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Abstract
Manymodern cryptographic primitives for hashing and (authenticated) encryption make use
of constructions that are instantiated with an iterated cryptographic permutation that operates
on a fixed-width state consisting of an array of bits. Often, such permutations are the repeated
application of a relatively simple round function consisting of a linear layer and a non-linear
layer. These constructions do not require that the underlying function is a permutation and
they can plausibly be based on a non-invertible transformation. Recently, Grassi proposed
the use of non-invertible mappings operating on arrays of digits that are elements of a finite
field of odd characteristic for so-called MPC-/FHE-/ZK-friendly symmetric cryptographic
primitives. In this work, we consider a mapping that we call γ that has a simple expression
and is based on squaring.We discuss, for the first time, the differential and linear propagation
properties of γ and observe that these follow the same rules up to a relabeling of the digits.
This is an intriguing property that, as far as we know, only exists for γ and the binary
mapping χ3 that is used in the cryptographic permutation Xoodoo. Moreover, we study the
implications of its non-invertibility on differentials with zero output difference and on biases
at the output of the γ mapping and show that they are as small as they can possibly be.
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1 Introduction

The round functions in cryptographic permutations of the type Substitution-Permutation Net-
works (SPN) consist of a non-linear layer and a linear layer. These layers are chosen and
combined so that there is no exploitable differential propagation from input to output or
exploitable correlations between input and output when used in the context of a construction
like the sponge or duplex construction [1], Farfalle [2] or Even-Mansour [3]. The relevant
properties of these mappings over binary fields have been studied extensively, leading to
solid designs. However, in the last years there has been a growing interest in similar func-
tions operating on arrays of digits that are elements of a field of odd characteristic. For
instance, Kölbl et al. designed a ternary cryptographic hash function called Troika [4]. Other
examples are the symmetric primitives defined over Fn

p like MiMC [5], GMiMC [6], Posei-
don [7], Ciminion [8], and many others. These are designed to be efficient in the context
of Secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and
Zero-Knowledge proofs (ZK).

There are interesting differences between fields F2d of characteristic 2 and those of odd
characteristic that we will denote by Fq . For instance, addition and subtraction are the same
in F2d , but this is not the case in Fq . In F2d , squaring is a linear operation, whereas in Fq

squaring is a non-linear operation. In F2, correlations between input and output bits have
values that are rational and range from −1 to 1, but in Fp , correlations are complex numbers
inside the closed unit disk.

This work investigates a mapping over Fn
q that was recently proposed by Grassi [9] and

that we call γ . This is the mapping defined over Fn
q by γi (x) = xi + x2i+1 for i ∈ Z/nZ and

for all x ∈ F
n
q .

The paper is organized as follows. Section 2 deals with commonly used notation and
conventions that we follow. In Section 3 we recall the basic notions from differential crypt-
analysis. An overview of correlation analysis is presented in Section 4. In Section 5 we apply
this existing theory to the squaring transformation and derive its DP and LP values. Based on
the squaring transformation, wemotivate the choice for γ in Section 6. Themain contribution
of this paper lies in Sections 7 and 8, where we study the differential and linear propagation
properties of γ , both in the forward and backward direction. Our results are useful in deter-
mining the maximum probabilities of differentials and differential trails over transformations
making use of γ in their round function, as in computer-assisted trail search [10]. Moreover,
as the differential and linear propagation properties of γ follow the same rules, our results are
also useful to study the correlations of linear approximations and linear trails. In Section 9 we
study the collision probability and bias of linear combinations of output digits of γ . Finally,
we conclude in Section 10.

2 Notation and conventions

We denote by Fq the finite field of odd characteristic p, i.e., q is equal to pd for some odd
prime p and positive integer d > 0. Let Fn

q be the vector space of dimension n over the
finite field Fq . Given two vectors x, y ∈ F

n
q , we denote their vector subtraction by x − y, i.e.,

x− y = x+(−1)y. A vector x ∈ F
n
q is indexed by the setZ/nZ. We denote its i th coordinate

by xi and call it a digit. The dot product between x and y is defined as x�y = ∑n−1
i=0 xi yi .

We write ei for the vector with all digits equal to 0, except for the digit that is indexed by
i , which is equal to 1. The linear span of a set of vectors S ⊆ F

n
q is denoted by Span(S). A
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digit is said to be active if it is non-zero. The Hamming weight HW(x) of a vector x ∈ F
n
q

is the number of active digits in the vector.
Let z ∈ C be a complex number. We denote its absolute value as |z|. We write z for its

complex conjugate.
Let F be a field, then we write F∗ for its multiplicative group F \ {0}.

3 Differential analysis

First published by Biham and Shamir in [11], differential cryptanalysis is a chosen-plaintext
attack that exploits the non-uniformity of the distribution of differences at the output of a
transformation when it is applied to pairs of inputs with a fixed difference.

Any successful theory of cryptanalysis needs to address the problem of secret key trans-
lation. Differential cryptanalysis deals with this problem by considering differences, which
are invariant under translation. Let x ∈ F

n
q and x∗ ∈ F

n
q be inputs of a transformation

α : Fn
q → F

n
q and let their difference be a = x∗ − x . Likewise, let y ∈ F

n
q and y∗ ∈ F

n
q be

outputs of α and let their difference be b = y∗ − y. The (ordered) pair (a, b) ∈ F
n
q ×F

n
q con-

taining the input and output difference is called a differential over α. The differential (0, 0) is
called trivial. The differential probability (DP) of a differential (a, b) over the transformation
α is defined as

DPα(a, b) = q−n
∣
∣
∣{x ∈ F

n
q : α(x + a) − α(x) = b}

∣
∣
∣ .

If DPα(a, b) > 0, we say that a and b are compatible differences over α. For compatible
differences a and b, we define the weight of a differential (a, b) over α as

wα(a, b) = − logq(DPα(a, b)) .

A non-trivial differential (a, b) over α can only lead to a distinguisher if DPα(a, b) dif-
fers significantly from q−n , which is the expected DP of any non-trivial differential over a
randomly selected transformation of Fn

q .

4 Correlation analysis

Correlation analysis of cryptographic primitives effectively is Fourier analysis on finite
abelian groups. As such, the theory is well-understood and this section serves as a recap.
The ideas that we present here are based on the works of Daemen [12], Baignères et al. [13],
and Daemen and Rijmen [14]. Many of the proofs can be found in the book by Hou [15].

4.1 Characters

Let (G,+) be a finite abelian group and let e be the (finite) exponent of G, i.e., the smallest
integer n such that na = 0 for all a ∈ G.

A character of G is a homomorphism from G into the subgroup of C∗ consisting of the
eth roots of unity. The set of characters of G is denoted by Ĝ and it forms a group under the
multiplication defined by (χχ ′)(a) = χ(a)χ ′(a) for all a ∈ G and χ, χ ′ ∈ Ĝ. The groups
G and Ĝ are isomorphic, but this isomorphism is not canonical.
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For a fixed isomorphism between G and Ĝ and for each a ∈ G, we write χa for the image
of a under this isomorphism. In particular, the character χ0 that is defined by χ0(a) = 1 for
all a ∈ G is called the trivial character and it is the identity element of the group Ĝ.

Now, let (G,+, ·) be the commutative ring that is obtained by introducing a multiplicative
structure onG. This is always possible by the fundamental theorem of finite abelian groups. A
character χ ∈ Ĝ is called a generating character for G if χa(b) = χ(ab) for all a, b ∈ G. If
a commutative ring has a generating character for its additive group, then χa(b) = χ(ab) =
χ(ba) = χb(a). In the case that G is the direct sum of n copies of a commutative ring R
and if R has a generating character, say φ, then we obtain a generating character χ for G by
setting χ(a1, . . . , an) = φ(a1) · · · φ(an). It holds that χa(b) = χ(ab) = φ(a�b), where the
multiplication in G is defined component-wise.

As an example, consider G equal to Fq and put ω = e2π i/p. Let Tr : Fq → Fp be the

absolute trace function that is defined by Tr(x) = ∑d−1
i=0 x pi . This is a linear mapping. Each

u ∈ Fq defines a generating character χu for Fq that is defined by

χu(x) = ωTr(ux), x ∈ Fq .

As a second example, consider G equal to F
n
q , which is a direct sum of n copies of Fq .

Hence, each u ∈ F
n
q gives a generating character χu for Fn

q that is defined by

χu(x) = ωTr(u�x), x ∈ F
n
q .

4.2 The Fourier transform

Consider the set L2(G) of functions f : G → C. Fix an ordering of the elements of G, e.g.,
G = {a0, . . . , an−1}. We write υ f = ( f (a0), . . . , f (an−1)) for the finite sequence of the
output values of f . By identifying a function f with the vector υ f ∈ C

|G|, L2(G) can be
seen as a finite-dimensional complex inner product space with inner product

〈 f , g〉 =
∑

a∈G
f (a)g(a), f , g ∈ L2(G) .

For any f ∈ L2(G), the inner product induces a norm by setting

‖ f ‖ = 〈 f , f 〉 1
2 .

Thestandardbasisof L2(G) is formed by the set ofDirac delta functions {δa ∈ L2(G) : a ∈ G},
which are defined by

δa(b) =
{
1 if a = b ,

0 if a �= b .

In the context of correlation analysis, the solution to the problem of secret key translation
lies in changing the basis of L2(G) to the set of characters of G. For any a, b ∈ G, the
corresponding characters satisfy 〈χa, χb〉 = |G|δa(b). By normalizing the characters, we
obtain an orthonormal basis


G = {φa : a ∈ G} ,

123



Cryptography and Communications

where φa = |G|− 1
2 χa . By projecting f onto 
G , we find that

f =
∑

a∈G
〈 f , φa〉φa .

The operator F : L2(G) → L2(G) that is defined by F( f )(a) = 〈 f , φa〉 for all a ∈ G
is called the Fourier transform. By identifying a function f with υ f , the Fourier transform
is best described as assigning to f its coordinates in the normalized character basis. The
Plancherel theorem asserts that the Fourier transform is unitary, i.e., we have

〈F( f ),F(g)〉 = 〈 f , g〉, f , g ∈ L2(G) .

Let us return to the question of how to address the problem of secret key translation. Let
b ∈ G. We define the translation operator Tb : L2(G) → L2(G) by (Tb f )(a) = f (a + b)
for all a ∈ G. Moreover, we define the modulation operator Mb : L2(G) → L2(G) by
(Mb f )(a) = φb(a) f (a) for alla ∈ G. The big insight is that translation turns intomodulation
when changing from the standard basis to the normalized character basis, i.e.,

Tb = F−1 ◦ Mb ◦ F, b ∈ G .

Let H be a finite abelian group and let F : G → H be a mapping between G and H . We
want a representation of F in L2(G). To that end, let χ be any character of H . We take as
representation the function χ ◦ F ∈ L2(G).

4.3 Correlation

We now specialize to the case that G and H are each equal to the vector space Fn
q over the

finite field Fq .
Let α : Fn

q → F
n
q be a transformation of Fn

q . We consider pairs (u, v) ∈ F
n
q × F

n
q that we

call linear approximations of α. We refer to u as the output mask and to v as the input mask.
The linear approximation (0, 0) is called trivial. The correlation of the linear approximation
is defined as

Cα(u, v) = q− n
2 F(χu ◦ α)(v) .

We call the masks u and v compatible over α if Cα(u, v) is nonzero. In general, correlations
are complex numbers. The linear potential (LP) is a real number and related to a correlation
by

LPα(u, v) = Cα(u, v)Cα(u, v) .

If u and v are compatible over α, then we can define the weight of the linear approximation
(u, v) as

wα(u, v) = − logq(LPα(u, v)) .

5 The squaring transformation

The squaring transformation β : Fq → Fq is defined by x 
→ x2 for all x ∈ Fq . Because we
study the case of odd characteristic, β is non-linear. We show that β has the property that the
maximal DP over all non-trivial differentials is q−1, which is the smallest possible value. A
similar property holds for the maximal LP over all non-trivial linear approximations. In other
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words, we show that β is a bent polynomial [16]. Note that this is an improvement from the
case of characteristic 2, for which these values are both equal to 2q−1 and are obtained by,
respectively, almost perfect nonlinear and bent functions [17].

First, by applying Theorem 5.33 from [18], we obtain that the correlation of any linear
approximation (u, v) ∈ Fq × Fq with u �= 0 of β is equal to

Cβ(u, v) = q− 1
2F(χu ◦ β)(v)

= q−1
∑

x∈Fq
χ1(ux

2 − vx)

=
{
q− 1

2 (−1)d−1χ1(−v2(4u)−1)η(u) if p ≡ 1 (mod 4) ,

q− 1
2 (−1)d−1idχ1(−v2(4u)−1)η(u) if p ≡ 3 (mod 4) ,

where η(u) = 1 if u is a square in Fq and −1 otherwise. It follows that for all u, v ∈ Fq

with u �= 0 we have LPβ(u, v) = q−1. In particular, choosing v equal to zero shows that
any linear combination of output digits of β is imbalanced, i.e., the distribution of this linear
combination is non-uniform. If u is 0, then for all nonzero v ∈ Fq we have LPβ(0, v) = 0,
and LPβ(0, 0) = 1.

Second, consider the equation that relates the input x ∈ Fq , the input difference a ∈ Fq ,
and the output difference b ∈ Fq , i.e.,

b = β(x + a) − β(x)

= (x + a)2 − x2

= x2 + 2ax + a2 − x2

= 2ax + a2 .

Assuming that a �= 0 and because the characteristic of Fq is odd, we can solve for x to find
that x = (2a)−1(b − a2). Hence, there is exactly one solution to this equation. Dividing
by the domain size, q , then shows that DPβ(a, b) = q−1. In particular, any nonzero input
difference can propagate to a zero output difference. If a is 0, then for all nonzero b ∈ Fq ,
we have DPβ(0, b) = 0 and DPβ(0, 0) = 1.

We summarize these properties to make the symmetry between the differential and linear
case apparent:

• For all a, u ∈ (Fq)
∗ and b, v ∈ Fq , we have DPβ(a, b) = LPβ(u, v) = q−1;

• For all b, v ∈ (Fq)
∗, we have DPβ(0, b) = LPβ(0, v) = 0;

• We have DPβ(0, 0) = LPβ(0, 0) = 1.

6 The � mapping

Somemodern block cipher modes, like GCM [19], CTR and OFB [20], do not use the inverse
block cipher. Similarly, constructions like sponge [21], duplex [1], and Farfalle [2], which are
generally based on permutations, do not use their inverse. Therefore, in such constructions
permutations can be replaced by transformations. An example is the GLUON family of
lightweight hash functions [22], which makes use of the sponge construction on top of a
non-invertible map.

A cryptographic transformation can be used as long as collisions and imbalances in the
output cannot be exploited. This can be tackled by either ensuring that such imbalance is
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very small or by limiting the attacker’s access to the input and output of the transformation
by construction. For instance, in the sponge and duplex constructions the attacker has control
of only the outer part of the state and not of its inner part. Therefore, if a collision requires a
difference in the inner part of the state at the input of the transformation, the attacker cannot
inject it with input messages. Similarly, the attacker has no visibility of the inner bits or digits
of any output mask. As another example, whitening keys can be added at input and output,
like in Farfalle [2], Even-Mansour [3], and Elephant [23].

We consider the problem of building a non-invertible mapping based on squaring that can
be used as non-linear layer in the round function of cryptographic transformations. When
such transformations are used in constructions that are usually instantiatedwith permutations,
the non-invertibility of the mapping should be difficult to exploit.

By definition, such a non-linear layer has pairs of distinct inputs that are mapped to
the same output, i.e., collisions. A naive idea would be to apply β to each digit of the state
independently. The problemwith this approach is that each collision forβ is trivially extended
to a collision for the entire non-linear layer, giving rise to differentials with DP as high as
q−1. They are easy to exploit as the adversary needs access to only a single input digit to
generate a local collision. Similarly, any bias in the output of β is trivially present in the
output of the non-linear layer, giving rise to linear approximations with LP as high as q−1.
They are easy to exploit as the adversary needs access to only a single output digit to exploit
them. The measure of both is inversely proportional to the order of the field. Hence, unless
the order of the field is very large, this leads to unacceptable weaknesses in the cryptographic
transformation.

Compared to the above, the non-linear layer in the round function of a cryptographic
transformation should have lower DP and LP and there should not exist local properties that
can be extended to global properties. We achieve this by making the DP of differentials of
the form (a, 0) and the LP of linear approximations of the form (u, 0) small, i.e., equal to
the inverse of the domain size. Moreover, any differential over or linear approximation of the
non-linear layer requires access to every digit of the state.

The work by Grassi [9] presents an analysis of a number of mappings based on β that
minimize the probability of a collision in their output. We consider one of these mappings
and call it γ . Concretely, the mapping γ : Fn

q → F
n
q is defined, for all x ∈ F

n
q , by

γi (x) = xi + x2i+1, i ∈ Z/nZ .

The remainder of this text is concerned with an analysis of the differential and linear propa-
gation properties of γ .

7 Differential propagation properties of �

Let (a, b) ∈ F
n
q × F

n
q be a differential over γ and let x ∈ F

n
q be an input of γ . The equations

that relate the input difference a and the output difference b are of the form

bi = ai + a2i+1 + 2ai+1xi+1, i ∈ Z/nZ . (1)

We consider two cases in the analysis of these equations. In the first case, we fix the input
difference a and give a description of the set of compatible output differences b. From this,
we are able to deduce that DPγ (a, b) depends only on a and whether b is compatible with a
or not.
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In the second, reverse case, we fix the output difference b and present an algorithm for the
computation of the set of compatible input differences a. We then derive an expression of
the so-called minimum reverse weight of this set. All these results can be directly applied to
perform computer-aided trail search, as described in [10], in cryptographic transformations
instantiated with γ as the non-linear layer.

7.1 Forward propagation from a given input difference

We observe that for an input difference a, the equations of (1) are linear in the digits of x .
We make this explicit by writing them as a matrix equation of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0
b1
b2
...

bn−2

bn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 + a21
a1 + a22
a2 + a23

...

an−2 + a2n−1
an−1 + a20

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2a1 0 0 · · · 0 0
0 0 2a2 0 · · · 0 0
0 0 0 2a3 · · · 0 0
...

0 0 0 0 · · · 0 2an−1

2a0 0 0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0
x1
x2
...

xn−2

xn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Hence, the set of compatible output vectors b, which we denote by A(a), forms an affine
subspace of Fn

q . By affine subspace we mean the following. Let W be a linear subspace of
F
n
q and let u ∈ F

n
q . The coset u + W = {u + w : w ∈ W } is called an affine subspace of Fn

q
and u is called an offset. The affine subspace A(a) can be described by

A(a) = γ (a) + Span{2ai ei−1 : i ∈ Z/nZ} .

Two cosets u+W and v +W are equal if and only if u−v ∈ W . Therefore, we may add any
linear combination of the basis vectors to the offset without it changing the affine subspace
that is defined. Moreover, we may scale the basis vectors by any nonzero constant. Hence, a
description of A(a) in which the offset has minimal Hamming weight is given by

A(a) = a′ + Span{ei : i ∈ Z/nZ and ai+1 �= 0} ,

where

a′
i =

{
ai if ai+1 = 0 ,

0 if ai+1 �= 0 .

Clearly, the dimension of A(a), which is defined as the dimension of the associated vector
space, is equal to the Hamming weight of a.

We are now ready to give a complete characterization of the distribution of differentials
over γ .

Proposition 1 Let (a, b) ∈ F
n
q × F

n
q be a differential over γ . Then b is compatible with a,

i.e., b ∈ A(a), if and only if, for all i ∈ Z/nZ, we have bi = ai or ai+1 �= 0, in which case
bi can take on any value. Hence,

DPγ (a, b) =
{
q−HW(a) if b ∈ A(a) ,

0 if b /∈ A(a) .

In other words, the DP of a valid differential, and thus its differential weight, is a constant
that depends only on the input difference.
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7.2 Backward propagation from a given output difference

For a given output difference b, the compatible input differences do not form an affine
space. However, we will show in this section how to efficiently generate all compatible input
differences a with wγ (a, b) ≤ W for some weight limit W . To this end, we introduce the
concept of compatible activity pattern. Given a vector x ∈ F

n
q , its activity pattern x̃ is a vector

in F
n
q with x̃i equal to 1 if xi �= 0 and 0 otherwise.

Definition 1 An activity pattern is compatible with b if there exists an input difference a that
is compatible with b and for which ã equals this activity pattern.

The generation of all compatible input differences is done in two phases: in the first
phase, we generate the set of activity patterns compatible with b, and in the second phase, we
determine for each compatible activity pattern the set of compatible input differences with
that pattern.

We generate the compatible activity patterns in a recursive way in Algorithm 1, making
use of the following proposition.

Proposition 2 Given a differential (a, b) over γ , the following properties hold:

1. if ai = 0 and bi−1 = 0 then ai−1 = 0;
2. if ai = 0 and bi−1 �= 0 then ai−1 �= 0.

Proof The two properties immediately follow from (1). We have

bi−1 = ai−1 + a2i + 2ai xi ,

and ai = 0 implies bi−1 = ai−1. ��
In Algorithm 1, we start with an empty list of compatible activity patterns L (line 4) and

a fully unspecified activity pattern ã (line 6). Then we specify whether ãn−1 = 0 (line 6)
or 1 (line 7) (and thus whether an−1 is active or not) and based on this we incrementally
determine the activity of all other digits from an−2 to a0 using the procedure buildActivity.
In this procedure, when ãi = 0 we use Proposition 2 to determine whether ãi−1 = 1 or
0, otherwise we consider both possibilities (lines 16 and 17). When a compatible activity
pattern is fully determined (i.e., when i = 0 is reached) then it is added to list L (line 12).

Given an output difference b and a compatible input activity pattern ã, we generate all
compatible differences with activity ã in Algorithm 2, making use of the following proposi-
tion.

Proposition 3 Given a differential (a, b) over γ , the following properties hold:

1. if ãi = 0, then ai = 0;
2. if ãi = 1 and ãi+1 = 0, then ai = bi ;
3. if ãi = 1 and ãi+1 = 1, then ai can be any value in Fq .

Proof The first property follows from the definition of activity pattern. The other two prop-
erties immediately follow from (1). ��

In Algorithm 2, we start with an empty list of compatible input differences L (line 4) and
a fully unspecified difference a (line 5). We use the symbol ∗ when the activity of a digit is
unspecified. Then we incrementally determine the value of all digits from a0 to an−1 using
the procedure buildDifference. In this procedure, we use Proposition 3 to determine whether
ai = 1 or 0 (lines 10-12 and 16-18). When a compatible difference is fully determined (i.e.,
when i = n − 1 is reached) then it is added to list L (line 10-12).
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Algorithm 1 Generation of input activity patterns compatible with output difference b.
1: Input: difference b ∈ F

n
q at output of γ and limit weight W

2: Output: list L of activity patterns ã compatible with b at input of γ

3:
4: L ← empty
5: ã ← ∗n
6: ãn−1 ← 0; buildActivity(n − 1, ã, b,W )

7: ãn−1 ← 1; buildActivity(n − 1, ã, b,W )

8:
9: procedure buildActivity(i, ã, b,W )
10: if (HW(̃a) > W ) then return � HW is computed on the specified part of ã
11: if (i = 0) then
12: if (̃an−1 = 1 OR b̃0 = ã0) then add ã to L
13: return
14: end if
15: ã′ ← ã
16: if (̃ai = 1 OR b̃i−1 = 1) then ã′

i−1 ← 1; buildActivity(i − 1, ã′, b,W )

17: if (̃ai = 1 OR b̃i−1 = 0) then ã′
i−1 ← 0; buildActivity(i − 1, ã′, b,W )

18: return
19: end procedure

Algorithm 2 Generation of input differences compatible with output difference b and with
activity pattern ã.
1: Input: difference b ∈ F

n
q at output of γ and activity pattern ã

2: Output: list L of input differences compatible with b at input of γ with activity pattern ã
3:
4: L ← empty
5: a ← ∗n
6: buildDifference(0, a, ã, b)
7:
8: procedure buildDifference(i, a, ã, b)
9: if (i = n − 1) then
10: if (̃ai = 0) then a′

i ← 0; add a to L
11: elsif (̃ai = 1 AND ã0 = 0) then a′

i ← bi ; add a to L
12: else for each k ∈ Fq do a′

i ← k; add a to L
13: return
14: end if
15: a′ ← a
16: if (̃ai = 0) then a′

i ← 0; buildDifference(i + 1, a′, ã, b)
17: elsif (̃ai = 1 AND ãi+1 = 0) then a′

i ← bi ; buildDifference(i + 1, a′, ã, b)
18: else for each k ∈ Fq do a′

i ← k; buildDifference(i + 1, a′, ã, b)
19: end procedure

7.3 Computing theminimum reverse weight of an output difference

Given an output difference b, let 
(b) = {a ∈ F
n
q : DPγ (a, b) > 0} be the set of input

differences that are compatible with b. The differentials (a, b) over γ with a ∈ 
(b) can
have different weights. Following [10], the minimum reverse weight of an output difference
b is defined by

wrev
γ (b) = min

a∈
(b)
wγ (a, b) .

We notice that the minimum reverse weight of a difference b at the output of γ is fully
determinedby its activity pattern and its compatible activity patternswithminimumHamming
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weight. In particular, it can be computed as in the following Proposition,which uses the notion
of run.

Definition 2 Given x ∈ F
n
q , a run of length � in x is a sequence of � active digits preceded and

followed by non-active digits, i.e., it satisfies xi , xi+1, . . . , xi+�−1 �= 0 and xi−1 = xi+� = 0
for some i ∈ Z/nZ.

Proposition 4 Given a difference b at the output of γ composed by m runs of lengths � j , with
j = 0, . . . ,m − 1, then

wrev
γ (b) =

m−1∑

j=0

�� j/2� .

Proof For a run starting in position i and of length � in b, the digit ãi+�−1 must be 1. There can
be atmost a single zero digit in between two active digits in the sequence ãi , ãi+1, . . . , ãi+�−1.
It follows that for each run of length � in b, a has at least �/2 active digits if � is even and
(� + 1)/2 if � is odd. ��

8 Linear propagation properties of �

In this section we analyze the correlation properties of the mapping γ , starting with the
correlation of linear approximations of γ .

Proposition 5 Let (u, v) ∈ F
n
q × F

n
q be a linear approximation of γ . We have

Cγ (u, v) =
n−1∏

i=0

Cβ(ui − vi , ui−1) .

Proof If we rewrite the correlation of a linear approximation of γ , we obtain

Cγ (u, v) = q−n
∑

x∈Fnq
ωTr

(
u�γ (x)−v�x

)

= q−n
∑

x∈Fnq
ω
Tr

(∑n−1
i=0 ui (xi+x2i+1)−vi xi

)

= q−n
∑

x∈Fnq
ω
Tr

(∑n−1
i=0 (ui−vi )xi+ui−1x2i

)

= q−n
∑

x∈Fnq
ω

∑n−1
i=0 Tr

(
(ui−vi )xi+ui−1x2i

)

= q−n
∑

x∈Fnq

n−1∏

i=0

ωTr
(
(ui−vi )xi+ui−1x2i

)

=
n−1∏

i=0

q−1
∑

y∈Fq
ωTr

(
(ui−vi )y+ui−1 y2

)

=
n−1∏

i=0

Cβ(ui − vi , ui−1) .

��
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The resulting product from Proposition 5 is non-zero if each of the factors is non-zero.
Note that the correlation is non-zero if ui−1 is non-zero, as was discussed in Section 5.
Additionally, if ui−1 is non-zero, then vi − ui has to be equal to zero to get a non-zero
correlation. In this case it should thus hold that vi = ui . From this reasoning, we can give a
complete characterization of the distribution of linear approximations of γ .

Proposition 6 Let (u, v) ∈ F
n
q × F

n
q be a linear approximation of γ . Then u is compatible

with v, if and only if, for all i ∈ Z/nZ, we have vi = ui or ui−1 �= 0, in which case vi can
take on any value. Hence,

LPγ (u, v) =
{
q−HW(u) if v is compatible with u ,

0 if v is not compatible with u .

Observe that Propositions 1 and 6 are very much alike. Indeed, propagation of differences
and propagation of masks over γ follow similar rules. First, output masks play the role of
input differences and input masks that of output differences. Second, indices are reversed,
i.e., index i in a mask corresponds to index n − i − 1 in a difference, to account for this
change in direction. The following proposition is an immediate consequence.

Proposition 7 Letπ : Fn
q → F

n
q be themapping defined byπi (x) = xn−i−1 for all i ∈ Z/nZ.

Let (u, v) be a linear approximation of γ . We have

LPγ (u, v) = DPγ (π(u), π(v)) .

From this, it follows that we can extend the results obtained in Section 7 to masks. For
a given output mask u ∈ F

n
q , we can build the affine subspace with dimension HW(u) of

compatible input masks over γ as in Section 7.1. Moreover, for a given input mask v ∈ F
n
q ,

the output activity patterns compatible with input masks over γ can be found by applying
Algorithm 1. Using the resulting activity pattern ã and the input mask v, all compatible
output masks u can be obtained as described in Algorithm 2. Note that there can be several
compatible output masks u for a given input mask v. Among them, there will be one realizing
the minimum value of w(u, v). The minimum reverse weight of v is defined as

wrev
γ (v) = min

u:LPγ (u,v)>0
wγ (u, v)

and is determined by the decomposition of v in a sequence of runs, as explained in
Section 7.3.

9 On collision probability and bias

A collision in the output of γ occurs when γ maps a pair of different inputs (x, y) ∈ F
n
q ×F

n
q

to the same output value. Assuming randomly and uniformly selected pairs of inputs, the
probability of a collision is given by

CP(γ ) = q−2n |{(x, y) ∈ F
n
q × F

n
q : x �= y and γ (x) = γ (y)}| .

Translating this into the language of differential analysis, we find that

CP(γ ) = q−n
∑

a∈Fnq\{0}
DPγ (a, 0) .
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Proposition 8 Let a ∈ F
n
q \ {0}. If (a, 0) is a differential with DPγ (a, 0) > 0, then all digits

of a are active and DPγ (a, 0) = q−n.

Proof Let a ∈ F
n
q \ {0} be such that DPγ (a, 0) > 0. The input difference a is compatible

with the output difference 0 if the latter is contained in the affine space A(a). This is the case
if and only if ai �= 0 for i ∈ Z/nZ. Hence, DPγ (a, 0) = q−n by Proposition 1. ��

Clearly, there are (q − 1)n input differences a for which this property holds. Therefore,
we find that

CP(γ ) = (q − 1)nq−2n .

Now, the collision probability of a function that is chosen randomly from the set of functions
from F

n
q to F

n
q is equal to q−n . Hence, the ratio between the collision probability of γ and

that of a random function is equal to (1 − q−1)n . If the order of the field is large, then this
quantity approximates 1.

By symmetry, we obtain a similar result for the bias of any linear combination of output
digits of γ .

Proposition 9 Let u ∈ F
n
q \ {0}. If (u, 0) is a linear approximation with LPγ (u, 0) > 0, then

all digits of u are active and LPγ (u, 0) = q−n.

Clearly, if either q or n is large, then these quantities are very small and it becomes difficult
to exploit them in practice.

10 Conclusion

When searching for trails over an iterated cryptographic transformation as described in [10],
a number of tools are required. These include an efficient method to compute the mini-
mum reverse weight of a given difference (resp. mask), and an efficient method to build
all compatible input differences (resp. output masks) over the non-linear layer for a given
output difference (resp. input mask) and vice versa. In this work we provided such tools
for a mapping based on squaring that can be used as non-linear layer in the construction of
cryptographic transformations of Fn

q . Interestingly, it turns out that for this mapping, masks
and differences follow the same propagation rules. This means that for a cryptographic trans-
formation that uses this mapping as the non-linear layer in its round function, one would need
to only perform either differential or linear trail search while obtaining insights and bounds
for both.
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