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ARTICLE

3D genome topology distinguishes molecular
subgroups of medulloblastoma

John J.Y. Lee,1,2,3,16 Michael J. Johnston,4,16 Hamza Farooq,1,2,3 Huey-Miin Chen,5,6

Subhi Talal Younes,5,6 Raul Suarez,1,2,3 Melissa Zwaig,7 Nikoleta Juretic,7,8,9 William A. Weiss,10,11,12,13

Jiannis Ragoussis,7,14 Nada Jabado,7,8,9 Michael D. Taylor,1,2,3,5,6,15,17,* and Marco Gallo4,5,6,15,17,*
Summary
Four main medulloblastoma (MB) molecular subtypes have been identified based on transcriptional, DNA methylation, and genetic

profiles. However, it is currently not known whether 3D genome architecture differs between MB subtypes. To address this question,

we performed in situ Hi-C to reconstruct the 3D genome architecture of MB subtypes. In total, we generated Hi-C and matching tran-

scriptome data for 28 surgical specimens and Hi-C data for one patient-derived xenograft. The average resolution of the Hi-C maps was

6,833 bp. Using these data, we found that insulation scores of topologically associating domains (TADs) were effective at distinguish-

ing MB molecular subgroups. TAD insulation score differences between subtypes were globally not associated with differential gene

expression, although we identified few exceptions near genes expressed in the lineages of origin of specific MB subtypes. Our

study therefore supports the notion that TAD insulation scores can distinguish MB subtypes independently of their transcriptional

differences.
Introduction

Medulloblastoma (MB) comprises a heterogeneous group

of tumors of the cerebellum that can be classified into

four main molecular subgroups based on their character-

istic transcriptional and mutational profiles: WNT, SHH,

group 3 (G3), and group 4 (G4).1 WNT and SHH tumors

are characterized by mutations that lead to activation of

the Wingless and Sonic Hedgehog signaling pathways,

respectively. The underlying genetics of G3 and G4 tumors

is less well defined, although �17% of G3 tumors have

MYC (MIM: 190080) amplifications and�6% of G4 tumors

have amplifications of MYCN (MIM: 164840) (reviewed in

Roussel and Robinson2). Additionally, about 40% of G4 tu-

mors harbor somatic mutations that affect the function of

the core binding factor alpha complex and have high fre-

quency of isochromosome 17q.3–5

G3 and G4 tumors have transcriptional profiles that set

them clearly apart from the other subgroups. However,

single-cell RNA-sequencing (scRNA-seq) studies have

also indicated that G3 and G4 tumors exist along a tran-

scriptional continuum with some intermediate transcrip-
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tion profiles shared by both subgroups.6 Therefore,

transcriptomic approaches are not sufficient to unambig-

uously distinguish these two subgroups. On the other

hand, DNA methylation profiling has been successful at

distinguishing all MB subgroups, including G3 and G4,7

highlighting the utility of this method for precise clinical

diagnoses of brain tumors. This latter finding also indi-

cates that epigenetic landscapes might better distinguish

these MB subtypes than transcriptional or genetic

profiles.

Molecular subgrouping of brain tumors has been an

important tool to discriminate between entities that were

previously considered pathologically similar but that in

fact have different clinical profiles, including responses to

therapy.8,9 Among MB subgroups, WNT tumors have

extremely good prognoses, with the vast majority of indi-

viduals essentially cured of the disease. At the other end

of the spectrum are G3 and SHH tumors, which have the

worst prognoses among MBs.10 G4 tumors have intermedi-

ate prognoses. The classification of MB into molecular sub-

groups has represented a significant improvement over pre-

vious categorizations based on cell morphology and other
ick Children, Toronto, ON M5G 0A4, Canada; 2Developmental & Stem Cell

ada; 3Department of Laboratory Medicine and Pathobiology, University of

ersity of Calgary, Calgary, AB T2N 4N1, Canada; 5Department of Pediatrics,

y Center, Texas Children’s Hospital, Houston, TX 77030, USA; 7Department

rtment of Pediatrics, McGill University, The Research Institute of the McGill

ental Medicine, Department of Medicine, McGill University, Montreal, QC

ancisco, San Francisco, CA 94143, USA; 11Department of Pediatrics, Univer-

of Neurosurgery, University of California, San Francisco, San Francisco, CA

ensive Cancer Center, University of California, San Francisco, San Francisco,

Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine,

.G.)

ember 5, 2024

ty of Human Genetics.

s.org/licenses/by/4.0/).

mailto:michael.taylor@bcm.edu
mailto:marco.gallo@bcm.edu
https://doi.org/10.1016/j.ajhg.2024.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2024.10.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/


pathology features. The widespread acceptance of this clas-

sification system has led to their inclusion in the World

Health Organization Neuro-oncology classification.11

MB subgroups originate from distinct cell lineages of the

developing hindbrain.3,12,13 SHH MBs likely originate

from granule cell precursor lineages, whereas G3 and G4

tumors originate from progenitor cells that emanate from

the ventral zone and subventricular zone (SVZ) of the

rhombic lip. The origin of both G3 and G4 MBs from the

rhombic lip at least partially explains that G3 and G4

tumors share some molecular profiles. G3 tumors are en-

riched for a photoreceptor gene signature that distin-

guishes them from a unipolar brush cell (UBC) signature

that is more enriched in G4 tumors.14 Of note, UBC pro-

genitors are particularly numerous in humans compared

to other species, and they originate from a rhombic lip

structure that is unique to human neurodevelopment.3

These recent findings may explain why previous attempts

at modeling G3 and G4MBs inmurinemousemodels have

had limited success at recapitulating salient characteristics

of these diseases.

Although several studies have investigated the genomic

and transcriptomic landscape of MB subgroups, there re-

mains a lack of knowledge regarding their epigenomes

and 3D genomes. Recent work has described the potential

for structural variants (SVs) to rewire the epigenome of

MBs, especially through hijacking of cis regulatory ele-

ments (CREs).5 However, such epigenetic rewiring was in-

ferred by overlaying SVs to 3D genome information gener-

ated from unrelated cell models. Systematic studies of 3D

genome configurations across MB subgroups using clinical

samples have not yet been described.

Here, we have used in situ Hi-C15 to map the 3D genome

architecture of clinical and preclinical specimens across

MB subgroups. The Hi-C contact maps we generated for

our MB samples achieved high resolution and enabled

the identification of all major features of the 3D genome.16

At the highest resolution, we were able to identify DNA

loops, which have been reported to link CREs and their

target genes and promoter-promoter interactions. Loops

are often—but not necessarily—anchored by CTCF and

originate from themotor function of the cohesin complex,

which pulls DNA through its ring structure until a barrier

to movement is encountered, often CTCF itself.17,18 The

mechanism mediated by cohesin and CTCF has been

defined as loop extrusion. At the larger scale of 3D genome

structures are topologically associating domains (TADs),

which represent contiguous genomic regions that tend to

interact with each othermore often than with surrounding

regions.16 Themajority of TADs are delimited by CTCF pro-

teins that bind their cognate DNA motifs in convergent

orientation.16

Here, we present Hi-C contact maps of MB specimens

spanning all four main molecular subgroups. Using these

datasets, we highlight fundamental 3D genome differ-

ences between MB subgroups, including G3 and G4

tumors.
The American Jour
Material and methods

Human samples
Primary tumors used in the study were collected and processed af-

ter receiving written informed consent, including consent to pub-

lish the generated data, as per guidelines from Research Ethics

Board from the following institutes: Hospital for Sick Children

(Toronto, Canada), McGill University (Montreal, Canada), and

University of California, San Francisco (San Francisco, USA).
Hi-C library preparation
Fresh tissue samples were obtained from The Hospital for Sick

Children (Toronto, ON). In situ Hi-C libraries were generated as

we described previously,19 using approximately 2.5 million disso-

ciated cells as input. All Hi-C libraries were sequenced at 150 bp PE

with a Hi-Seq X instrument (Illumina) at McGill Genome Centre

(Montreal, QC).
Hi-C contact maps
Juicer (v1.6, CPU)20,21 was used to process Hi-C library fastqs to

‘‘.hic’’ format contact maps. Dependencies of the Juicer pipeline

included bwa (v0.7.17)22 and Java (openjdk ¼ 8.0). Reads were

aligned using hg38 coordinates (GCA_000001405.15_GRCh38_

no_alt_plus_hs38d1_analysis_set). All samples were confirmed

to have resolution <15 kb (as determined by the Juicer script

‘‘calculate_map_resolution.sh’’) and >10% of alignable read pairs

resulting in long-range contacts (as determined from Juicer’s in-

ter_30.txt QC file) prior to proceeding with downstream analysis.

For in-depth downstream methods, please see Johnston et al.19

Loop anchors were analyzed with the R package ChIPSeeker.23,24

Coordinates for loop anchors were annotated using the

UCSC.hg38.knownGene annotations. Annotation of contact do-

mains, boundaries, loops, and compartment was done as

described in Johnston et al.19 and as summarized below.

Contact domains

To annotate contact domains, hic files were processed using Juicer

Tools (v1.19.02, https://github.com/aidenlab/JuicerTools) Arrow-

head with parameters ‘‘–ignore-sparsity -k SCALE’’ for the

following data resolutions (kb): 10, 25, 50, and 100. To compare

Arrowhead block scores between samples, we first defined the

union of all domains called across all samples. Arrowhead was

subsequently rerun with the parameters ‘‘feature_list’’ and ‘‘con-

trol_list’’ set to this domain union to calculate block scores at all

positions of interest for each sample.

Boundaries

To assess boundary scores at the edges of contact domains,

RobusTAD (v1.0) was run with parameters ‘‘–norm¼norm’’ on

50-kb Hi-C contact matrices generated by Juicer Tools dump

with parameters ‘‘-d observed SCALE BP 50000.’’

Loops

To annotate chromatin loops, hic files were processed using Juicer

Tools (v1.19.02) HiCCUPS with parameters ‘‘–cpu -m 4096

–ignore-sparsity -k SCALE’’ for resolutions (kb): 10 and 25. To

compare HiCCUPS loop scores between samples, we first defined

the union of all loops called across all samples. HiCCUPS was sub-

sequently rerunwith the parameter ‘‘specified_loop_list’’ set to this

loop union to calculate loop scores at all positions of interest for

each sample.

Compartments

To annotate chromatin compartments, hic files were processed us-

ing Juicer Tools (v1.19.02) Pearsons with parameters ‘‘SCALE BP
nal of Human Genetics 111, 2720–2734, December 5, 2024 2721
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50000 -p’’ to return the correlation matrix for each chromosome.

Eigenvectors for principal components 1–3 of the Pearson correla-

tion matrix were calculated in R (v4.0.3; https://www.R-project.

org/) and separated into their positive and negative values,

and each was compared to brain H3K27ac ChIP signal (http://

www.roadmapepigenomics.org/data) using ‘‘bedtools jaccard’’

(v2.26.0). The eigenvector with the highest jaccard similarity

was selected to represent genome compartmentalization. If the

highest jaccard similarity corresponded to the negative values of

the eigenvector, then the eigenvector was inverted such that pos-

itive values correspond to type A compartmentalization.

SNF clustering
Similarity network fusion (SNF)25 clustering was performed

with the package that can be found at https://github.com/

maxconway/SNFtool. For boundaries (RobusTAD) and compart-

ments (eigenvector), feature scores were first filtered to include

only positions where <5% of samples resulted in undefined calls

and positions that were among the top 40% of variance across

samples. Inter-sample distances were then calculated using the

squared Euclidean distance as recommended by the SNF manual

for continuous values.

For domain calls (Arrowhead) and loop calls (HiCCUPS), the

numerical values of the feature scores were found to be noisier

than the binary presence or absence of the feature call, therefore

the Jaccard distance between called features was used.

Next, the affinitymatrix for each feature was calculated with K¼
20 and sigma ¼ 0.3. The overall fused matrix between these affin-

ity matrices was calculated with K ¼ 20 and T ¼ 16. The distance

between samples was taken as (0.5 – similarity). Finally, these dis-

tances were plotted using UMAPwith n_components¼ 2. Concor-

dance of individual features with the final fused matrix were

generated using concordanceNetworkNMI with C ¼ 2. Distance

between annotated features was taken as (1 – concordance).

Transcriptome analysis
Library preparation

RNA-seq libraries were generated and sequenced at the Ontario

Institute for Cancer Research using Kapa RNAHyperPrep kit. Three

RNA-seq libraries were pooled per lane of HiSeq 2500 High-output

PE126.

Differential expression

RNA-seqreadswerealignedtohg38(GCA_000001405.15_GRCh38_

no_alt_plus_hs38d1_analysis_set) using HISAT2 (v2.1.0)26 with pa-

rameters ‘‘–rna-strandness RF –downstream-transcriptome-assem-

bly.’’ SAM output was sorted, converted to BAM, and indexed using

samtools (v1.9).27 A counts table was prepared using the count

function of HTSeq (v0.13)28 and differential expression testing was

performed using limmawith Voom transformation (v3.44).29 Over-

lap between genomic features was performed using ‘‘BEDTools

intersect.’’30

Comparison to single-cell transcriptomics of MB
Data were accessed from Riemondy et al.31 via https://www.

pneuroonccellatlas.org/and visualized using the UCSC Single

Cell Browser.32

General statistical analysis and plotting
Data visualization was performed primarily in R (v4.0.3). Libraries

used include broom (v0.7.5), ggpubr (v0.4.0), ggrepel (v0.9.1),

RColorBrewer (v1.1.2), and tidyverse (v1.3.0). Non-negative ma-
2722 The American Journal of Human Genetics 111, 2720–2734, Dec
trix factorization (NMF) dimension reduction was run with library

NMF (v0.21.0) in R 3.6.3. RobusTAD was run with library optparse

(v1.6.6) in R 3.6.3. Visualization of Hi-C contacts and annotated

features was performed using Juicebox (v1.11.08), HiCExplorer

(v3.7.2),33 pyGenomeTracks (v3.6),34 or IGV (v2.12.3).35 Copy

number and transcriptional analyses of PRDM6 were generated

with data from previously published SNP6 arrays36 and previously

published gene expression array data37 processed as described in

Hendrikse et al.3 p value was calculated by using two tailed

Mann Whitney U test. The PRDM6 expression plot was generated

using just G4 MB samples with expression array and SNP6 array

data available.
Association between differential boundaries and

differential expression
‘‘BEDTools reldist’’ (v2.26.0)30 was used to assess the relative dis-

tance between significantly differentially expressed genes and

significantly differential boundary scores. ‘‘BEDTools closest’’ was

used to identify both the closest upstream and downstream

boundary to each gene. ‘‘BEDTools window’’ was used to identify

all boundaries within 1 Mb of each gene, then the most signifi-

cantly differential boundary within this range was assigned to

each gene.
Linked-read whole-genome sequencing (103

Genomics)
Linked-read whole-genome sequencing data for MB samples was

reported in our previous publication,38 and the methods are sum-

marized here. High molecular weight DNA was extracted from tu-

mors using phenol chloroform extractions. Molecule length was

assessed by Femto Pulse (Genomic DNA 165 kb Kit, 3 h run,

Agilent Technologies, Santa Clara, California, United States, cat#

FP-1002-0275), and samples were quantified in triplicate

using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific,

cat# Q32854). Library preparation was done following the

Chromium Genome Reagent Kits v2 User Guide (103 Genomics,

Pleasanton, California, United States) and sequenced using 150

PE Illumina reads. Data were aligned to reference genome b37

using 103 Genomics’ pipeline (LongRanger; https://github.com/

10XGenomics/longranger). Samples were sequenced to a mean

depth of 403with an average of 942million reads. Meanmolecule

length for the samples was 21.3 kb and resulted in the detection of

an average of 362 large SV calls and 4,643 short deletion calls.
Results

3D genome reconstruction and transcriptional profiles

of MB samples

We aimed to characterize the 3D genomes of different MB

molecular subgroups and to investigate their relation-

ships to subgroup-specific transcriptional profiles. We

generated in situ Hi-C contact maps for 29 samples,

including 28 surgical specimens and one patient-derived

xenograft (Figure 1A). In addition, we generated RNA-seq

data for the 28 surgical samples to enable downstream

correlation of 3D genome architecture and transcrip-

tional profiles. The MB specimens profiled include 1

WNT, 7 SHH, 8 G3, and 13 G4 samples (Figure 1A;

Table S1). Two G4 samples represent the diagnostic
ember 5, 2024
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Figure 1. 3D genome and transcriptome analyses of MB subgroups
(A) Summary of the MB samples used for the present study. Molecular subgroup, biotype, and biological sex are indicated for each spec-
imen profiled by Hi-C. The successful generation of matched RNA-seq data is also indicated for each specimen.
(B) Bar plot showing the percentage of loop anchors that fall within different types of genomic annotations.
(MB3670) and recurrent (MB4079) tumors from the same

individual. Given that only one WNT MB sample was

available, our analysis focuses primarily on the contrasts

between G3, G4, and SHH MBs. Ten samples were from

female individuals, and 19 were from males, reflecting

the prevalence of G3 and G4 samples in our cohort,

which are known to have a 2:1 male:female ratio. The

sex ratio among SHH samples was balanced, as expected

for this subtype.

The Hi-C libraries had an average resolution of 6,833 bp

(high: 3,950; low: 12,250 bp; median: 6,550 bp; Table S2),

which allows robust visualization and analyses of all major

elements of 3D genome structure. Globally, loops were an-

notated using HiCCUPS and TADs were annotated using

Arrowhead (Tables S3 and S4). About half of all loops de-

tected in each sample were anchored in proximal promoter

regions, irrespective of molecular subgroups (Figure 1B).

The number of loops (Figures S1A and S1B) and TADs

(Figures S1C and S1D) detected were approximately uni-

form across MB subgroups. On the other hand, we found

that TADs were shorter in G3 than in G4 (Wilcoxon test
The American Jour
p ¼ 0.0031; Figure S1E) and SHH (p ¼ 1.2 3 10�6;

Figure S1E) tumors. Similarly, TADs in G4 were shorter

than in SHH tumors (p ¼ 0.0094; Figure S1E). These differ-

ences were small but statistically significant. TAD size dis-

tribution for the WNT subgroup is shown, but these were

not compared to other subgroups because we included

only one WNT sample in our cohort. Globally, genome to-

pologies appear relatively stable across MB subgroups. As

an illustrative example of global 3D genome data, we

display Hi-C contact maps for all chromosomes generated

with the G4 MB sample MB3807 (Figure 2A). Overlaying

Hi-C maps for an individual chromosome (chromosome

3 in this example) with eigenvector values, it is possible

to recognize compartments (Figure 2B). Positive eigen

values coincide with type A compartments (generally

open chromatin), and negative eigen values correspond

to type B compartments (compact chromatin).When look-

ing at smaller regions, Hi-C contact maps enable the visu-

alization of individual TADs and loops (Figure 2C). TheMB

Hi-C datasets we generated are therefore suitable for explo-

ration of all levels of 3D genome architecture.
nal of Human Genetics 111, 2720–2734, December 5, 2024 2723
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TAD insulation scores distinguish MB subgroups

We askedwhether 3D genome information can differentiate

between MB subtypes. We first tested loops, which failed to

group subtypes, as shown in UMAP (Uniform Manifold

Approximation and Projection) plots (Figure 3A). We then

tested eigenvector values, which represent open type A

compartments (positive values) or closed type B compart-

ments (negative values). Compartmentalization also failed

to properly group tumor subtypes (Figure 3B), consistent

with the notion that genome compartmentalization is

relatively stable across MB subtypes. On the other hand,

Arrowhead TAD scores produced distinct clusters of SHH,

G3, and G4 samples in UMAP plots (Figure 3C). These

data suggested that MB subgroups may be distinguished

by their TAD boundaries. We therefore computed TAD

boundary scores genome wide for all samples in our cohort

using RobusTAD39 (Table S5). UMAP plots show that TAD

boundaries can clusterMB samples based on theirmolecular

subtypes (Figure 3D). This clustering was more defined than

when TAD scores were used. Finally, we wanted to see if

integrating all three major 3D genome structures could

achieve better stratification than looking at individual met-

rics. We applied SNF25 to integrate the signals from all

measured 3D genome features (loops, eigenvector/compart-

ments, TAD scores, and TAD boundaries) into a single, fused

similarity matrix. UMAP plots using the fused distance

metric achieved separation of samples based on their molec-

ular subtype (Figure 3E). However, subgroup clustering us-

ing the fused distance was less pronounced than using the

TAD boundary scores alone. The concordance betweenmet-

rics was highest for TAD boundary scores and fused

(Figure 3F). Overall, these results indicate that TAD bound-

ary score is the 3D genome feature that is most predictive

of MB molecular subtype, including the ability to distin-

guish between G3 and G4 tumors.

To further investigate the ability of TAD boundary scores

to distinguish between tumor subtypes, we performed

NMF analysis of TAD insulation scores for all MB samples.

Choosing k ¼ 3 resulted in clusters that largely recapitu-

lated our previous observations and separated samples

based on tumor subgroup (Figure 3G). Cluster 1 included

all SHH samples and the single WNT sample in our collec-

tion. Cluster 2 included only G3 samples, and cluster 3

included all the G4 samples and two G3 samples. Our an-

alyses therefore identified the TAD insulation score as a 3D

genome metric that can distinguish between MB sub-

groups, including G3 and G4 MBs.

Boundary strength differences between MB subgroups

We next aimed to identify the TAD boundaries that

contribute to the differences between molecular sub-
(F) Concordance between metrics derived from Hi-C data described
(G) Non-negative matrix factorization (NMF) analysis of TAD insulat
SHH, and WNT) are indicated at the top of the image, highlighting
groups. Consensus clusters are shown in green, blue, and pink. Silh
for each sample.
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groups. Toward this aim, we performed pairwise analyses

of differential boundaries between SHH, G3, and G4

subgroups.

2,803 boundaries out of a total of 13,885 were signifi-

cantly different between SHH and G3 subgroups (two-

sided t test, padj <0.05; Figure 4A; Table S6), 2,650 bound-

aries were significantly different between SHH and G4

samples (Figure 4B; Table S7), and 1,486 boundaries were

significantly different between G3 and G4 samples

(Figure 4C; Table S8). Overall, 20.2%, 18.8%, and 10.7%

of TAD boundaries were significantly different between

SHH and G3, SHH and G4, and G3 and G4, respectively.

We wondered if boundaries with differential strengths

between subgroups were associated with differential

expression levels of neighboring genes. In pairwise com-

parisons of MB subgroups, only 44 genes immediately up-

stream or downstream of these boundaries were differen-

tially expressed between SHH and G3 samples (Figure 4D;

Table S9), indicating that differential boundaries were

not strongly predictive of changes in expression. To better

visualize any potential trends, we plotted expression levels

of genes against the relative distance of that gene from the

differential boundary using the reldist function available

with BEDTools.30 To visualize the relationships between

gene expression and boundaries, we plotted the data for

each pairwise comparison between subgroups along a rela-

tive distance from the closest TAD boundary: SHH vs. G3

(Figure 4E), SHH vs. G4 (Figure S2A), and G4 vs. G3

(Figure S2B). The results show no clear trend for the expres-

sion of genes in proximity of differential boundaries be-

tween any MB subgroup combinations. These results sug-

gest that, on a global scale, TAD boundary strength

differences between MB molecular subgroups do not

have unequivocal effects on expression levels of nearby

genes.

As an illustration of different boundary structure be-

tween subgroups, we present a region on chromosome 8

with drastically different TAD structures in some G3 MB

samples compared to other subgroups (Figure S2C).

Some samples have a ‘‘fragmented’’ architecture, with

three TADs clearly visible, and other samples have a

‘‘fused’’ architecture, where the three TADs are replaced

by a single, larger TAD. To contextualize these results,

we compared Hi-C data from G3 samples (n ¼ 2), G4

(n ¼ 2), and SHH (n ¼ 2). Both G3 samples had a fused ar-

chitecture, whereas G4 and SHH had fragmented TAD ar-

rangements (Figure 4F). These 3D structural differences

between G3 and other subgroups were not a consequence

of Hi-C library quality, including sequencing depth, as

evidenced by QC data (Table S2) and by the clear visuali-

zation of TAD structures outside this region at comparable
in this study.
ion scores for all MB samples, with k ¼ 3. MB subgroups (G3, G4,
the ability of TAD insulation scores to discriminate between sub-
ouette scores provide the confidence level for the clustering calls
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Figure 4. TAD boundary differences between MB subgroups
(A) Volcano plot displaying differential TAD boundaries between SHH and G3 MBs. Negative log10 of the adjusted p value (padj) are dis-
played along the y axis.
(B) Volcano plot displaying differential TAD boundaries between SHH and G4 medulloblastomas.
(C) Volcano plot displaying differential TAD boundaries between G4 and G3 medulloblastomas.
(D) Relationship between gene expression and differences in boundary strengths between SHH and G3 MB. Each dot represents a gene.
Colored dots represent differentially expressed genes between SHH and G3. Pink dots represent genes that are differentially expressed
and have a differential boundary downstream. Blue dots represent genes that are differentially expressed and have a differential bound-
ary upstream.
(E) Relationship between differentially expressed genes and their distance from differential TAD boundaries between SHH and G3 sam-
ples. Blue dashed line represents the expected frequency of observations based on 50 kb bins. Orange points represent the observed
frequencies.

(legend continued on next page)
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levels in G3, other MB subgroups, and non-neoplastic

brain tissue.

Differences in TAD boundaries between G3 and G4 MBs

Given that TAD boundary scores differentiated between

G3 and G4 tumors, we attempted to gain more insight

into the underlying molecular underpinnings of this

observation. Two recent papers described the origins of

G3 and G4 tumors from lineages that emanate from the

SVZ of the rhombic lip during early human embryonic

development. Both tumor subgroups generally have

gene expression profiles reminiscent of progenitor cells

located in the rhombic lip SVZ.3,14 However, G3 tumors

are enriched for a photoreceptor gene signature, whereas

G4 tumors have transcriptional profiles reminiscent of

UBCs.14 We therefore investigated the possibility that

3D genome architecture near genes associated with the

lineage of origin of G3 and G4 tumors might distinguish

these two MB subgroups. Accordingly, we intersected the

genes identified in the rhombic lip SVZ photoreceptor cell

signature14 with genomic loci exhibiting differential

boundary strength between G3 and G4 samples based

on our RobusTAD analyses. Here, we identified major

3D genome differences between G3 and G4 samples at

key genes for their lineage of origin. In total, G3/G4

boundary differences were identified near one gene

in the G3 lineage signature (TULP1, MIM: 602280;

Table S10), and five genes that are part of the G4 lineage

signature (BARHL1, MIM: 605211; DDX3X, MIM: 300160;

ZIC5, MIM: 617896; GJD2, MIM: 607058; and NNAT,

MIM: 603106; Table S11). For illustrative purposes, we

generated contact maps at 50 kbp resolution for the

NNAT genomic region on chromosome 20 for G3 and

G4 tumors. Two representative contact maps for each tu-

mor subtype are displayed in Figure 5A. In the BED track

below the contact maps, we color-coded differential

boundary calls based on the Z score difference between

G4 and G3 so that shades of blue represent a boundary

that is weaker in G4 than in G3 samples. Next, the line

traces display the observed RobusTAD boundary scores

for each of the G3 and G4 samples for each bin in each

sample across the region. Boundary strengths for all G3

samples are shown as yellow lines, for all G4 samples as

green lines, and dashed lines represent the average scores

at each bin for each MB subtype. G3 tumors have a strong

boundary at this site between two TADs. However, this

boundary is weakened or lost in G4 tumors, resulting in

fusion of the two TADs into a larger one. NNAT is tran-

scribed at significantly higher levels in G4 compared to

G3 tumors, and its expression is enriched in the SVZ in

the Northcott data.14 We further corroborated these find-

ings by interrogating scRNA-seq data published by the

Vibhakar group (GEO: GSE156053 31). These data include
(F) Example of differential boundaries between G3 and otherMB subg
displayed. The dashed rectangle highlights a genomic region with lo
Specifically, the TAD structures observed in SHH and G4 MB are lost
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scRNA for one WNT, nine SHH, seven G3, and 11 G4 sam-

ples (Figure S3A). We confirmed that NNAT (Figure S3B)

and its neighboring gene BLCAP (MIM: 613110)

(Figure S3C) are strongly expressed in cells from G4 sam-

ples compared to other subgroups, although a few G3

cells also expressed these genes.

A second example is a differential boundary just up-

stream of FKBP5 (MIM: 602623) and TULP1, two genes

that are transcribed at higher levels in G3 tumors

compared to G4 (Figure 5B). Transcription of both genes

was significantly enriched in the SVZ based on RNA-seq

data published by Northcott’s group14 and scRNA-seq

from the Vibhakar group31 (Figures S3D and S3E). These

data indicate that high transcriptional levels of TULP1,

which is part of the photoreceptor gene signature, in G3

tumors is associated with increased strength of a boundary

just upstream.

Both examples illustrate how 3D genome topology, spe-

cifically TAD organization, appears distinct between G3

and G4 tumors. The expansion of specific TADs in G4 sam-

ples could alter the regulatory landscapes accessible for

regulation of downstream genes. These examples also

imply deregulation of epigenome independently of SVs.

Therefore, on a global scale, differential TAD boundaries

are not associated with differential gene transcription

levels. However, we identified a few differential boundaries

between G3 and G4 samples that reconfigure 3D genome

organization at genes that are differentially expressed be-

tween these two subgroups and that distinguish their cells

of origin.

Recurrent structural variants in G3 and G4 MBs

Hi-C data can be used to infer copy number and SVs.40

Deep deletions can be visualized from a Hi-C heatmap

because of the lack of reads spanning a given region. SVs,

like balanced translocations, for instance, appear as a char-

acteristic ‘‘butterfly’’ shape on the Hi-C heatmap at the

location off the diagonal that corresponds to the locations

of the translocation partners, which can be located on the

same chromosome or on different chromosomes. Hi-C

data therefore can be used to infer both epigenomic

context in 3D space and genetic landscapes of a given sam-

ple. Based on these premises, we aimed to interrogate our

Hi-C data to identify SVs in G3, G4, and SHH MBs. We

defined recurrent SVs and variants that affected overlap-

ping genomic regions in at least two samples. Overall, we

detected 107 putative recurrent SVs among our MB cohort

(Figure S4A; Table S12). For example, we inferred a recur-

rent translocation involving chromosomes 12 and 16 in

a G4 sample (MB3670; Figure S4B) and a G3 sample

(MB3687; Figure S4C) with a conserved breakpoint about

50 Mb along chromosome 16. This translocation was vali-

dated with linked-read (103 Genomics) whole-genome
roups. Two SHH samples, two G4 samples, and two G3 samples are
cally different topology in G3 tumors compared to SHH and G4.
in G3 samples.
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Figure 5. TAD boundary differences between G3 and G4 MB
(A) Heatmap representing Hi-C contacts along a region of chromosome 20 (coordinates indicated at the top). Imputed boundary
strengths along this region are shown as yellow and green lines for G3 and G4 tumors, respectively, below the heatmap. Gene expression
levels are shown in the bottom diagram, including differential gene expression between G4 and G3 tumors.
(B) Heatmap representing Hi-C contacts along a region of chromosome 6. Imputed boundary strengths along this region are shown as
yellow and green lines for G3 andG4 tumors, respectively, below the heatmap. Gene expression levels are shown in the bottom diagram.
sequencing in MB3670 (Figures S4D and S4E; estimated

breakpoint at chr16: 50,092–50,094 kb).

We found that the Hi-C contact map for one G4 sample

was consistent with a previously described tandem dupli-

cation that included SNCAIP (MIM: 603779) and PRDM6

(MIM: 616982)36 (estimated breakpoints at chr5: 122–

123 kb). Given that previous papers inferred the effects

of this duplication on 3D genome organization using

Hi-C data from non-MB models, we thought that we

now had a chance to contextualize the study of the effects

of the duplication directly with our Hi-C data. This SV
The American Jour
included duplication of an established super enhancer

(SE) upstream of SNCAIP and recurrently affects a TAD

boundary (Figure 6A). When we compared the Hi-C map

for a sample with this putative translocation (lower half

of Figure 6B) to another G4 sample without the SNCAIP-

PRDM6 tandem duplication (upper half of the heatmap

in Figure 6B), we identified new patterns of physical inter-

actions in the duplicated sample. This example demon-

strates how genetic variants can result in reorganization

of the 3D genome of cancer samples. The tandem duplica-

tion has significant effects on the transcriptional levels of
nal of Human Genetics 111, 2720–2734, December 5, 2024 2729



Figure 6. Relationships between SVs, 3D genome, and transcriptional profiles
(A) Location of recurrent SNCAIP tandem duplications in the context of TAD boundaries in G4 MB. The coordinates of the region of
chromosome 5 shown are indicated at the top. Copy number data for each MB sample are displayed along rows. MB samples with du-
plications are visible at the top of the diagram, with duplicated regions shown in red. The TAD boundary between the SNCAIP and
PRDM6 loci is highlighted with a black rectangle.
(B) Observed minus expected (Obs-Exp) contact frequencies were determined by Hi-C data for a G4 MB with SNCAIP duplication (lower
half) and for a G4 sample without the duplication (upper half). The genomic region represented is on chromosome 5 (coordinates shown
along the y axis of the heatmap).
(C) PRDM6 transcriptional levels in samples with and without the PRDM6 duplication. p value was calculated with the two-tailed Mann
Whitney U test.
(D) Inference of an SV affecting the KDM6A locus in a G4 MB (lower half of the Hi-C map). A G4 sample without SVs at this locus is
displayed in the upper half of the heatmap.
(E) RNA-seq data were used to determine the effects of the SV at the KDM6A locus on the transcriptional levels of this gene.
SNCAIP, with duplication-positive samples having orders

of magnitude higher expression of this gene compared to

non-duplicated samples (Figure 6C). Overall, our Hi-C da-
2730 The American Journal of Human Genetics 111, 2720–2734, Dec
tasets provide insight into how genetic variation shapes

3D genome organization to achieve oncogenic transcrip-

tion profiles.
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About 4% of MB samples harbor truncating mutations,

splice site mutations and missense mutations at the

KDM6A locus.41 KDM6A is expressed at significantly lower

levels in G3 and G4 than in SHH tumors (pairwise Welch t

test p ¼ 2.35 3 10�9; Figure S4F) in the Cavalli dataset.37

Most of these genetic alterations are in G4 samples, and a

minority affect SHH tumors. Our Hi-C data gave us an op-

portunity to investigate potential mechanisms of inactiva-

tion of this gene. The Hi-C contact map of one of our G4

samples (MB3716) had a characteristic butterfly pattern

that is consistent with a chromosomal inversion involving

the region where KDM6A (MIM: 300128) is located (lower

half of Figure 6D). As a comparison, we display the Hi-C

contact map another G4 sample (MB3670) that does not

appear to have this inversion (upper half of Figure 6B).

The inversion was confirmed with linked-read (103

Genomics) whole-genome sequencing (Figure S4G; esti-

mated breakpoints at chrX:26,926,652–26,928,652 and

chrX:44,945,696–44,947,696). Using our RNA-seq data,

we established that this inversion eliminates transcription

of the 30 exons of KDM6A. Transcription of all exons is

clearly detected in non-inverted samples (Figure 6E). Our

results are therefore consistent with an inversion resulting

in truncation of KDM6A. This could be a previously unap-

preciatedmechanism of KDM6A inactivation in G4 tumors

and potentially other MB subtypes as well.
Discussion

A wealth of Hi-C studies has profiled established cell lines

to capture themain elements of their 3D genome organiza-

tion. Some pioneering studies used this approach to define

the main levels of genome organization in the nucleus.16

More recent studies have generated mechanistic insight

into the functions of several key proteins and protein com-

plexes that have major roles in 3D genome organiza-

tion.42,43 Most of these studies have also taken advantage

of established cell lines. There currently is a significant

lack of understanding of genome structure in primary can-

cer samples, especially in pediatric brain tumors. Here, we

have generated Hi-C data for 29 MB samples, representing

28 primary surgical specimens and one patient-derived pri-

mary cell culture. It is our hope that these datasets will be a

resource to the community and will catalyze discoveries of

epigenetic mechanisms that promote malignant transfor-

mation, tumor initiation, and progression.

Overall, our data largely support stability of genome or-

ganization between MB molecular subgroups at the global

level. At the same time, however, our analyses also uncov-

ered specific local differences in genome structure between

different molecular subgroups of MB. For instance, we

found that TAD boundary scores were the best Hi-C-

derived metric to distinguish between G3, G4, and SHH

samples. We present examples of TAD boundary shifts

that are unlikely to be caused by SVs and that occur near

genes that specify the cell lineage of origin of G3 and G4
The American Jour
tumors. These boundary shifts represented major restruc-

turing of TAD structure and boundaries at the affected

genomic regions. Except for these examples, the vast ma-

jority of TAD boundary changes did not correlate with

the expression of known developmental genes or genes

that have been clearly implicated with the etiology of these

tumors. Globally, our results support the uncoupling of 3D

genome structures—especially TADs—from gene transcrip-

tion levels. The biological implications for the uncoupling

of TAD structure and gene expression levels are puzzling

but consistent with new literature.44,45

It is possible that epigenetic changes that affect chro-

matin accessibility on scales below the ones achieved

with Hi-C are key to gene expression control. Alternatively,

the underlying histone post-translational and DNA modi-

fications might provide epigenetic memory independently

of the underlying 3D genome organization.

It is also worth stressing that genome structure has been

proposed to have roles other than regulating gene tran-

scription. These alternative roles include other functional

properties of the genome, including its replication timing

and repair of mutations.46,47 Exploring the significance

of TAD boundary shifts and differential strengths with

respect to these alternative but major roles of the 3D

genome across MB subgroups will be a focus of further

studies.

The number of statistically significant differences in 3D

genome features between subgroups may represent an un-

derestimation. This is because we only studied clinical

samples that are representative of differences between in-

dividuals. We see this as a strength of our study, but it

needs to be acknowledged that the output of our analyses

is necessarily more heterogeneous than if we worked with

established cell lines. Furthermore, these samples are also

likely to be characterized by intra-tumoral heterogeneity.

Emerging approaches to perform single-cell Hi-C could

help deconvolute 3D genome properties of distinct cell

populations in MB subgroups.

The most dramatic changes in 3D genome structure

were associated with SVs, as expected. Our analyses iden-

tified SVs in many samples, including at genes that have

been previously shown to have important biological

functions in MBs. It was previously hypothesized that

SVs may have strong effects on gene transcription

because of their ability to re-wire CREs and their target

genes.48 Our direct measurements of the effects of SVs

on 3D genome architecture (Hi-C data) and transcrip-

tome (RNA-seq) indicate that most of the effects on tran-

scriptional levels affected genes located at short distances

from the SV breakpoints. Based on our data, it is impor-

tant to emphasize that enhancer hijacking events are

more likely to be the exception rather than the rule. Inte-

gration of epigenomic data (including ChIP-seq and

ATAC-seq) with Hi-C and transcriptome data could there-

fore significantly expand the mechanistic insight of the

role of epigenetic and genetic disruption on 3D genome

architecture of cancer cells.
nal of Human Genetics 111, 2720–2734, December 5, 2024 2731



The Hi-C datasets we present here profile a collection of

MB samples of clinical significance at high resolution. As

the community is focused on better understanding disease

mechanisms underlying MB subgroups, the focus is shift-

ing from purely genetic studies to questions of how genetic

and epigenetic forces co-operate to achieve cellular trans-

formation and tumor development and progression. We

expect that the Hi-C data described in this manuscript

will nucleate further studies into genetic/epigenetic inter-

actions, deepening our understanding of driver mecha-

nisms. This is especially true for G3 and G4MBs, for which

our knowledge of crucial driver mechanisms is so far more

limited.
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