbociclib efficacy 
in breast cancer treatment; it captured 8 molecular assemblies in-
tegrating rare and common mutations in 90 genes (29). Another 
recent publication highlighted 41 assemblies involved in modulat-
ing response to common chemotherapies (30). These works serve 
as illustrative proofs of concept to develop robust composite 
biomarkers.

A second challenge is related to generalizability. Drug response 
prediction models are often trained on preclinical datasets. 
Transferring information from large preclinical datasets to accur-
ately predict treatment response to smaller patient datasets is 
particularly challenging, and may require careful causal model-
ing. For predictive tasks, massive pretrained networks can adapt 
to new tasks when provided only a handful of examples; this is 
called “few-shot learning” and was used to perform Translation 

Fig. 1. VNN. The first layer of the VNN incorporates gene-level features, including gene mutations, copy number amplifications (CNAs), and copy number 
deletions (CNDs). Subsequent assembly layers aggregate gene-level features into assembly-level information, guided by the hierarchical relationships 
defined by a map of protein assemblies. The output state of each gene (g) and assembly (O) is represented by artificial neurons (1 neuron per gene, 
multiple neurons per assembly). Each node in the hierarchy indicates a protein assembly. An example path of information flow is shown in red. Adapted 
from Park et al. (29). RS-VNN, random set VNN.
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of Cellular Response Prediction (31). This approach realized better 
predictive performance across multiple data types, including tu-
mor cell lines, patient-derived tumor cell cultures, and patient- 
derived tumor xenografts. An independent reusability study was 
able to apply this approach to 2 patient cohorts and demonstrated 
its superior performance (32).

VNN models are not yet common in elucidating the role of diet-
ary exposures and their availability on cellular networks and bio-
markers of disease etiology. If well executed and validated, these 
tools can inform biomarker discovery from basic research for clin-
ical utility. This requires the transfer of information across a ser-
ies of contexts (e.g. from cell lines to patients, from one patient 
cohort to another, from large populations to small ones or even in-
dividuals) with limited data. Similarly, few-shot learning may be 
applied to transfer biomarkers across contexts.

Knowledge graphs to reveal the etiology of chronic 
diseases
Mining multidimensional patient data that includes endome-type 
data (e.g. clinical exams, laboratory data, imaging, genetics) and 
ectome-type data (e.g. age, demographics, exposures, food, social 
determinants of health) may allow comprehensive consideration 
of the risk factors underpinning the etiologies of chronic disease. 
Extracting trustworthy information from large datasets that is 
both statistically and biologically meaningful, and that can infer 
causal factors and their relationships, is yet unrealized (33) but 
is essential for developing effective interventions that are tailored 
to the context of an individual’s circumstances. Knowledge 
graphs are a tool to convert large volumes of new data to informa-
tion and ultimately actionable knowledge but must come from 
well-established information and include layers of hierarchical 

organization, their interactions, and relationships across the con-
tinuum, including consideration of biological and social complex-
ity. Such bottom-up approaches interconnect layered networks 
within and across known biological, social, and other domains. 
The domains can include genes to proteins to pathways (metabol-
ic, signaling, etc.), to cells, organs, the microbiome, and the indi-
vidual within the social context, including the complexity of 
spaces and locations related to disease incidence, exposures, 
and temporal changes that individuals experience.

One example knowledge graph is the Scalable Precision 
Medicine Open Knowledge Engine (SPOKE) (34). It has over 40 mil-
lion concepts that are connected by over 120 established biologic-
ally meaningful relationships gathered from existing knowledge 
in the scientific literature. SPOKE was built by integrating infor-
mation from more than 50 public databases and contains experi-
mentally determined information on various biological pathways 
and their architecture, with every node within a network receiving 
a weighted score relative to its overall importance explaining to 
risk or function. SPOKE has recently incorporated more than 
1,000 food items and their relationships to biochemical com-
pounds as determined by mass spectrometry (Figure 2) (34). 
When SPOKE analyzed data from 6 million EMRs, it led to the iden-
tification of the nodes of most importance to Parkinson’s disease. 
SPOKE retrospectively predicted individuals who would develop 
the disease 3 years prior to a diagnosis with 83% accuracy and per-
formed similarly to that of clinical expert predictions (35). While 
not currently clinical grade/caliber, further development and re-
finement of SPOKE is expected to support its deployment in med-
ical practice. SPOKE includes more than 10,000 disease states and 
can be used toward discovery and applications related to food, 
health, and disease. In nutrition research, SPOKE can be used to 
generate hypotheses by predicting the immediate biological and 

Fig. 2. SPOKE. The SPOKE biomedical knowledge graph draws upon and integrates over 45 databases.
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long-term health effects of consuming individual nutrients and 
other bioactive food components through a dietary supplement, 
the optimal combinations of nutrient intakes, and/or effects of 
consuming specific foods or dietary patterns.

Predictive modeling and individual responses
The concept of precision nutrition is founded on the premise that 
identifiable subgroups of individuals respond differently to nu-
trients, foods, and dietary patterns when chronic disease end-
points are considered (14, 36). The need for precision nutrition is 
supported by our understanding of human evolution. Human re-
sponses to food and nutrition have been under a strong selective 
pressure in the face of increasing genetic diversity through adap-
tation to local food environments, which differed considerably 
across the globe. Adaptation to local food environments enabled 
population expansion, as classically seen with genetic variation 
that enabled lactase persistence (37). However, the degree of 
meaningful biological variation among individuals that necessi-
tates more precision in food and nutrition interventions and rec-
ommendations for chronic disease risk reduction remains 
unresolved. To fully establish the need for greater precision in 
food and nutrition guidance, two critical questions need to be ad-
dressed. First, are the differences among individuals clinically 
meaningful? Second, do we have predictive biomarkers for the 
diet-health response?

Prediction models are widely used to mine massive datasets to 
explore the complexity underlying the interactions among en-
dogenous biological factors and environmental exposures that de-
fine or relate to human health. Importantly, they offer the 
possibility of identifying causal dietary and other factors and 
predicting their intervention response (38). Establishing reliable 
predictive models of intervention responses has proved challen-
ging due to limitations including bias resulting from several sour-
ces, such as algorithmic bias (39), data collected for one purpose 
being used for other purposes, lack of participant diversity, and 
lack of domain expertise in data selection, among others (40). 
This, and a dearth of success stories, has led to skepticism for 
identifying biomarkers that are predictive of medical and nutri-
tional intervention responses. For example, AI prediction models 
of antipsychotic medications trained on RCT data failed to pre-
dict patient outcomes when applied to out-of-sample patients, 
indicating that treatment outcomes are not generalizable for 
schizophrenia, emphasizing the strong modifying effects of an 
individual’s contexts (41).

Traditional clinical trials focusing on nutrition and pharma-
ceuticals are typically designed to determine the average effect 
of an intervention, which becomes the evidence base for estab-
lishing generalized population-based applications. These trial de-
signs give less attention to the variation in response among 
individuals and in fact may mask positive or negative outcomes 
among subgroups of participants. In contrast, N-of-1 trials seek 
to identify and characterize variation in responses to multiple in-
terventions provided to the same individual, often separated by 
washout periods, and thereby optimize interventions for that indi-
vidual (42). N-of-1 trials thereby determine which interventions 
are better suited for individuals with certain characteristics (43). 
Such studies that seek to identify and quantify variation around 
an average response, or a more discreet effect revealing overt res-
ponders and nonresponders, can be cost-efficient, as the statistic-
al power is optimized when the number of observations is 
maximized on fewer individuals, compared with fewer observa-
tions on more individuals. N-of-1 trials have been used in the 

fields of psychology and education research, but to a lesser extent 
in nutrition research.

Predictive model reliability can be improved by combining 
sparse real-world data in large samples with more rigorously col-
lected and outcome-focused data, including data collected during 
clinical trials. This approach can be more efficient than using 
sparse data on large number of individuals or very costly yet plen-
tiful experimental data on fewer individuals. For example, models 
built on massive, randomly sampled, sparse, real-world data, 
such as the UK Biobank and the National Institutes of Health– 
funded All Of Us Study, can be strengthened by calibrating with 
more sophisticated dense, yet costly, empirical data (44), such 
as that derived from aggregated N-of-1 studies. In this light, aggre-
gated N-of-1 trials might be efficient and appropriate vehicles for 
vetting or testing the predictions of population-based AI/LLM ana-
lyses. Thus, if a new AI/LLM-based model is designed to determine 
which individuals are likely to benefit from a nutritional interven-
tion, then more detailed studies of well-chosen data subsets from 
individuals for whom predictions were made should shed light on 
their veracity and expose limitations. This approach is essential to 
advance the concept of precision nutrition.

Other strategies have been employed to strengthen real-world 
data to understand variation in response (45). AI techniques used 
to identify factors that are associated with an intervention re-
sponse are limited by the datasets that they are trained on and 
cannot be used to infer causation. Training models on more de-
tailed experimental trial data, with limited training on readily 
available contextual real-world data (e.g. EMRs, large epidemio-
logical datasets), enhances their ability to identify predictive 
factors and account for variation in individual responses. Such ap-
proaches, carefully deployed, have the potential to be more cost- 
effective and potentially more reliable than conducting large 
RCTs.

Use of digital twins can also improve predictive models by ac-
counting for the factors that lead to variation in responses. This 
is achieved by limiting training sets to specified subsets of individ-
uals within a dataset who share similar characteristics. Digital 
twins may better anticipate the health trajectory of a target indi-
vidual (i.e. “digital twins” of the target individual) as opposed to 
using all individuals in the large dataset when making predictions 
about the target individual’s health trajectory. Digital twins may 
share similar genetic, demographic, microbiome, and other char-
acteristics (46–48).

Addressing the complexity of food systems, diets, 
and their relationship to health
Food systems, diets, nutrition, and human health exist along a 
continuum. Dietary patterns differ by context across geography, 
culture, and socioeconomic status, among other factors (49). 
Food consumption also has temporal, hedonic, religious, and so-
cial dimensions, all of which may relate to health outcomes (14). 
This has motivated interest in applying AI tools to establish con-
nections across the food value chain and thereby identify oppor-
tunities to improve the health-promoting properties of the food 
system. Traditionally, meta-analyses have been instrumental 
in understanding the impact of dietary practices and help in-
form medical decisions. Data science technologies permit a 
comprehensive approach to addressing food systems and health 
within these contexts.

One example of a dietary pattern that is used clinically is 
FODMAP (fermentable oligosaccharides, disaccharides, monosac-
charides, and polyols). A recent AI model used data from various 
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studies to correlate the success of low FODMAP diets for the treat-
ment of patients with irritable bowel syndrome, in which only 50% 
to 70% of the patients respond well to this standard of care treat-
ment. The AI model combined metagenomics and machine learn-
ing analysis and provided hypotheses about the mechanism 
explaining patient segmentation, predicted patient response, 
and informed treatment decision based on 3 biomarkers (50). 
Expanding this approach for management of other chronic dis-
eases through diet is an active area of investigation.

Knowledge graphs are also playing a key role in assembling and 
structuring data related to food composition. Agricultural food 
products contain tens of thousands of chemicals. The FoodData 
Central database from the US Department of Agriculture curates 
compositional information from 236 foods and 400 chemicals that 
have been validated (51). Recently, there have been advances in 
streamlining the generation of knowledge graphs with using 
deep natural language processing (NLP) techniques and LLMs to 
support decision support and accelerated discovery (52). Food 
Atlas (53) is an AI-generated knowledge graph that has extracted 
more than 230,000 food-chemical composition relationships from 
more than 155,000 scientific papers, and ranked the confidence 
level of each relationship based on the existing published evi-
dence (54). This analysis estimated that approximately half of 
the identified relationships were not previously discovered. 
While false discovery rate is always a caveat to consider, this lends 
credence to the potential for utilizing such techniques for discov-
ery. By applying knowledge graph completion methods, new hy-
potheses can be formed and experimentally validated, providing 
a framework for automated hypothesis generation. The next ver-
sion of Food Atlas that is under release uses a combination of 
LLMs and hybrid knowledge graph language models to integrate 
food, ingredients, chemicals, flavors and health effects.

Part II: accelerating the process of evidence 
synthesis
The body of unstructured biomedical data is vast and growing 
rapidly, hindering physicians’ and policymakers’ ability to make 
the most informed decisions grounded in the totality of the evi-
dence base. SRs and evidence synthesis are key to developing evi-
dence informed decisions whether they are from a medical, 
research, or policy lens. However, the process of conducting and 
publishing SRs is time-consuming and expensive, and many of 
the tasks are highly repetitive but cannot be automated trivially. 
Consequently, only half of high-quality reviews in biomedical 
and allied health fields are completed within 2 years of protocol 
publication (55). SRs can be expensive to produce and can quickly 
become outdated, sometimes even before they are published (56), 
lending credence for the need for newer methods that function in 
real time. Study screening, data extraction, and synthesis are key 
bottlenecks in generating SRs. There is a need to design, imple-
ment, and deploy NLP tasks, corpora, and models to help domain 
experts navigate and make sense of the vast array of biomedical 
evidence, ranging from notes in EMRs to published reports of clin-
ical trials, which are generally stored as unstructured text and 
therefore not readily accessible or mineable.

High-quality evidence synthesis adheres to the principles of 
transparency, reproducibility, and methodological rigor, following 
prespecified processes (57, 58). Otherwise, SR findings/conclusions 
can be highly dependent or influenced by subjective judgments 
(59, 60). It is these and related challenges that motivated the devel-
opment of AI tools for SRs, but the uptake has been slow (61). By ne-
cessity and logic, the process must include human judgment or 

oversight in the identification of the relevant literature base from 
raw search results (based on prespecified search criteria that is 
then screened) as well as in the rating the risk of bias of individual 
studies and grading the overall certainty of the available evidence 
(3). Literature screening, usually conducted manually by human 
non–content experts (e.g. trainees, students, contractors), is the 
most time- and resource-intensive stage of the process and can 
be subject to various types of bias. To mitigate bias and the tem-
poral currency of the SR process, human-AI hybrid approaches 
have been developed, and evaluated for their effectiveness, in ac-
celerating the generation of high-quality evidence synthesis prod-
ucts that promote timely evidence-based scientific guidance for 
decision makers.

Goals of including AI applications in the evidence synthesis pro-
cess include accelerating innovation and time to completion, im-
proving productivity, and cost reduction (62). Title and abstract 
screening for inclusion in an SR generally reduces the number of 
studies identified through a literature search by 95%, and hence 
is a task that is well suited for automated text classification. Early 
NLP models were frequency-based models, classifying studies by 
the frequency of individual terms within a document/text. More re-
cent approaches use neural network–based methods, up to and in-
cluding LLMs. Currently, there are several AI-powered screening 
tools (both commercial and open source) available to accelerate ti-
tle and abstract screening but rely on frequency-based models (e.g. 
EPPI-Reviewer, abstrackr, DistillerSR, RobotReviewer, Rayyan) that 
represent the industry standard (63–66). As an example, the US 
Department of Agriculture Nutrition Evidence SR group, which 
conducts SRs in support of establishing the Dietary Guidelines for 
Americans, uses AI-powered screening tools (3).

An early and relatively large pretrained neural network was the 
bidirectional encoder representations from transformers (BERT). 
BERT is pretrained on a large volume of text, and can be fine-tuned 
for particular tasks. This model has been incorporated into 
human-AI hybrid evidence synthesis teams (62). The collaborative 
screening process involves subject matter experts identifying the 
screening criteria, followed by the training of the NLP using a lim-
ited number of studies screened by subject matter experts. Once 
the model is judged to function adequately, it ranks new docu-
ments never seen by the model (62). A final review of all selected 
documents is conducted by experts. The approach is iterative as 
feedback from the experts continuously constrains and improves 
the model. The approach may incorporate active learning into 
the human-AI hybrid team by exploring and testing different sam-
pling strategies, including random sampling, least confidence 
sampling, and highest priority sampling, and evaluating their ef-
fectiveness on the collaborative screening process.

Incorporating the BERT-based AI agent into a human team was 
found to reduce the human screening effort, including the num-
ber of documents that humans need to read, by 68.5% compared 
with the case of no AI assistance, and by 16.8% compared with 
the industry standard that uses a frequency-based language mod-
el and a support vector machine–based classifier (Figure 3). These 
values are for the human screening effort required to identify 80% 
of all relevant documents. The process was further improved by 
applying an high priority sampling strategy to the human screen-
ing effort, resulting in 78.3% reduction in human screening effort 
to identify 80% of all relevant documents compared with no AI as-
sistance. The BERT-based model uniformly outperformed the in-
dustry standard NLPs in classification performance.

Key limitations to using an active learning–enhanced human-AI 
hybrid team workflow process are the time of communication among 
subject matter experts and computational scientists; the level of 
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measurement error inherent to human labels, which is addressed 
with additional iterative training; and trust among the experts and 
the model. Future expansion to full-text screening is expected to im-
prove classification performance but can be limited by inaccessible 
documents that are not published in open-access format. It is import-
ant to note that the field of LLMs is changing rapidly and becoming 
more powerful with generative models, which could improve accur-
acy and be able to summarize evidence but will require validation.

Extracting and synthesizing medical evidence 
with LLMs
Clinical trial results are disseminated through natural language 
articles and hence are largely unstructured or semi-structured, 
including clinical trial databases such as ClinicalTrials.gov. NLP 
methods in general, and automated summarization in particular, 
offer a potential means of helping domain experts identify and 
make better use of the totality of scientific data to inform treat-
ment and other-related decisions. Variants of LLMs are being 
used to extract and structure findings from clinical trial reports, 
and to generate automatic summaries of all published evidence 
pertaining to a particular clinical question. An available proto-
type, Trialstreamer, is a publicly available living repository of all 
articles describing RCTs in humans that makes RCT data fully 
computable (Figure 4) (64, 67). It monitors PubMed and other sour-
ces daily, then structures the data using models that extract and 
tabulate key information including PICO (population, interven-
tion, comparison, outcome) element information and other met-
rics such as sample sizes. Trialstreamer can conduct aspects of 
Cochrane-style risk-of-bias assessments, such as whether a trial 
was randomized or blinded, which otherwise involves subjective 
judgments by humans. Trialstreamer can infer main findings of 
a study through a semi-automated process that accelerates hu-
man assessment by about 30% (68), and the results are generally 
in agreement with human assessments. The database can be 
searched for all studies relevant to a well-formed clinical question 
if indexed by PubMed (emerging prepublication websites, by lack 
of peer review, are not incorporated).

In development for the next iteration of Trialstreamer is the 
capability to generate Cochrane-style SRs, including meta- 
analyses, and a natural language narrative that describes the 
summary of results. Current technologies permit automatic gen-
eration of plausible summaries but may, or even often, include 

“hallucinations” in the conclusions, which is a real problem that 
needs to be addressed to ensure “trustworthy” information. 
Other limitations pertain to the assessment of more nuanced in-
formation from studies, such as extraction and critical appraisal 
of intervention and outcome ascertainment methods given the 
discipline- and method-specific nature of this kind of data.

Key performance indicators for AI-assisted 
evidence synthesis
Looking forward, automated evidence synthesis products must 
be fit for purpose, and the evidence synthesis processes should 
be robust a predictably changing environment (e.g. the increasing 
rate at which primary research is published) and rapidly respon-
sive to unpredictable shocks (e.g. health emergencies such as 
the COVID-19 pandemic). This will require new tools and proc-
esses but should also build upon an understanding of three key 
performance indicators (KPIs): (i) time use and time to completion, 
(ii) resource use and economic sustainability, and (iii) correctness 
(69, 70). Shaping the future of evidence synthesis, both techno-
logically and culturally, is essential to ensure that it continues 
to meet stakeholder needs.

The three KPIs have been assessed in a limited number of cases. 
A study by Tercero-Hidalgo et al. examined the influence of using 
AI in the SR process related to COVID-19 (71). The prespecified 
study included 3,999 SRs, 28 of which used AI. The use of AI was 
associated with publication in journals with a higher impact fac-
tor (8.9 vs. 3.5), more abstracts screened per author (302 vs. 140), 
and fewer texts screened per author (5.3 vs. 14 full texts) but curi-
ously no effect on time to completion. In another prespecified 
study, Muller et al. examined the KPIs person-hours and time to 
completion prior to and following adoption of machine learning 
in the SR process from August 2020 to January 2023 at the 
Norwegian Institute of Public Health (70). This study also found 
using machine learning required more person-hours and other re-
sources, with no effect on time to completion.

The third KPI, correctness, is the most difficult to assess, but 
could be evaluated by (i) comparing AI outputs with human re-
viewers, who are assumed to be making correct decisions; (ii) com-
paring AI outputs with results such as meta-analytical estimates 
from closed reviews under the assumption that findings in closed 
reviews are sufficiently close to the truth (reviews are closed if 
adding additional studies is expected not to change the existing 

Fig. 3. A human-AI workflow for document screening in evidence synthesis. In stage 1, experts specify screening criteria for documents, then screen a 
subset of the documents-of-interest for inclusion or exclusion in an evidence synthesis product. In stage 2, an AI model is trained on the expert labels of 
screened documents, and then performs screening of additional documents. In stage 3, expert labelers evaluate the AI’s screening decisions. The final 
validated screening decisions are used to iteratively retrain the AI model.
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findings); and (iii) a simulation approach in which AI tools for evi-
dence synthesis are applied to bodies of literature using computed 
data, generated using models such as LLMs, in which the true val-
ues of effect measures such as hazard ratios are known by con-
struction, facilitating comparison of AI outputs with known 
ground truth. To date, only the first approach has been used for 
analyses, and is biased by the assumption that human reviewers 
are correct when in reality they can introduce inconsistency due 
to human judgment.

Looking forward, there are many limitations of AI approaches 
that must be overcome to achieve correctness. It is recognized 
that there is a trade-off between accuracy and confidence with 
time savings and efficiency when automating evidence synthesis. 
Understanding what type of scientific product is needed for a par-
ticular purpose (e.g. guideline development) in which the need for 
comprehensiveness and accuracy versus expediency can be pre-
specified and reported transparently, otherwise cheap, fast, and 
possibly incorrect evidence synthesis may result.

AI tools may also be abused to quickly produce poor-quality “re-
views,” which poses new threats to evidence synthesis. LLMs may 
also facilitate the production of fake, fraudulent, or flawed primary 
studies (e.g. zombie trials). It is estimated that hundreds of thou-
sands of zombie trials already circulate in the literature, and their 
inclusion in evidence syntheses is problematic (72). Furthermore, 
online AI tools are vulnerable to digital attack including 
denial-of-service attacks and dataset poisoning (73). Other con-
cerns include privacy violations, underrepresentation of studies in 
minority languages, and the commercial interests of companies 
marketing AI tools out of alignment with stakeholder needs.

Finally, AI tools are perhaps only necessary because scientific 
results are not reported using standardized structured data 

formats that permit accurate and comprehensive automated 
search and data extraction across the entire literature. While re-
ports for some trials are available in machine-readable formats 
such as JSON and FHIR from ClinicalTrials.gov, future work could 
focus on dramatically extending the coverage and depth of scien-
tific reporting, perhaps using fine-grained and federated graph da-
tabases and standardized ontologies.

Discussion
Advances in AI are providing decision makers new ways of access-
ing and making sense of scientific evidence. Although AI tools 
alone cannot generate evidence de novo, they are capable of pro-
cessing, daisy-chaining, and/or merging evidence across existing 
datasets into new formats. They have been used to create synthet-
ic dose-response relationships drawing on pathway data from dif-
ferent datasets, which have aided authoritative organizations in 
setting food and nutrition policy (74, 75). However, the trust-
worthiness of computed data, including information from VNN 
and knowledge graphs, and its relative positioning in the hier-
archy of evidence, has not been addressed (76).

The established evidence hierarchy describes the strength of 
data types based on study design as they relate to causal infer-
ence. As one moves up the hierarchy, it is assumed that study 
quality increases and risk of bias decreases, and thereby the cer-
tainty of relationships between interventions/exposures and out-
comes is higher (76). Well-designed RCTs, which sit at the top of 
the hierarchy, can determine causal relationships. As such, SRs, 
and meta-analyses of these trials are considered the highest level 
of evidence (76). However, like traditional RCT designs, SRs and 
meta-analyses generally emphasize average responses across 

Fig. 4. Trialstreamer: a living automated automatically updated database of clinical trial reports (67).
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many studies, and often fail to consider variation in response be-
tween studies or individuals (77). VNNs and knowledge graphs 
provide the opportunity to address overall effects of an interven-
tion, as well as address variation in response among individuals, 
but their potential to determine causality has not been estab-
lished (78), nor has there been consideration to how computed evi-
dence compares with other traditional types of evidence. The 
quality of AI-assisted SRs is also dependent on the body of litera-
ture available.

Limitations to the established hierarchy of evidence include 
uncertain generalizability of the findings, even when the evidence 
for causation is strong. The lack of generalizability is rooted in bio-
logical heterogeneity within populations that contributes to vari-
ance in the exposure-outcome relationship. Likewise, social, 
environmental, and other contexts in free-living populations 
can influence efficacy and effectiveness of interventions or expo-
sures. These effects on context limit the ability to predict nutrition 
intervention outcomes in low- and middle-income countries 
based on relationships and contexts established in high-income 
countries. Furthermore, the strength of evidence does not always 
inform whether interventions will have a meaningful magnitude 
of effect that has a clinical and public health value even when 
causal inference is strong. Knowledge graphs consider the many 
biological and social dimensions of food, individuals and health. 
Their application to nutrition questions, especially when com-
bined with LLMs, presents an exciting and transformational op-
portunity to connect food and health in a way that considers 
individuals and their contexts.

Ideally, computed data will lead to multiple new types of evi-
dence that will be available to decision makers, yet frameworks 
and appraisal tools do not exist to guide their use. Rather than a 
single hierarchy, there is an increasing need for a multidimen-
sional assessment of the totality of the evidence that is fit for 
purpose and considers the properties of the evidence and how 
the outcomes are affected in multidimensional situations. 
Such a framework should consider and potentially rank the 
properties of different forms of scientific evidence including 
causality, generalizability, risk of bias, precision, dose-response, 
and magnitude of effect, and their relative importance for differ-
ent purposes.

Decision makers emphasize the need to accelerate the synthesis 
of scientific data in response to emergent and sustained societal 
needs. This includes outcomes of efficacy, effectiveness, and equity 
across a population. Understanding the generalizability of even the 
strongest scientific evidence is also essential, as many policy deci-
sions are made locally and include contextual realities in which re-
search and policy making is done. Automating the SR process and 
incorporating computed evidence can address many of these con-
cerns. For example, elements of equity can be improved by includ-
ing data reported in underrepresented languages, which are often 
excluded, through LLMs.

In the ideal case, automated real-time collection and analyses 
of data of high relevance to clinical and public health from all 
sources is the goal. This will allow more rapid science-informed 
policies and create a continuously learning health system. 
Learning systems characterized by automated real-time collec-
tion and analyses of data in nutrition could facilitate regular up-
dates to both the DGAs and DRIs as new data become available 
through a semi-automated process that includes expert input 
and review (79).

AI can also inform future research priorities. AI approaches can 
assist research funding agencies in identifying gaps in knowledge 
(identify holes or uncertainty in networks) in real time to guide 

and prioritize high-impact research needs that have a high soci-
etal return on investment, especially concerning both continuing 
and emerging public health threats, including setting priorities for 
the Dietary Guidelines for Americans.

Trust in food and nutrition research is essential, otherwise 
science-informed guidance and recommendations will not 
achieve or will diminish the impact of their intended health out-
comes (80). The inclusion of validated and reliable data science 
tools into the process of food and nutrition research, and its trans-
lation for public benefit, offers the opportunity to increase public 
trust. This will be challenging, as current LLMs and other tools are 
essentially “black boxes”; no one knows exactly how they work, or 
when they will “hallucinate,” rather than provide correct informa-
tion. While this may be less of a concern when these technologies 
are used in an analytical mode to screen, identify, or extract 
straightforward evidence during semi-automated evidence 
synthesis, applications of the technology that generate computed 
evidence will have to be carefully validated, replicated, and com-
municated transparently. On the other hand, data science tools 
offer the potential for more personalized nutrition guidance in 
which individuals can access the science and realize the benefit, 
as opposed to generalized recommendations that may not be op-
timal for everyone. These tools also offer the opportunity to re-
duce bias in nutrition. While data from individuals of European 
ancestry are overrepresented relative to US demographics in 
many health-related databases, AI tools such as digital twin ap-
proaches may allow us to minimize or eliminate biases and data 
misalignments by moving away from population averages that 
might poorly reflect underrepresented individuals and toward 
causal inferences and predictions that address the unique charac-
teristics of individuals.

Finally, meaningful advances in the application of AI to nutri-
tion research, policy, and practice will require the inclusion of 
more, consistently collected, richer nutrition and diet data in 
EMRs; greater engagement of data scientists with nutrition scien-
tists; and ensuring the next generation of nutrition scientists are 
trained in the data sciences.
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