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ABSTRACT
Arbitrage spread prediction can provide valuable insights into the identification
of arbitrage signals and assessing associated risks in algorithmic trading. However,
achieving precise forecasts by increasing model complexity remains a challenging
task. Moreover, uncertainty in the development and maintenance of model often
results in extremely unstable returns. To address these challenges, we propose a K-fold
cross-search algorithm-optimized LSTM (KCS-LSTM) network for arbitrage spread
prediction. The KCS heuristic algorithm incorporates an iterative updating mechanism
of the search space with intervals as the basic unit into the traditional ant colony
optimization. It optimized the hyperparameters of the LSTM model with a modified
fitness function to automatically adapt to various data sets, thereby simplified and
enhanced the efficiency of model development. The KCS-LSTM network was validated
using real spread data of rebar and hot-rolled coil from the past three years. The
results demonstrate that the proposed model outperforms several common models
on sMAPE by improving up to 12.6% to 72.4%. The KCS-LSTM network is shown to
be competitive in predicting arbitrage spreads compared to complex neural network
models.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Optimization Theory and Computation, Neural Networks
Keywords Intercommodity spread, LSTM network, Heuristic algorithm, Hyperparameter tuning

INTRODUCTION
With the rapid development of quantitative finance, a significant rise in algorithmic trading
(AT) and high-frequency trading (HFT) has emerged as one of the most notable changes in
the current financialmarkets (Malceniece, Malcenieks & Putniņš, 2019). Statistical arbitrage,
as a prominent form of algorithmic trading, has gained widespread recognition and
application in both academia and industry. Compared with other investment tools,
arbitrage trading offers stable yields and lower risk. However, the proliferation of
competitive arbitrageurs results in higher execution risk (Kozhan & Tham, 2012). The
combination of arbitrage strategies and forecasting methods can facilitate the identification
of additional trading opportunities and reduce the execution risk. Unfortunately, the
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complexity andnon-linearity of financial datamake the prediction process full of challenges.
Therefore, the study of predictionmethods with high accuracy and universality has become
a hot topic among scholars. At present, common forecasting methods for financial data
include traditional econometric methods and machine learning methods.

The econometric method is based on statistical theories to predict the financial market.
Commonly usedmodels include Autoregressive IntegratedMoving Average (ARIMA) (Box
& Jenkins, 1968), Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
(Sobreira & Louro, 2020) and Vector Autoregressive (VAR) (Kiss, Mazur & Nguyen, 2022)
models. Although the econometric model has relatively objective theoretical support, the
strict basic assumptions make it challenging to achieve the desired predictive effect on real
data.

The emergence of machine learning has ushered in a new era for financial sequence
forecasting. Currently, researchers in related fields are primarily focusing on two aspects:
the extraction of Alpha factors (Shen et al., 2023) and the optimization of predictivemodels.

Alpha factors are typically a combination of various underlying models that have been
evaluated using historical datasets. They reflect the underlying drivers of unexplained
asset price movements. Investors can potentially achieve excess returns by incorporating
these alpha factors into their trading strategies. In addition, factor mining is also used for
unstructured data such as news articles and social media posts (Lin, Tsai & Chen, 2022).
They are able to capture market sentiment and underlying influences through their models,
thereby enhancing the accuracy of forecasts.

In the field of model research, a primary task is predicting price data, which is a typical
time series with characteristics such as multi-scale and high noise. The rich characteristics
of price data make it a hot research field for time series forecasting (TSF), attracting a
large number of researchers to challenge. There are four main kinds of methods for time
series modeling: (i) Traditional machine learning algorithms. Traditional machine learning
algorithms require less data and the decision-making process is easier to explain. However,
the simple structure limits their ability to handle complex data. (ii) Recurrent neural
networks (RNNs) (Hochreiter & Schmidhuber, 1997). RNN models learn the hidden states
of the time series through recursion and have demonstrated high accuracy in certain time
series prediction tasks. In addition, fast inference can be achieved due to the fact that the
output is dependent solely on the current state and the input from the previous moment.
However, this structure also makes it challenging to achieve efficient parallel training. (iii)
Transformer-based models (Vaswani et al., 2017; Li et al., 2019; Liu et al., 2021; Zhou et al.,
2021; Wu et al., 2021). The core of Transformer is the attention layer. The efficacy of self–
attentionmechanism is attributed to its ability to capture key information within a window,
allowing it to model complex data. Although it demonstrates excellent performance in
both multidimensional feature processing and long-term prediction work, the demand
for the amount of training data and computational cost also presents a challenge to its
practical application. (iv) Temporal convolutional networks (TCN) (Borovykh, Bohte &
Oosterlee, 2017; Bai, Kolter & Koltun, 2018; Liu et al., 2022a). The TCN employs the dilated
convolutions in order tomore effectively identify long-termdependencies. Additionally, the
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shared parameters of the convolutional layer enhance computational efficiency. However,
this convolution process also results in diminished sensitivity to local information.

Although improvements in the structure of predictive models are crucial, a combination
of different approaches, such as optimizing the hyperparameters of models (Zrieq et al.,
2022; Wang et al., 2022; Liu et al., 2022b), employing feature selection techniques (Wu et
al., 2023), and decomposing time-series characteristics (Ke et al., 2023), plays an important
role in enhancing the performance of models. Huang et al. (2023) utilized the improved
complementary ensemble empirical mode decomposition (ICEEMDAN) algorithm to
decompose the nonferrous metal price series. The fuzzy entropy value is calculated to select
suitable models for the sub-sequence, including ARIMA and gated recurrent unit (GRU)
with Bayesian optimization. Experimental results show that hyperparameter optimization
and hybrid frameworks can effectively improve prediction accuracy.Wang, Zhuang & Gao
(2023) employed a hybrid system for predicting carbon price prediction. The method
combines the strengths of several techniques, including the use of Singular Spectrum
Analysis (SSA) to reduce noise and chaotic disturbance, Extreme Gradient Boosting
(XGBoost) and partial autocorrelation function (PACF) to identify valid factors, and the
Slime Mold Algorithm (SMA) to ensure the accuracy and stability of the overall system.
Furthermore, Ashrafzadeh et al. (2023) combined particle swarm optimization (PSO) and
the K-means method to make convolutional neural network (CNN) perform on stock
prediction without any significant difference from traditional methods. These demonstrate
that predictive models can be improved by leveraging the strengths of other methods
without adding complexity. Among these, feature selection techniques and temporal
decomposition reduce the difficulty of model learning through certain preprocessing,
while hyperparameter optimization adjusts the model’s untrained parameters to enhance
its ability to adapt and learn from the data.

The objective of this article is to enhance the performance of arbitrage spread prediction
models, thereby improving arbitrage trading strategies. Although neural network models
with superior predictive capabilities have made some progress in structural exploration
and have achieved great results in long-term prediction and multi-feature processing, they
also have some problems such as complex model structure, high usage costs, and difficult
adjusting. Therefore, in the field of short-term forecasting of financial series, traditional
neural networks are still widely used due to their simpler model structure, less difficulty in
training and excellent fitting effect. Among these, numerous scholars (Sheng & Ma, 2022;
Zhan et al., 2022) have demonstrated that long short-term memory (LSTM) networks
perform better in several financial sequence prediction tasks. However, most models
suffer from degraded predictive performance in cross-data migration applications due
to limitations in model size and data volume. This is more pronounced in traditional
neural networks. The performance of a model can be improved by adjusting some
non-training parameters of the model, namely hyperparameter tuning. Compared to
grid search, relying on the researcher’s choice to improve traversal efficiency, random
search based on swarm intelligence algorithms can continuously exploit population
behaviour for comprehensive search during the optimization process, and therefore has
good search capability in solving hyperparameter optimization problems (Liu et al., 2022b;
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Ashrafzadeh et al., 2023). Therefore, this article constructs a nested two-layer optimization
network to learn hyperparameters using swarm intelligence algorithms and parameters
using gradient descent. This approach enables automatic tuning of hyperparameters and
improves prediction performance in cross-data model migration.

Specifically, this article conducts research on LSTM network to predict future arbitrage
spread movements. Compared to complex neural network models, the LSTM network
structure is relatively simple and intuitive to comprehend. But model’s performance is
more susceptible to the chosen hyperparameters. Based on this, in order to get better
global search results, we propose a novel hyperparameter optimization algorithm, namely
K-fold Cross-Search (KCS), to learn the traditional non-training parameters and improve
the accuracy of arbitrage spread predictions. The main contributions of this study can be
summarized as follows:

• We propose a novel optimized algorithm (KCS) which integrates the advantages of grid
search and ant pheromone mechanisms with enhanced global search capability.
• We constructed the KCS-LSTM prediction network. It has been implemented for
predicting arbitrage spreads in real-world Rebar (RB) and Hot-rolled coils (HC) futures
contracts.
• We compare the predictive performance of KCS-LSTM with some deep learning modes
including Back Propagation neural network (BPNN), RNN, Long- and Short-term
Time-series network (LSTNet), Informer and Sample Convolution and Interaction
network (SCINet), the results show that KCS-LSTM has achieved great success.

The remainder of this article is organized as follows: ‘Data Preparation’ describes the
data preparation in the arbitrage spread application, including the construction of the
objective function, the acquisition of raw data, the construction of the spread factor, and
the cointegration analysis on the arbitrage portfolio. ‘Methodology’ introduces the KCS
algorithm and the KCS-LSTMnetwork. ‘Experiment’ presents the experimental description
and result analysis of KCS-LSTM and other models for intercommodity spread prediction.
‘Conclusion’ presents the conclusion of this article.

DATA PREPARATION
In this section, we put forward the primary objective function. Additionally, we provide a
brief description of the data preparation and affirm its validity and applicability through
cointegration analysis.

Mathematical modeling
Our objective is to develop an arbitrage spread prediction model with higher accuracy. To
validate the efficacy of the proposed methodology, historical data related to RB and HC
futures contracts traded on the Shanghai Futures Exchange are used to simulate spread
prediction in cross-species arbitrage trading. Specifically, we assume that the closing spread
of the arbitrage portfolio in the subsequent minute serves as a guide for executing the
arbitrage trading strategy. The LSTM model will be trained using a subset of the spread
data to make predictions on new test data. The test set is not allowed to be involved in
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any calculations related to the training process. At this point, the original objective is
transformed into the minimization of the test set loss function, and the main objective
function can be expressed as:

minimize
2

∑
t∈�test

‖ yt −model2(Xt ) ‖2F . (1)

where 2 denotes the hyperparameter set of our model, �test is the set of time stamps used
for testing, F is the Frobenius norm, model2 is the predictive model, Xt encompasses all
the feature data within the observable range when making predictions about yt and yt is
the real value of the closing price spread at time t.

Data description
Our data is sourced from the Shanghai Futures Exchange in China. It provides a snapshot-
based order feed using the CTP protocol. The order feed aggregates changes over the last
500 ms. We use 500-millisecond tick data for the rebar and hot-rolled coil contracts to
calculate the spread data. The final output is 1-minute K-line data. In addition, since each
contract typically lasts for one year, we spliced the historical data for the January, May, and
October contracts of each year based on turnover to obtain the continuous spread data
of the main contract. In the end, we obtained the spread data from 21:01 on 15 July 2020
to 10:50 on 23 March 2023, comprising a total of 225,155 data points spanning 654 days.
Each data point corresponds to the spread change within 1 min, including the following
eight characteristics:
1. OPEN/HIGH/LOW/CLOSE: the first/highest/lowest/last value in 1-minute spread

data.
2. Difference (DIF): DIFi = EMA(CLOSE,12)− EMA(CLOSE,26). (EMA is the

exponential moving average)
3. Differential Exponential Average (DEA): DEAi= EMA(DIFi,9).
4. Moving average convergence and divergence (MACD):

MACDi= 2×(DIFi−DEAi).
5. The price spread fluctuation.

Cointegration analysis
Before initiating intercommodity spread trading, it is crucial to confirm the existence of
a long-term stable cointegration relationship among the selected futures contracts. To
facilitate this, we employed EViews10 software for the cointegration analysis of the original
price data.

Upon examining the contract time series plot depicted in Fig. 1, it becomes evident that
the closing price data for both RB and HC exhibit similar fluctuation patterns. This initial
observation suggests a potential correlation between the price data of these two commodity
futures. A more detailed, quantitative analysis of this correlation is provided in Table 1.
The correlation coefficients calculated for the opening price, closing price, highest price,
and lowest price all point towards a significant correlation between the two commodities.

The stationarity test results presented in Table 2 reveal that for the price series of RB
and HC, the null hypothesis of a unit root cannot be rejected at the 5% confidence level.
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Figure 1 Time series plot of the closing prices for RB and HC.
Full-size DOI: 10.7717/peerjcs.2215/fig-1

Table 1 Correlation test of the time series.

CORR Open Close High Low

RB-HC 0.990999 0.991001 0.991005 0.990997

It suggests that all eight series are non-stationary. Upon applying first-order differencing,
the calculated Augmented Dickey-Fuller (ADF) test statistic is less than the critical value. It
provides a basis for rejecting the null hypothesis of a unit root, indicating that all first-order
difference series are stationary. Consequently, it can be inferred that the price series of the
main futures contracts of both RB and HC are integrated of order 1.

Next, we can proceed with the Engle-Granger cointegration test, which starts with
formulating the following cointegration equation:

hc_close= c · rb_close+et (2)

where et is referred to as a cointegration residual, or a residual for short. The parameter c
is known as a cointegration coefficient.

Table 3 shows the results of the EG cointegration test. At the 1% confidence level, the
ADF test statistic of the residual series is lower than the critical value. Thereby, we reject
the null hypothesis and deem the series as stationary. Consequently, following the EG
cointegration theory, it can be inferred that the price data for the main contracts of RB and
HC adhere to a cointegration relationship. We can conduct pair trading on this data.

To validate the effectiveness of our fitting process, we conducted a stationarity test on
the fitted spread data. As shown in Table 4, the fitted spread data are the stationary time
series at the 5% confidence level. It suggests that our fitting process is robust and reliable.
The time series plot of the fitted data for the closing price spread is shown in Fig. 2.
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Table 2 ADF test on the price data of RB and HC.

Series ADF
test
statistic

Critical value P- value Stationarity
(5%)

1% 5% 10%

CLOSE −0.045 0.6678
OPEN −0.077 0.6571
HIGH −0.067 0.6605

RB

LOW −0.052

−2.565 −1.941 −1.617

0.6656

no

CLOSE −0.033 0.6719
OPEN −0.077 0.6571
HIGH −0.062 0.6621

HC

LOW −0.061

−2.565 −1.941 −1.617

0.6625

no

CLOSE −344.521 0.0001
OPEN −342.534 0.0001
HIGH −325.768 0.0001

DrB

LOW −326.774

−2.565 −1.941 −1.617

0.0001

yes

CLOSE −345.716 0.0001
OPEN −490.118 0.0001
HIGH −326.216 0.0001

DHC

LOW −208.269

−2.565 −1.941 −1.617

0.0001

yes

Table 3 ADF test of the residual series.

Residual ADF
test
statistic

Critical value P-value Conclusion

1% 5% 10%

et −4.52 −2.57 −1.94 −1.61 0.0001 cointegration

Table 4 ADF test of the fitted spread series.

Series ADF
test
statistic

Critical value P-value Stationarity
(5%)

1% 5% 10%

CLOSE −2.054 0.0384
OPEN −2.097 0.0346
HIGH −2.088 0.0354
LOW −2.0829

−2.565 −1.941 −1.617

0.0358

yes

METHODOLOGY
The KCS algorithm is designed to determine the optimal hyperparameters in this section.
Further, we propose the KCS-LSTM network to adaptively tune the prediction model.
The network eliminates the impact of individual subjectivity elements in traditional
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Figure 2 Time series plot of the closing price spread.
Full-size DOI: 10.7717/peerjcs.2215/fig-2

hyperparameter tuning and offers a reliable reference for constructing effective and
efficient predictive models in the field of algorithmic trading.

K-fold cross search
Related work
Hyperparameter tuning is the process of finding the optimal combination of
hyperparameters that maximizes the output accuracy. There are several methods for
hyperparameter tuning in artificial neural network (ANN), such as grid search (Bergstra
& Bengio, 2012), Bayesian optimization (Snoek, Larochelle & Adams, 2012), gradient-
based optimization (Maclaurin, Duvenaud & Adams, 2015), or random search based on
metaheuristic algorithms (MAs).

Traditional grid search is a common method used for hyperparameter tuning in the
development of time series forecasting models. However, it can pose some challenges.
If the grid points are too sparse, the optimal search outcome may deviate significantly
from the true optimal solution. Conversely, a densely populated grid could significantly
increase the computational demands of the experiment. Therefore, selecting the appropriate
grid granularity and extent is critical to maintaining a balance between grid density and
computational load. However, individual subjective factors often influence the process of
achieving this balance.

For the deficiencies of traditional grid search, population-based MAs have been widely
used for combinatorial optimization problems. These algorithms generate optimal solutions
by exploring a new region in the search space via an iterative process. Grey Wolf Optimizer
(Mirjalili, Mirjalili & Lewis, 2014), Particle Swarm Optimization (Kennedy & Eberhart,
1995), Cuckoo Search Algorithm (Gandomi, Yang & Alavi, 2013), and Sparrow Search
Algorithm (Xue & Shen, 2020) are well-known examples of this class of MAs. The Ant
Colony Optimization (ACO) is a population-based metaheuristic algorithm proposed
by Dorigo, Maniezzo & Colorni (1996). It emulates the behavior of ant colonies as they
seek the shortest path during their food-foraging process and has parallel computing,
strong robustness, and easy combination with other algorithms. To better handle complex
optimization problems, the ACO algorithm has been enhanced in three main areas. Firstly,
the search, update, and coordination mechanisms have been improved in the feedback
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mechanism of pheromones. Engin & Güçlü (2018) proposed a crossover and mutation
mechanism to solve shop scheduling. Zhao, Zhang & Zhang (2020) presented an adaptive
reference point mechanism to enhance the optimization ability. Secondly, to address the
shortcomings of the algorithms themselves, a hybrid ACO with other algorithms was
proposed. Wang & Han (2021) presented a hybrid algorithm with symbiotic organism
search, ACO, and local optimization strategy. Finally, some parameters of the ACO
algorithm were adaptively tuned. Yang et al. (2016) developed an adaptive parameter
adjustment by taking the differences among niches into consideration, and a differential
evolution mutation operator for ants.

Neural network hyperparameter tuning can be considered a black-box optimization
problem. When applying ACO to black-box optimization problems, the difficulty in
evaluating the search space makes the selection of the population size of the ACO
algorithm a challenge. Additionally, the revised method of continuously exploring new
areas encounters challenges in determining the appropriate number of iterations due to
the heightened randomness of the global search. This article introduces a novel method
of hyperparameter tuning based on the principles of the traditional ant colony algorithm.
It allows for the automatic adjustment of hyperparameters in ANN models across a wide
range of options. In our algorithm, the basic unit of the search space is an interval block
instead of a coordinate point. We limit the total number of basic units in the searchable
space to ensure that the difficulty of the search process does not outweigh the capabilities
of the pheromone search mechanism. During the iterative process, each search unit
eliminates unpromising regions using the worst elimination rule. The size of the interval
block decreases as the search progresses until it reaches a critical point, indicating the end
of the search. The critical point here is determined by the precision of the hyperparameters.
If the size of the region eliminated in each interval block update is fixed, the number of
iterations also needs to increase. Therefore, the demand for the number of populations in
the original algorithm has been replaced with a demand for the number of iterations. Our
approach utilizes the reduction process of the interval block as a reference, making it easier
to select the number of iterations. More details about the search space and search rules will
be elaborated in ‘Search space’ and ‘Search rules’.

Search space
The KCS algorithm uses a transformation mechanism to convert the search space into a
search environment where interval blocks serve as the basic unit. Since the size of K and
the number of hyperparametersm are fixed values, the original search space of any size will
be transformed into a new search space of a finite size in each iteration. The performance
of the search algorithm is only affected by the distribution of the new space. Here the
new search environment will be explored by ACO algorithm. Unpromising regions are
excluded, and the remaining regions will again generate a new search environment. As the
iterative process proceeds, the size of the basic unit of the search environment will continue
to shrink and the average fitness level of the entire search environment will be optimised.

The Split-Range1 algorithm and Split-Range2 algorithm will perform the conversion
process. Split-Range1 will handle initialization and spatial updates under the Optimal
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Selection Rule, while Split-Range2 will handle spatial updates under the Worst
Elimination Rule. The basic search unit in the new search environment is denoted as
B=

{
L1j1,L2j2,...,Lmjm |ji ∈ 1,2,...,K

}
and referred to as an interval block. The Split-

Range1(2) algorithm divides the range of values Li(i= 1,2,...,m) of each hyperparameter
into K parts, creating m×K subintervals, which make up the Km basic units of the new
search environment.

The conversion process of the Split-Range1(2) algorithm is shown in Algorithm 1.

Algorithm 1:Split-Range1
1: Input: b.list % the sequence number set of intervals

b[low/high,length(b.list )]% boundary of intervals
2: Description:

bd[low/high,m,K ]% the boundary matrix of the sub-intervals
bp[m,K ]% the representative value matrix of the sub-intervals

3: diff ← (b[high]−b[low])/K
4: for i← 0 :K −1 do
5: bd[low,b.list ,i]← i ·diff +b[low]
6: bd[high,b.list ,i]← (i+1) ·diff +b[low]
7: end for
8: bp[b.list ,0 :K −1]← round((bd[high]−bd[low])/2)

% The round function performs rounding to the nearest precision
9: Output: bp, bd

Search rules
Assuming that the initial pheromone concentration of each subinterval is τ (0), and the
number of ants searching the interval blocks is n. The optimization process in each iteration
primarily relies on the principles of the ant colony algorithm and involves the following
three types of updates:
(1) Update of the pheromone matrix

The pheromone matrix serves as a comprehensive record of search information across
the entire search space. It is influenced by both positive and negative feedback mechanisms
of pheromones.

In the case of positive feedback, whenever an ant completes a search of an interval block,
it releases a corresponding amount of pheromones according to Eq. (3). The amount of
pheromones released reflects the quality of the ants’ search results.

1τij =

n∑
k=1

Q · ISij (k)
Fitk

,(k= 1,2,...,n) (3)

where 1τij represents the pheromone increment of the j- th subinterval for the i- th
hyperparameter, the constant Q is the adjustment factor of the pheromone increment, and
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Algorithm 2:Split-Range2
1: Input: b.list % the sequence number set of intervals

b[low/high,length(b.list ),K −1] % boundary of intervals
2: for t← 0 : length(b.list )−1 do
3: Find the independent intervals T from b[{low,high},t ,{0 :K −1}]

% independent intervals are not adjacent to each other
4: Count the number T .num and the size T .size of T .
5: g [T .num]
6: g← round(K ·T .size/sum(T .size))
7: if sum(g ) 6=K then
8: for i← 0 :T .num−1 do
9: if T .size[i] ≥ Sort (T .size)[KmodT .num] then
10: g [i]←K//T .num+1
11: else
12: g [i]←K//T .num
13: end if
14: end for
15: end if
16: T .size[i] is divided into g [i] intervals.

Returning the bounds [bs.low,bs.high] of each interval
17: bd[low,b.list [t ]]← bs.low
18: bd[high,b.list [t ]]← bs.high
19: end for
20: bp[b.list ,0 :K −1]← round((bd[high]−bd[low])/2)
21: Output: bp, bd

Fitk is the quantified indicator of the search results of the k- th ant. When Lij is a part of
the interval block searched by the k th ant, ISij (k)= 1, otherwise ISij (k)= 0.

In the case of negative feedback, the pheromones on each subinterval will evaporate
over time.

The specific update formula for the pheromone matrix is as follows:

τij (t+1)= (1−ρ)τij (t )+1τij,(0<ρ < 1) (4)

where ρ is the evaporation factor, and τij (t ) is the pheromone concentration on Lij during
the t- th iteration.
(2) Update of the selection probability matrix

The selection probability matrix is updated along with the pheromone matrix, and the
calculation formula is as follows:

pij (t )=

(
τij (t )

)α∑K
j=1
(
τij (t )

)α ,(i= 1,2,...,m) (5)

where pij (t ) signifies the likelihood of a subinterval being chosen in the t- th iteration. The
sensitivity of the ants is modulated by α

(
α ∈N+

)
, known as the sensitivity factor. A larger

value of the sensitivity factor indicates a heightened sensitivity of the ants to variations
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Figure 3 Update of the search space (m= 2,K = 3).
Full-size DOI: 10.7717/peerjcs.2215/fig-3

in pheromone concentration. Based on the selection probability matrix, we choose the
interval block that each ant will search in the next iteration by roulette.
(3) Update of the search space

The update of the search space involves two mechanisms (as shown in Fig. 3): optimal
selection and worst elimination.

Optimal selection rule: When the selection probability of a subinterval exceeds the
threshold Pbest , it will become the only available value range for the corresponding
hyperparameter and forms a new search space with the value ranges of other
hyperparameters.

Worst elimination rule: When the selection probability of a subinterval A is less than
the threshold Pworst , if the value range of subinterval A is adjacent to the neighboring
subinterval B, we retain a quarter of the interval length of A that is close to B, otherwise,
discard subinterval A entirely. Note that the selection probability of A is the minimum of
K probability values for a hyperparameter.

Based on the above search rules, the search process of the KCS algorithm is shown in
Algorithm 3.

KCS-LSTM network
Figure 4 illustrates the architecture of the KCS-LSTMmodel. Each subheading in the third
part of the article corresponds to a specific part of the chart. Our KCS-LSTM network is
structured with two nested layers. The inner layer, which consists of an LSTM network,
uses the hyperparameters provided by the outer layer to initialize the model and trains the
model’s parameters via gradient descent. Subsequently, it relays the corresponding fitness
function values back to the outer layer. The outer layer, a KCS hyperparameter optimization
network, iteratively searches for the optimal hyperparameter set using a limited number of
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Algorithm 3: KCS
1: Input:m, n, L[m,2], item
2: Initialize the bd[2,m,K ], bp[m,K ], τ [m,K ].
3: Split Range 1(L,[0,1,. . . ,m]).
4: for gen← 1 : item do
5: Calculate the matrix p[m,K ] %Eq. (5)
6: if ∃p[i,j]> Pbest then
7: b[2,length({i|p[i,j]> Pbest })],b← bd[0 : 1,i,j]
8: b.list←{i|p[i,j]> Pbest }
9: Split Range 1(b, b.list ) % Algorithm 1
10: Update τ [b.list ,0 :K −1] and p[b.list ,0 :K −1]
11: end if
12: if ∃min(p[i,])< Pwrost then
13: Worst Elimination Rule
14: b[2,length({i|min(p[i,])< Pwrost }),K −1]
15: b← bd[0 : 1,i,{0,1,··· ,j−1,j+1,··· ,K −1}]
16: b.list←{i|min(p[i,])< Pwrost }
17: Split Range 2(b, b.list ) % Algorithm 2
18: Update τ [b.list ,0 :K −1] and p[b.list ,0 :K −1]
19: end if
20: Based on p and roulette , calculate Ak %Eq. (12)
21: Pi← bp ·Ai
22: Calculate the fitness Fiti in Pi
23: Update τ %Eqs. (3)–(4)
24: end for
25: Output: Values of bp[0 :m,{j|τ [i,j] =max(τ [i,])}]

specified sample points. The operational process of the entire KCS-LSTM network will be
elaborated in ‘Steps of the KCS-LSTM’.

LSTM network
Our LSTM network is depicted in Fig. 4. It comprises an LSTM layer and a fully connected
(FC) network. The number of neurons in each layer serves as a hyperparameter and is
determined through the KCS optimization algorithm. Each LSTM unit is built using
the traditional ‘gate’ structure. Their internal mechanism is described by the following
equations:

Input Gate : It = sigmoid
(
wi ·

[
dt ,ht−1

]
+bi

)
(6)

Output Gate : Ot = sigmoid
(
wo ·

[
dt ,ht−1

]
+bo

)
(7)

Forget Gate : ft = sigmoid
(
wf ·

[
dt ,ht−1

]
+bf

)
(8)

Cell state : Ct = ft ·Ct−1+ It · tanh
(
wc ·

[
dt ,ht−1

]
+bc

)
(9)

ht =Ot · tanh(Ct ) (10)
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Figure 4 KCS-LSTM network.
Full-size DOI: 10.7717/peerjcs.2215/fig-4

where weight matrixes (wi,wo,wf ,wc) and bias vectors (bi,bo,bf ,bc) of It ,Ot ,ft and Ct are
obtained through a process of training on the designated training set. ht represents the
extracted feature of each LSTM unit and will be used as the input feature for the next time
step. Note that only the ht from the final time step is utilized as the extracted feature of
the LSTM layer. This feature is subsequently input into a straightforward FC network and
transformed into the predicted value (ŷt ).

Fitness function
In numerous models for hyperparameter optimization, the mean squared error (MSE)
or mean absolute error (MAE) of the validation set is typically employed as the fitness
function of the model. However, to mitigate the risk of model overfitting, we design a novel
fitness function:

Fit =
1

n− start

n∑
i=start

Loss_funival ·
∣∣Loss_funival−Loss_funitrain∣∣ (11)

where Loss_funival is the loss function value of the model on the validation set after training
for i epochs. The efficacy of the newly proposed fitness function will be substantiated
through the experimental results presented in ‘Experiment’.

Zeng et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2215 14/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2215/fig-4
http://dx.doi.org/10.7717/peerj-cs.2215


Step9

Step8

Step7

Step6

Step1

Step2

Step3

Step4

Step5

Start

Historical data value 

Range of hyperparameter

Termination 

condition

p>Pbest

p<Pworst

ant<n

Preprocessing

Initialization

Each ant selects the search 

target based on the search rules

Training model

Record the loss 

function value

Calculate the fitness 

function value

Update the pheromone 

matrix and the selection 

probability matrix

Training + 

Testing model

Prediction model

End

Optimal 

selection and 

update

Worst elimination 

and update

no

no

no

yes

yes

yes

no

Figure 5 Flowchart of the KCS-LSTM network.
Full-size DOI: 10.7717/peerjcs.2215/fig-5

Steps of the KCS-LSTM
The flowchart of the KCS-optimized LSTM neural network is shown in Fig. 5. The main
steps are as follows:
Step 1. Preprocessing. Preprocess the historical data, including completing the division of
training set, validation set, and test set; eliminate the dimensional differences between data
through normalization.

Step 2. Initialization. Set the number of populations, K value, number of algorithm
iterations, etc. Then, initialize the search space and the pheromone matrix.

Step 3. Termination condition. The termination condition is defined as follows:
(1). The process ends when the maximum number of iterations is reached.
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(2). It also ends when the early termination criteria are met. This occurs when the size of the
subinterval is less than or equal to the precision of its corresponding hyperparameter.
At these points, the KCS optimization process concludes. The representative value of the

interval block exhibiting the highest pheromone concentration is then returned as the final
result of the hyperparameter optimization. Subsequently, the process advances to Step 9.
If not, continue with the KCS optimization.

Step 4. Optimal selection. The optimal selection rule is implemented. The objects of
conditional judgment do not include probability values where the size of the corresponding
subinterval is less than or equal to the precision of the hyperparameter. Finally, it returns
the updated search space, pheromone matrix, and selection probability matrix.

Step 5. Worst elimination. The worst elimination rule is implemented. The objects of
conditional judgment do not include probability values where the size of the corresponding
subinterval is less than or equal to the precision of the hyperparameter. Finally, it returns
the updated search space, pheromone matrix, and selection probability matrix.

Step 6. Search plan. Based on the selection probability matrix and roulette, determine
the interval blocks that each ant will search in this iteration. The search plan is represented
as:

Ak =
[
ISij (k)

]
m×K ,

(
i= 1,2,...,m;j = 1,2,...,K ;k= 1,2,...,n

)
. (12)

Moreover, a set of representative values is calculated for the interval blocks to be
searched. In this article, the median of the subinterval is used as the representative value.
These values serve as hyperparameters, playing a crucial role in both the initialization and
the training processes of the model.

Step 7. Calculate fitness. Under the given hyperparameters, the sliding window
mechanism is employed to extract the feature data and the label data, represented as:

Dfeature =
{
d1,d2,...,dt ,...,dLin |dt = xt1,xt2,...,xtMin

}
,

Dtargets=
{
dLin+1= xt ′i1 ,xt ′i2,...,xt ′iMout |ij ∈ {1,2,...,Min},t ′= Lin+1

}
where Lin is the length of the input window for the time series,Min is the number of input
features, and Mout is the number of features to be predicted. Dfeature are substituted into
Equations (6)–(10). The extracted features are then transformed into predicted values using
a fully connected network. Next, the loss function is calculated, and the model parameters
are updated through backpropagation. Finally, the loss function values of the training set
and validation set throughout the entire training process are substituted into Eq. (11). We
obtain the fitness corresponding to the given hyperparameters.

Step 8. Update. The pheromone matrix is updated according to Eqs. (3) and (4).
Subsequently, the selection probability matrix is recalculated using Eq. (5). The process
then returns to step 3.

Step 9. Prediction model. The hyperparameters obtained from step 3 are employed to
define and train the neural network model. Subsequently, the final predictive model is
generated.
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Table 5 Experimental environment.

Item Type

Operating System CentOS 7.9.2009
CPU Intel(R) Xeon(R) Bronze 3204 @ 1.90 GHz
GPU NVIDIA Tesla V100 (32G)
Deep Learning Frame Pytorch 2.0.0
Acceleration Library CUDA 11.7+cuDNN 8.9.0

EXPERIMENT
This section delves into the experimental aspect of the proposed model. ‘Experimental
Details’ offers a detailed explanation of the experimental environment, parameter
configurations, and the results of optimization, etc. ‘Results and Analyses’ provides a
comprehensive description and analysis of the comparative experimental outcomes.

Experimental details
Experimental environment
All the models were trained/tested in the same experimental conditions, and detailed
configuration is given in Table 5.

The processing of data
We have selected 1-minute cycle K-line fitting price spread data as the experimental data to
test the performance of the proposed forecasting model. And the price spread data for each
period (1 min) consists of eight features, including the opening price spread, the highest
price spread, the lowest price spread, the closing price spread, MACD, DEA, DIF, and the
price spread fluctuation (See ‘Data description’). Among these features, the closing price
spread is our target for prediction. In all experiments, the datasets (190,000 min) have
been split into a training set (128,000 min), a validation set (30,000 min) and a test set
(32,000 min) in chronological order.

Each data is normalized to the range of 0 to 1 when the characteristic data is input
into the artificial neural network. It reduces the effects of noise, ensuring that neural
networks update parameters efficiently and speed up the training of the network. We use
the following formula for normalization.

x (t )=
x (t )−xmin

xmax−xmin
(13)

where xmin and xmax are the minimum and maximum values of each feature in the training
set respectively. Since the data is normalized during the model training phase, the output
of the test set can be restored by the formula x (t )= x(t )′(xmax−xmin)+xmin, where x(t )′

is the output value of the forecasting model.

Metrics
Four error measures are adopted to assess the performance of the proposed models with
more accuracy, including mean square error (MSE), symmetric mean absolute percentage
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error (sMAPE) and root relative square error (RSE). They are calculated as follows:

eMAE =
1
n

n∑
t=1

∣∣ŷt −yt ∣∣ (14)

eMSE =
1
n

n∑
t=1

(
ŷt −yt

)2 (15)

esMAPE =
100%
n

n∑
t=1

∣∣ŷt −yt ∣∣(∣∣yt ∣∣+ ∣∣ŷt ∣∣)/2 (16)

eRSE =

√√√√∑n
t=1
(
yt − ŷt

)2∑n
t=1
(
yt −y

)2 . (17)

In the above formula, yt represents the original value of the moment t, ŷt represents the
predicted value of the moment t, and n is the total number of test samples. If the values of
MAE, MSE, sMAPE, and RSE are smaller, the deviation between the predicted value and
the original value is also smaller.

Besides the aforementioned indicators, we utilized two conventional evaluation metrics
defined as:
• Empirical Correlation Coefficient (CORR):

ecorr =
∑n

t=1
(
ŷt − ŷ

)(
yt −y

)√∑n
t=1
(
ŷt − ŷ

)2√∑n
t=1
(
yt −y

)2 (18)

which is used to test the degree of association between two variables,
• Symbol Accuracy (SA):

eSA=
100%
n−1

n−1∑
t=1

zt (19)

where zt =
{
1, if

(
yt+1−yt

)(
ŷt+1−yt

)
> 0

0, if
(
yt+1−yt

)(
ŷt+1−yt

)
< 0 ,y =

1
n
∑n

t=1yt ,ŷ =
1
n
∑n

t=1ŷt . For both CORR and SA,
a higher value indicates better performance.

Model construction and hyperparameter tuning
All of our experiments use the Adam optimizer to optimize the parameters of model. The
mean square error (MSE) is chosen as the loss function of model, and the batch size is 512.

In our KCS-LSTM network, the LSTM model includes an LSTM layer and a fully
connected layer, beyond the input and output layers. To ensure a solid fit between the
LSTM model and our data, the KCS-LSTM network optimizes the hyperparameters of
the LSTM model using the KCS algorithm. We analyzed some research article (Greff et al.,
2016; Ding & Qin, 2020) on the selection of hyperparameters for the LSTM model. The
learning rate and the number of parameters in the model are crucial hyperparameters,
as confirmed by our experimental results. Therefore, we ultimately decided to select five
hyperparameters as optimization targets, including the initial learning rate, the number of
neurons in each hidden layer (LSTMand FC), the time step of the input window, and epoch.
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Table 6 The details of KCS-LSTM network.

Parameters Values

The number of ants 20/10*

K 5
Pbest 0.9
Pworst 0.01
α 2
The number of iterations 50

Notes.
*When the search space changes, the number of ants is 20, otherwise it is 10.

In addition, considering the constraints of the experimental conditions, we have defined
a suitable range for hyperparameter search: the learning rate is between [0.001,0.01], the
number of neurons in both the LSTM and Fully Connected layers is between [1,150], the
time step is between [2,60], and the epoch is between [10,100]. More details of network
components are provided in Table 6.

Figure 6 provides a visualization of the search space alterations throughout the iterative
process. The x-axis represents the iteration count, with the current hyperparameter value
range being recorded every fifth iteration. The y-axis, represented by the shaded region,
corresponds to the feasible value interval. Table 7 provides a quantitative representation
of the aforementioned content, with data recorded every tenth iteration. As depicted in
Fig. 6 and Table 7, the optimization process for the search space is primarily driven by the
worst elimination rule, with the optimal selection rule playing a secondary role in inducing
changes. It can effectively mitigate the potential negative impact on search results that
could arise from the weak representativeness of interval representative values.

Figure 7 illustrates the changing distribution of fitness values for the sample points
throughout the iterative process. Each subplot’s caption indicates the iteration count and
the number of sample points included. Note that each iteration consists of 20 sample points.
Fitness values that exceed the range of the x-axis are not shown in the figure. Furthermore,
to facilitate representation, a logarithmic scaling transformation has been applied to the
fitness values. As illustrated in Fig. 7, in the first iteration of the random search, the fitness
of the 20 sample points has only 70% of the sample values within [−3.3, −2.7], whose
distribution center is around −3. The remaining 30% of the sample values are higher
than −2.7. As the search process progresses, the center of the fitness distribution of the
sample points, obtained by semi-random sampling relying on pheromones, shifts towards
a smaller value of −3.2. The distribution transitions from being sparse to becoming more
concentrated. It demonstrates the KCS algorithm’s effectiveness in optimizing the search
space.

Table 8 shows the optimal hyperparameters obtained for the KCS-LSTM network.

Results and analyses
This part validates the effectiveness of the novel fitness function. And we conducted a
comparative analysis of the predictive performance between KCS+LSTM, which employs
the MSE value of the validation set as its fitness function, and KCS-LSTM, whose fitness
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Figure 6 The optimization process of the search space based on KCS-LSTM algorithm.
Full-size DOI: 10.7717/peerjcs.2215/fig-6

function is computed as described in ‘ Fitness function’. It is worth noting that the
KCS+LSTM network incorporates two dropout layers to mitigate overfitting. From Table 9
and Fig. 8, the adoption of the new fitness function resulted in superior performance
for KCS-LSTM. Consequently, we ascertain that the implementation of the new fitness
function is meritorious.

We also compare the prediction results of several models to validate the comprehensive
performance of the proposed method, including the traditional models like BP and RNN
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Table 7 The process of change in the value range of hyperparameters.

Iteration
number

Range of hyperparameter values

Learning rate Epoch nH1 nH2 Time step

0 [0.001,0.01] [10,100] [1,150] [1,150] [2,60]
10 [5.90× 10−3, 7.12× 10−3] [10,35]

[60,100]
[1,38]
[53,150]

[1,109] [2,17]
[37,60]

20 [5.82× 10−3, 6.40× 10−3]
[6.53× 10−3, 6.78× 10−3]
[6.87× 10−3, 7.12× 10−3]

[90,100] [1,38]
[53,83]
[116,150]

[23,41] [7,12]

30 [6.13× 10−3, 6.40× 10−3]
[6.53× 10−3, 6.78× 10−3]
[6.87× 10−3, 7.12× 10−3]

[90,92]
[95,100]

[1,24]
[53,83]
[116,137]

[30,33] [7,9]
[10,12]

40 [6.57× 10−3, 6.75× 10−3] [90,91]
[95,98]
[98,100]

[116,130]
[132,137]

[30,32]
[32,33]

[10,11]

50 [6.65× 10−3, 6.75× 10−3] [90,91]
[95,97]
[98,99]

[116,124]
[125,130]
[134,137]

[30,31]
[31,32]
[32,33]

[10,11]

Figure 7 The process of fitness distribution changes in the search space. (A) * iterations 1(14) denotes
the distribution of 14 sample points in the first iteration of search. (B)** We have made an adjustment to
fitness to make the results more intuitive: x = log10(Fitness).

Full-size DOI: 10.7717/peerjcs.2215/fig-7
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Table 8 Results of hyperparametric optimization.

Parameter Search range Optimal
value

Learning rate [0.001,0.01] 0.006718
Epoch [10,100] 95
Neuron numbers in the LSTM layer [1,150] 120
Neuron numbers in the fully connected layer [1,150] 30
Time step [2,60] 11

Table 9 Comparison of prediction measures of different models.

Model Metric

MSE MAE sMAPE RSE CORR SA

KCS-LSTM 4.1432 1.0966 0.0216 0.0691 0.99762 0.4949
ACO-LSTM 4.3614 1.2492 0.0245 0.0709 0.99777 0.4039
KCS-RNN 5.0949 1.2717 0.0247 0.0767 0.99724 0.4479
ACO-RNN 4.6749 1.2516 0.0245 0.0734 0.99759 0.4160
ACO-BP 6.5208 1.6372 0.0327 0.0867 0.99660 0.4387
BP 5.7137 1.4748 0.0282 0.0812 0.99714 0.4532
Informer 19.1286 3.5976 0.0782 0.1483 0.99602 0.3584
LSTNet 15.0160 3.1355 0.0625 0.1315 0.99677 0.3717
SCINet 4.3147 1.2676 0.0248 0.0705 0.99752 0.4444
KCS+LSTM 11.5543 2.8504 0.0622 0.1155 0.99782 0.3568
IMP 4.0% 12.2% 11.9% 2.0% – 9.2%

Notes.
aThe best results are highlighted with bold underline and second best results are shown in italic bold.
bIMP shows the improvement of KCS-LSTM over the best model.

for TSF, a variant of RNN called Long- and Short-term Time-series network (LSTNet)
(Lai et al., 2018), a variant of Transformer called Informer, and a variant of TCN called
SCINet. They cover the primary classes of artificial neural networks in the field of TSF and
will be used as baseline models to validate the predictive capability of our models. The
main experimental results are shown in Table 9 and Fig. 9. In the task of short-term time
series forecasting of arbitrage spreads, KCS-LSTM demonstrates superior performance
compared to other time series forecasting models.

To be specific, BP is an early artificial neural network model applied to time series
forecasting. In the experiment, the same hyperparameters were used as those optimized for
the LSTMmodel by theKCS algorithm.However, from the prediction curves and evaluation
metrics, the prediction of BP is not accurate enough. It validates that the structure of LSTM
has a superior advantage in simulating spread data. As for the RNN model, which is the
earliest form of recurrent neural network, we also conducted hyperparameter optimization
on it using the KCS algorithm. KCS-LSTM still has better performance. Moreover, we
have also tested LSTNet, Informer, and SCINet on the arbitrage spread dataset. As can
be seen from Table 9, compared with a transformer-based method like Informer, the
LSTNet method based on RNN and 2D convolution produces better forecasting results.
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Figure 8 Comparison between prediction results of KCS-LSTM and KCS+LSTM. KCS+LSTM network
utilizes the MSE value of the validation set as its fitness function and integrates two dropout layers within
its LSTM network.

Full-size DOI: 10.7717/peerjcs.2215/fig-8

One of the primary reasons (Greff et al., 2016) is that, for short-term forecasting, the recent
data points are typically more crucial for accurate forecasting. However, the permutation
invariant self-attention mechanisms used in Transformer-based methods do not pay much
attention to such key information. In contrast, the general sequential model (RNN/TCN)
can easily formulate it. As another prediction method, SCINet outperforms the LSTNet
method. Finally, it is worth noting that KCS-LSTM outperforms BP, KCS-RNN, LSTNet,
Informer, and SCINet on MSE by 27.5%, 18.7%, 72.4%, 78.3%, and 4.0%, respectively.
Our prediction model achieves the best prediction results. Our model also achieves the
best results on MAE, sMAPE, and RSE, with improvements of over 45% compared to
LSTNet and Informer, but only 13.5%, 12.9%, and 2.0% on SCINet. It is clear that our
model is only slightly better than SCINet. However, the complexity of LSTM is much lower
than that of SCINet, so our optimization method is effective. The experimental results of
KCS-RNN, which are close to various metrics of SCINet, further validate this conclusion.
Furthermore, our conclusions can be supported by the SA, which shows the accuracy of
the forecasts in predicting the direction of change compared to the actual spread data. Our
model improves by 9.2%, 10.5%, 33.1%, 38.1%, and 11.4% compared to other prediction
models. This indicates that our prediction model is superior in determining the direction
of spread change. Finally, we also use the traditional ACO algorithm to optimize the LSTM
network. Our model improves the MSE by 5%.When optimizing the RNN, ACO improves
by 8.2% compared to KCS. Both models are relatively small, but ours is more advantageous
in selecting the number of populations and iterations.
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Figure 9 Comparison between prediction results of different model.
Full-size DOI: 10.7717/peerjcs.2215/fig-9

CONCLUSION
This article presents a novel network for predicting arbitrage spread movements called
K-fold Cross-Search optimized Long Short-Term Memory (KCS-LSTM). The network
uses the K-fold Cross-Search (KCS) algorithm to adaptively tune the hyperparameters
of the LSTM network. This process reduces the influence of personal factors on the
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predictivemodel and enhances its accuracy. The random search in the KCS hyperparameter
optimization algorithm is based on the pheromone feedback mechanism of the ACO
algorithm. The method introduces a transformation mechanism for the search space and
an iterative updating mechanism, reducing reliance on population size and the randomness
in the number of iterations required. The novel algorithm will approach the global optimal
solution by gradually eliminating unpromising regions. In addition, the novel fitting
functions are designed to enhance the generalisation ability of the hyperparametric
optimization network. Additionally, this article evaluates the performance of KCS-LSTM
using actual arbitrage spread data for rebar and hot-rolled coil. In the analysis of six
quantitative metrics (i.e., MSE, MAE, sMAPE, RSE, CORR, and Symbolic Accuracy),
the comparison with several mainstream artificial neural network models in time series
forecasting shows that the proposedKCS-LSTMnetwork has high effectiveness in predicting
the movement of arbitrage spreads.

In an increasingly competitive arbitrage market, the KCS-LSTM model can effectively
exploit the forecasting potential of LSTM and achieve high-precision arbitrage spread
prediction, which can improve the competitiveness of arbitrage strategies. The ability of
network to efficiently handle time series data has a certain application value for other
time series problems. Furthermore, there are some limitations that need to be considered
in future research. Firstly, the model proposed in this article can achieve short-term
forecasting of arbitrage spread, but its medium-term and long-term forecasting abilities
need improvement. Secondly, this article considers statistical indicators of predicted
outcomes but does not study financial indicators when combined with trading strategies.
Therefore, in the upcoming research, additional network structures can be explored to
enhance the long-term prediction of arbitrage spread. Future predictive models will be
validated through live trading with the trading strategy.
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