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ABSTRACT
This research tackles the critical challenge of BeiDou signal spoofing in vehicular ad-
hoc networks and addresses significant risks to vehicular safety and traffic management
stemming from increased reliance on accurate satellite navigation. The study proposes
a novel hybrid machine learning framework that integrates Autoencoders and long
short-term memory (LSTM) networks with an advanced cryptographic method,
attribute-based encryption, to enhance the detection and mitigation of spoofing
attacks. Our methodology leverages both real-time and synthetic navigational data in a
comprehensive experimental setup that simulates various spoofing scenarios to test the
resilience of the proposed system. The findings demonstrate a significant improvement
in the accuracy of spoofing detection and the robustness of mitigation strategies by
ensuring the integrity and reliability of navigational data. This investigation enhances
the existing body of knowledge by demonstrating the effectiveness of integrating
machine learning with cryptographic techniques to secure VANETs. Ultimately, it
effectively paves the way for future research into adaptive security mechanisms that
can dynamically respond to evolving cyber threats.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Mobile and Ubiquitous Computing, Security and Privacy, Internet of Things
Keywords BeiDou spoofing, VANETs, BeiDou constellation, Cybersecurity, Hybrid machine
learning (autoencoder with LSTM networks), BeiDou trajectory data

INTRODUCTION
Vehicular ad-hoc networks (VANETs) represent a crucial advancement in modern
transportation systems, featuring decentralized communication where vehicles operate
as dynamic nodes (Ahmad et al., 2023). This technology supports real-time information
exchange between vehicles and infrastructure that is crucial for enhancing traffic
efficiency and safety. Direct vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications form the backbone of this system, where the accuracy and reliability of
transmitted data are essential for effective traffic management and accident avoidance. Yet,
VANETs’ dependence on wireless communication protocols exposes them to considerable
security vulnerabilities, largely due to the open nature of wireless media. Cybersecurity
threats (Al-Shareeda & Manickam, 2023) encompass a range of potential attacks from
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passive eavesdropping to active interferences such as spoofing and session hijacking. In
the context of vehicle-to-everything (V2X) where decisions are made in milliseconds, the
need for robust security measures is critical to prevent malicious activities that could lead
to catastrophic outcomes.

The security of VANETs is particularly critical given their potential impact on
human safety. A successful attack could not only compromise personal data but more
gravely disrupt traffic control systems leading to real-world accidents and potentially
fatal outcomes. Ensuring the security of these networks involves safeguarding the
communication links to guarantee that safety-critical information remains untampered
and continuously available in real time.

To address these security concerns, VANETs require stringent cybersecurity measures
focusing on four key areas: confidentiality, integrity, availability, and non-repudiation.
Herewith, this paper focuses on a critical vulnerability in VANETs related to the BeiDou
Navigation Satellite System (BDS) (Li et al., 2022) which is increasingly used for positioning
and navigation in Asian automotive markets. BeiDou spoofing involves generating fake
satellite signals that mislead receivers about their actual location. This type of attack poses
significant risks particularly in the precision-dependent environment where vehicles rely
on exact positioning to make critical driving decisions. Thus, in cybersecurity viewpoint
(i.e., confidentiality, integrity, availability, and non-repudiation) BeiDou spoofing directly
undermines the integrity of the system by feeding incorrect positioning data, which could
lead to erroneous vehicle behavior and decisions. This breach of integrity can disrupt
the availability of accurate navigational data critical for vehicular operations and safety
measures. While confidentiality might seem less directly impacted, the exposure of vehicle
location and movement patterns through spoofed signals can lead to unauthorized data
access. Ultimately, non-repudiation is compromised as spoofing can obscure the source of
misinformation, challenging the attribution of actions within the network and complicating
the enforcement of accountability. For all-inclusive understanding, Table 1 serves as a
comprehensive framework, detailing the vulnerabilities associated with BeiDou spoofing
across various VANET protocols. It systematically classifies the nature of potential attacks,
the security principles they compromise, and their implications on different vehicular
components and communication technologies, underlining the critical need for robust
security measures tailored to each aspect of vehicular communication systems.

Given the decentralized nature of VANETs and the reliance on satellite data the research
further explores the intersection of cybersecurity and advanced navigational technology
to develop countermeasures against BeiDou spoofing. The study leverages emerging
technologies which promise to enhance security resilience. This research study conducts an
extensive analysis to enhance integrated technologies, delivering robust security solutions
that mitigate vulnerabilities caused by BeiDou spoofing. These vulnerabilities include false
vehicle positioning, as shown in Fig. 1, disrupted vehicle navigation, compromised data
integrity, diminished trust in navigational data, elevated risk of vehicular accidents, and
manipulation of traffic flow.

We further explored the use of advanced cryptographic method ‘attribute-based
encryption’ to enhance the security of communication channels. By implementing the
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Table 1 Impact taxonomy of BeiDou spoofing attacks in VANETs.

Protocol Attacks Attacks on Vehicular unit Communication
technology

OSI stack Ease of attack

Geocast and broadcast protocols Message tampering Integrity and data trust Infotainment systems DSRC/WAVE Network Moderate (Joshi, Sichitiu & Kihl, 2022)

Cooperative maneuver planning (CMP) Replay Attacks Authenticity and Identification USB Ports Cellular Transport High (Muzahid et al., 2023)

Cooperative adaptive cruise control (CACC) Sybil Attacks Non-repudiation/Accountability OBD-II Ports Bluetooth Datalink Low (Muzahid et al., 2023)

Emergency Warning Messages (EWMs) Deception Attacks Availability Telematics Wi-Fi/WiMAX Session Moderate (Krishna & Reddy, 2023)

Platooning Protocols Privacy Attacks Confidentiality Electric Vehicle Charging ZigBee Physical High (Leon et al., 2023)

Traffic Flow Management Injection Attacks Integrity and Data Trust Remote Keyless Entry Systems UWB Application Moderate (Hota et al., 2023)

Automated toll payments Eavesdropping attacks Confidentiality V2V communications systems RFID Presentation Low (Jolfaei et al., 2023)

Vehicle platooning GPS/BeiDou spoofing Authenticity Autonomous driving systems Satellite navigation systems Physical High (Mazhar et al., 2024)

Signal dissemination Signal jamming Availability All connected vehicle components Wi-Fi/WiMAX Network High (Karabulut et al., 2023)

Incident detection systems Data manipulation Integrity and data trust Safety monitoring systems DSRC/WAVE Application Moderate (Masood et al., 2023)

Safety message broadcast Identity spoofing Non-repudiation/Accountability Infotainment and safety systems Cellular Session Moderate (Rajeswari & Rajesh, 2023)

Context-aware navigation Timing attacks Integrity Navigation systems Satellite communication Transport Moderate (Micale et al., 2024)

Intelligent traffic light control DoS Attacks Availability Traffic management systems Bluetooth Network High (Gaouar, Lehsaini & Nebbou, 2023)

Adaptive traffic management Man-in-the-Middle Attacks Confidentiality Vehicle communication units Wi-Fi Presentation High (Rajeswari & Rajesh, 2023)
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Figure 1 Signal classification for anti-spoofing in navigation systems. The image illustrates BeiDou
satellite navigation, contrasting accurate localization via solid gray lines and spoofed localization through
dashed gray lines, affecting vehicle guidance on a highway scenario.

Full-size DOI: 10.7717/peerjcs.2419/fig-1

cryptographicmodel, we aimed to secure communication paths by authenticating the data’s
legitimacy and verifying its source, which are key to reducing the acceptance of tampered
satellite signals. These methods are integral in V2V and V2I communications to block the
introduction of erroneous positional data by authenticating digital signatures linked to
each message, thereby preserving the network’s data flow integrity. This authentication
system rapidly identifies and isolates any compromised or counterfeit data introduced
by BeiDou spoofing, thereby ensuring the reliability and security of navigational aids
provided to vehicles within the network. Ultimately, we applied innovative hybrid machine
learning techniques (i.e., Autoencoders and LSTM networks) with an expectation to
improve anomaly detection and enhance the system’s ability to predict and mitigate
spoofing attacks in real time, thereby safeguarding critical transportation infrastructure
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from emerging cyber threats. This approach combines the feature extraction prowess
of autoencoders with the sequential data processing strength of LSTMs. Autoencoders
efficiently compress BeiDou signal data into a compact lower-dimensional space capturing
essential patterns characteristic of normal data. The LSTM leverages this compressed data
to monitor these patterns over time to pinpoint anomalies that are typically indicative of
spoofing which often introduces unusual temporal patterns into the data.

The research paper progresses with a ‘Literature Review’ exploring prior work on
BDS spoofing and VANETs security to highlight critical gaps and the need for robust
anti-spoofing methods. The ‘Proposed Methodology’ section introduces an innovative
framework that merges hybrid machine learning technique with advanced cryptographic
approach. Subsequent rigorous testing in the ‘Experimental Setup and Assessment
Outcome’ led to a ‘Conclusion’ that underscored the importance of the study and proposed
directions for future research to improve security in BeiDou-enabled VANETs.

LITERATURE REVIEW
VANETs serve as a cornerstone for intelligent transportation systems by enabling dynamic
communication between vehicles and traffic infrastructure. These networks facilitate a
range of applications from traffic congestion management to enhanced navigational aids
which collectively improve road safety and optimize vehicle flow (Peixoto et al., 2023).
Central to the functionality of VANETs is the provision of accurate and reliable positioning
information typically sourced from Global Navigation Satellite Systems (GNSS) (Jin et al.,
2024) like GPS and more recently BeiDou. BeiDou’s integration alongside other satellite
systems underpins its growing significance in global navigation offering alternative data
points that enrich the robustness of vehicular navigational capabilities.

Spoofing attacks present a severe threat to the integrity of GNSS where malicious
entities broadcast fabricated signals to deceive GNSS receivers about their actual
geolocation (Yang et al., 2023). Such attacks can severely undermine the safety mechanisms
particularly affecting systems that rely on precise positioning to function effectively—like
collision avoidance systems, cooperative adaptive cruise control, and platooning. These
functionalities depend heavily on the accuracy of GNSS data to maintain proper vehicle
spacing and optimize group maneuvers. Traditional GNSS systems including GPS have
long been known to be susceptible to spoofing, presenting a continued area of concern for
cybersecurity experts.

BeiDou as a relatively newer entrant in the global GNSS framework, face unique
challenges that make it a potentially more susceptible target for spoofing attacks (i.e.,
illustrated in Table 2). Factors such as regional dependence primarily in Asia and
distinct signal structures may contribute to these vulnerabilities. BeiDou operates with
a complex multi-signal architecture that while providing enhanced services and accuracy,
also introduces multiple points of potential exploitation. Unlike GPS which has a well-
established set of anti-spoofing measures, largely accessible to civilian users, BeiDou’s
anti-spoofing features remain less developed and not as widely implemented in civilian
GNSS equipment which could increase its risk profile in V2X applications (AlMarshoud,
Al-Bayatti & Kiraz, 2024).
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Table 2 Anticipated taxonomy of BeiDou spoofing attacks in GNSS for VANETs (Rajendra, Subramanian & Shukla, 2024;Giannaros et al., 2023; Chaouche, Renault
& Boussaha, 2024).

Attack type Exploited vulnerability Likelihood Impact Network model Platform Risk value

Signal replication Signal authenticity High Latency, data corruption Hybrid Urban Extreme

Delay attack Timing synchronization Medium Increased latency, mis-
leading timestamps

Decentralized Highway High

Meaconing Signal strength Low Misleading positional
data

Centralized Suburban Moderate

Record and replay Temporal consistency Medium Path deviation, delay in
critical communications

Mesh Rural High

Nulling Antenna array vulnerabili-
ties

High Complete signal loss,
disruption of service

Distributed Urban & High-
way

Extreme

Cryptographic spoofing Encryption weaknesses Low Breach of data integrity,
privacy issues

Peer-to-Peer All Moderate

Overlay spoofing Signal structure familiarity High Mis-navigation, accident
risk

Ad Hoc Urban Extreme

Composite spoofing Multiple vulnerabilities
(e.g., Signal structure famil-
iarity, Antenna array vul-
nerabilities, Timing syn-
chronization, Temporal
consistency, etc.)

Medium Severe mis-navigation,
critical system failures

Mesh Urban & Subur-
ban

High
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Detection and mitigation of GNSS spoofing attacks encompass a variety of techniques,
each with its own strengths and limitations. Signal strength analysis for instance examines
the power of received signals to identify anomalies indicative of spoofing. Consistency
checks compare the reported positions with known physical constraints or previous data to
detect irregularities. Cryptographic methods enhance security by ensuring the authenticity
of GNSS data through encrypted signals that only legitimate receivers can decode. However,
these techniques often require significant computational resources and are not foolproof
particularly against more sophisticated spoofing strategies that can emulate these attributes
more closely.

The limitations of current spoofing detectionmethods are particularly pronouncedwhen
addressing BeiDou spoofing (Wang et al., 2023). The complex nature of BeiDou’s signal
transmissionmakes it difficult for simple signal strength or consistency checks to accurately
pinpoint spoofing activities. Furthermore, cryptographic solutions while robust involve
complex key management and higher processing demands which can be challenging to
implement effectively in the fast-paced environment of VANETs. In recent years, research
has intensified around enhancing the resilience of GNSS systems against spoofing attacks
with a notable focus on developing more sophisticated detection algorithms that can
handle the nuances of modern GNSS signals (Mina et al., 2024). Studies such as those by
Ivanov, Scaramuzza & Wilson (2024) have explored machine learning approaches to detect
anomalies in GNSS data by learning normal signal patterns and identifying deviations
without the need for extensive signal history which is beneficial for dynamic environments.
However, the adaptation of these technologies to specifically counter BeiDou spoofing
requires further exploration.

Unconventional research efforts have also investigated integrating multi-sensor fusion
techniques that combine GNSS data with other sensory inputs from vehicles to create a
more comprehensive situational awareness that can mitigate the risks posed by spoofed
signals. This approach leverages data from inertial measurement units, radars, and cameras
to corroborate GNSS data thereby enhancing the system’s overall reliability (Mpimis et al.,
2023). Yuan et al. (2023) demonstrated how such integrations could significantly reduce
the impact of GNSS spoofing on vehicular control systems. Despite these advancements the
practical deployment of sophisticated anti-spoofing technologies faces several hurdles. The
integration of advanced security features must not compromise the operational efficiency
of vehicular networks, nor should it impose prohibitive costs. Furthermore, regulatory
and standardization issues particularly concerning the use and dissemination of encrypted
GNSS signals like those provided by BeiDou need to be addressed to facilitate wider
adoption of these technologies in commercial vehicular applications.

Table 3 outlines the BeiDou system’s specifications, highlighting various service volumes
and message types that are crucial for VANET applications. We strongly believe that
understanding this information was key for us in developing a novel BDS spoofing
detection system, as it enabled us to tailor detection algorithm to the specific signals and
vulnerabilities identified, enhancing the precision and reliability of anti-spoofing measures
in real-time vehicular communication environment.
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Table 3 Comprehensive specifications and security features of the BDS in VANETs with focus on anti-spoofing measures (CSNO, 2021).

Feature/Parameter Details

Satellite types GEO, IGSO, MEO
Orbit altitudes GEO:∼35,786 km, IGSO:∼35,786 km, MEO:∼21,528 km
Locations GEO at 80◦E, 110.5◦E, 140◦E; IGSO and MEO variable orbits
Satellite clock High-precision atomic clocks (rubidium/hydrogen maser)
NAV messages Includes satellite mask, orbit correction, clock correction
RNSS open signals B1I, B1C, B2a, B2b, B3I
Services Positioning, Navigation, Timing, Short Message Service
Frequency (MHz) B1-1561.098, B2-1207.14, B3-1268.52, B1C-1575.42
NAV message types Standard positioning service, Precision service
Signal types Encrypted and unencrypted signals
Signal In Space (SIS) Status Healthy, Unhealthy, Marginal
Signal Integrity Flag (SIF) Indications of signal trustworthiness
Data integrity flag (DIF) Validity of transmitted data
Usage constraints Limited in regions with poor satellite visibility
Service Accuracy Position accuracy up to 10 m
Service availability parameters 99.5% availability standard
Compatibility and interoperability Compatible with GNSS systems (i.e., GPS (USA), GLONASS (Russia), Galileo (Eu-

rope))
Coordinate system Uses CGCS2000
Coverage standard Global with enhancements in Asia-Pacific
Constraints Signal blockage in urban canyons, spoofing risks
Message content Includes differential code bias, clock correction
Message types (Decimal) Various types for different services and accuracies, such as:

• Type 10 - Basic Navigation Message: Contains stan-
dard positioning data including satellite clock correc-
tions and ephemeris data, suitable for general navigation.
• Type 11 - Satellite Based Augmentation System (SBAS) Message: Provides
differential corrections and integrity monitoring information to improve accuracy.
• Type 30 - Differential Correction Message: Offers high-accuracy
differential data for precision navigation used in applications
requiring enhanced precision such as automated platooning.
• Type 40 - Integrity Message: Transmits integrity information for
safety-critical applications, ensuring the reliability of the data received.
• Type 50 - Precision Orbit and Clock Data Message: Provides
highly accurate orbit and clock correction data, essential for
precise applications like high-speed vehicular control systems.
• Type 60 - Atmospheric Correction Message: Delivers atmospheric delay
corrections, which are crucial for improving accuracy in varied climatic conditions.

Positioning accuracy 10 m (standard), 2 m (differential)
(continued on next page)
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Table 3 (continued)

Feature/Parameter Details

Convergence time Time required for initial accurate fix, such as:
• Standard Positioning Service (SPS): Typically requires 30 to 60 s to achieve
an initial fix with an accuracy of about 10 m. This service is suitable for
general navigation and less time-sensitive applications within VANETs.
• Differential Positioning Service: Convergence time is significantly reduced
to about 10 to 30 s, providing enhanced positional accuracy up to 2 m. This is
critical for applications requiring higher precision and faster response times.
• Precision Positioning Service: Offers the fastest convergence, usually under 10 s,
with sub-meter accuracy. This service is ideal for safety-critical and high-precision
applications in VANETs, such as autonomous driving and emergency response
maneuvers.

Performance standard Standards defining expected signal performance for factors, such as, Positioning
accuracy (global, regional, and precision services), Timing accuracy (20 nanosec-
onds), Availability (global availability, regional enhancement), Reliability (ensuring
performance standards are met 99.99% of the time), Signal integrity (programmed
to provide warnings within six seconds of detecting a signal anomaly or failure).

Service volume Spatial region where services are required to be guaranteed, such as:
Global Service Volume
• Latitude Range: Between±55 degrees globally
• Longitude Range: Full global coverage
• Altitude: Up to 36,000 kilometers
• Coverage: Provides baseline positioning, navigation, and timing services
globally with varying degrees of accuracy, typically around 10 m.
Enhanced Regional Service Volume
• Targeted Regions: Asia-Pacific region
• Latitude Range: Between±55 degrees focusing on the Asia-Pacific
• Longitude Range: 55◦E to 180◦E
• Altitude: Up to 2,000 kilometers above the Earth’s surface
• Coverage: Offers enhanced services with improved performance metrics
such as increased accuracy (down to 5 m), higher signal integrity, and faster
convergence times.
Precision Service Volume
• Latitude Range: Limited primarily to China and surrounding regions
• Longitude Range: From 70◦E to 140◦E
• Altitude: Up to 2,000 kilometers

Usage constraints Limited by physical obstructions, spoofing threats
Resilience features Signal authentication
Security protocols Advanced encryption for secure signal transmission
Impact of spoofing Disruption in navigation, increased risk of accidents

Recently published research (Tariq, 2024) delineated a comprehensive framework
termed ‘‘PSAU-Defender’’, designed to thwart BeiDou spoofing in vehicular networks
through a hybrid machine learning approach integrating XGBoost, Random Forest,
and Kalman Filter for real-time anomaly detection, augmented by a geospatial message
authentication mechanism to fortify V2V and V2I communication security. The main
contributions of this study include the development of a sophisticated cryptographic
technique, the attribute-based encryption (ABE), which ensures data confidentiality and
access control by encrypting communication channels based on predefined attributes. This
feature is pivotal, as it aligns with the imperative to safeguard critical navigational and
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operational data against sophisticated spoofing tactics. The experimental setup further
demonstrated the framework’s utility by employing an open-source BeiDou signal
simulator to validate the effectiveness of the proposed model under controlled spoofing
attack scenarios, providing a nuanced understanding of the model’s responsiveness to
various threat vectors. This research robustly supported the detection and mitigation
strategies with empirical evidence, showcasing significant advancements in spoofing
detection technology. Nonetheless, the study’s scalability and adaptability in real-world
scenarios remain as critical concerns, as the computational intensity of the hybrid machine
learningmodels and the specificity of the ABEmight limit their practical deployment across
diverse and dynamic vehicular network environments. These limitations suggest areas for
future research, particularly in optimizing computational efficiency and broadening
the cryptographic framework to encompass a wider array of vehicular communication
scenarios, thereby enhancing the robustness and applicability of the security measures.

PROPOSED METHODOLOGY
We envisioned that the core research question of this study is: ‘‘How can spoofing attacks
in BeiDou-enabled VANETs be effectively detected, tolerated, and managed?’’ This query
is crucial as it tackles the prevalent challenge of ensuring the integrity and reliability of
navigational data within these networks, which are increasingly fundamental to the safety
and efficiency of modern transportation systems. To address this research question, we
employed a framework to model the reliability of navigational signals. The integrity of a
signal si(t ) received by a vehicle vi at time t is expressed as:

si(t )= pi(t )+ni(t )+ei(t ) (1)

where pi(t ) represents the legitimate signal, ni(t ) denotes environmental noise, and ei(t )
signifies potential spoofing errors. The primary objective of our methodology was
to develop a novel algorithm and system that minimize ei(t ), ensuring the accuracy
and reliability of si(t ) across the network. This representation (Eq. (1)) underpins our
analytical model, guiding both the detection algorithm and the design of tolerance and
management strategies within the network infrastructure. The employed methodology
utilized a blend of real-time navigational data from BeiDou system’s network traffic logs,
and security incident reports. Each data type served a strategic purpose in exhibiting
comprehensive outlook of the operational environment and the nature of encountered
spoofing threats. During investigation, we observed that the real-time navigational data
formed the backbone of our analysis. This data was critical for modelling the expected
behaviour of navigational signals under normal operating conditions. By establishing a
baseline of signal characteristics (e.g., Signal Strength, Signal Noise Ratio (SNR), Carrier-to-
Noise Density (C/N0), Frequency Deviation, Signal Polarization, Phase Shift, Doppler Shift,
Time of Arrival (ToA), Angle of Arrival (AoA), Integrity Flags, Navigation Message Content,
Satellite Ephemeris Data, Unexpected Signal Jumps, Signal Continuity, and Coherence), we
enable the detection of anomalies (e.g., abnormal signal strength, altered signal noise ratio,
unexpected carrier-to-noise density changes, frequency shifts not correlating with normal
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Doppler effects, inconsistent signal polarization, sudden phase shifts, unusual Doppler shift
patterns, discrepancies in time of arrival, incorrect angle of arrival, integrity flags indicating
compromised signals, errors in navigation message content, incorrect satellite ephemeris data,
sudden and unexplained signal jumps, and lack of signal continuity and coherence) that
could signify spoofing attacks. The real-time nature of this data ensured that the developed
detection mechanism could operate in a dynamic vehicular environment, providing timely
alerts that prevented potential navigation errors. The expected legitimate signal received
by a vehicle are expressed in Eq. (2)

pi(t )= λ(t )+δ(t )+ε(t ) (2)

where λ(t ) denotes the expected legitimate signal path, δ(t ) is the system noise, and ε(t )
represents minor deviations due to environmental factors.

Network traffic logs were utilized to assess the communication patterns within the
network providing insights into the flow of data between vehicles. This data is crucial for
identifying irregular traffic patterns that could indicate a spoofing attempt. Analysing traffic
logs helped proposed framework in detecting anomalies in data packets where the frequency
or size of the packets deviates from typical patterns. These deviations were quantitatively
assessed using statistical model (i.e., autoregressive integrated moving average (ARIMA)
(Theerthagiri, 2022)) that analyse traffic flow regularity.

R(t )=
1
N

N∑
i=1

(τ−τ )2 (3)

R(t ) represents the regularity of the traffic at time t τ denotes the inter-arrival times of
packets and τ is the average inter-arrival time. ARIMA model was particularly apt for time
series data analysis, where understanding traffic patterns over time is crucial. It effectively
identified outliers, trends, and seasonal variations in data packet sequences by leveraging
their capabilities in both differencing (to achieve stationarity) and autoregression (to
incorporate the dependency of the current packet flow on its previous values). The model
was defined by three parameters: p (order of the autoregressive part), d (degree of first
differencing involved), and q (order of themoving average part). The ARIMAmodel was an
optimum fit for the traffic data series, enabled the detection of anomalies through statistical
tests for unexpected spikes, drops, or patterns that deviate frompredicted traffic behaviours.
Such capabilities made ARIMA an excellent tool for monitoring and securing real-time
data transmission in the implemented/emulated vehicular network, where sudden changes
in traffic flow indicated malicious activities like spoofing attacks. This statistical approach
not only quantified the regularity in traffic flows but also supported proactive measures by
predicting future data points, enhancing the system’s responsiveness to potential threats.

During statistical analysis, we observed that the crucial initial step (i.e., data
preprocessing) involved handling missing values, removing outliers, and differencing the
data to ensure stationarity—a prerequisite for effective ARIMAmodelling. The differencing
is exhibited in Eq. (4):

y
′

t = yt −y{t−1}. (4)
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This transformation helped stabilize the mean of the data series, enhanced the model
reliability. Following preprocessing, the model identification phase involved determining
the optimal parameters

(
p,d,q

)
for the ARIMA model. This was achieved by analysing

the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the
differenced series, which helped to estimate the p and q values, respectively. The ACF was
calculated as described in Eq. (5):

ACF (k)=
∑T

t=k+1(y
′

t −y
′

)(y
′

t−k−y
′

)∑T
t=1(y

′

t −y
′)2

(5)

and the PACF assessed the direct correlation at lag k, controlling for the values at shorter
lags, as illustrated in Eq. (6):

PACF (k)=Corr(y
′

t ,y
′

t−k |y
′

t−1,...,y
′

t−k+1). (6)

With the parameters identified, the ARIMA model was estimated using maximum
likelihood estimation. The model integrated both autoregressive and moving average
components as described in Eq. (7):

y
′

t = c+∈t +
p∑

i=1

∅iy
′

t−i+

q∑
j=1

θjε
′

t−j (7)

where c is the constant,∅ and θ are parameters of the model, and ε represents error terms.
After themodel is fitted, diagnostic checks were conducted to validate the fitting’s adequacy.
This included analysing the residuals to ensure they resemble white noise, indicating the
model had captured all the relevant information, as expressed in Eq. (8):

Residuals= y
′

t − ŷ
′

t (8)

We evaluated ARIMA’s performance by applying it to a separate validation dataset
to test its effectiveness in anomaly detection. Performance metrics such as accuracy,
precision, recall, and F1-score were used to determine the model’s ability to identify
spoofing attacks accurately. In the investigation’s data collection phase, sophisticated
tools and equipment were utilized to capture comprehensive datasets necessary for
analysing spoofing’s impact and nature. Key among these were BeiDou signal receivers
designed to capture GNSS data with high precision. Specifically, the Sokkia GRX3 model
(https://eu.sokkia.com/products/gnss-systems/gnss-receiver/grx3-gnss-receiver), with its
multi-frequency tracking capability, handled signals from multiple GNSS networks
simultaneously, enhancing the robustness and reliability of the data collected. Network
monitoring was conducted using SolarWinds Network Performance Monitor (Song et al.,
2020), a software tool known for detecting, diagnosing, and resolving network performance
issues. This software provided real-time visibility into network traffic data, allowing accurate
examination of packet flows and identification of anomalies indicative of spoofing activities.

The sampling strategy for this study was carefully crafted to capture the diverse impacts
of spoofing across various vehicular and network environments. Our sample consisted of a
wide range of vehicles, from passenger cars to commercial vehicles, all equipped with BDS.
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This variety allowed us to gather rich data reflecting different operational characteristics
and exposure to spoofing scenarios, making our findings relevant to multiple sectors
of the transportation industry. Data collection was conducted in numerous geographic
locations, varying in BeiDou signal coverage and urban density, from crowded cities
(i.e., Lahore (Pakistan), and Al-Kharj (KSA) (using BeiDou-3 constellation)) to open
highways. This approach helped account for environmental factors that could influence
signal integrity and spoofing risks. The sample size was chosen based on statistical
guidelines (e.g., sample size calculation, power analysis, confidence interval determination,
random sampling, stratified sampling, data normalization, variance analysis, significance
level setting, and effect size estimation) to detect meaningful effects, comprising over 30
vehicles in 10 different network environments (i.e., urban traffic, suburban roads, rural
routes, industrial areas, residential neighbourhoods, highway systems, downtown districts,
commercial zones, tunnel/underpass passages, bridge crossings) within a 24-hour period,
ensuring a comprehensive and robust dataset for detailed analysis.

It is important to highlight that in our projected research, both quantitative and
qualitative data were crucial for the comprehensive analysis. For quantitative assessment,
signal strength indicators were instrumental in measuring the integrity of the BeiDou
signals received by the vehicle units. These indicators provided a direct metric of signal
quality and potential disruptions characteristic of spoofing activities. Data regarding
signal strength was continuously logged, using timestamping techniques to ensure precise
correlation with specific incidents and conditions. This process involved recording the
SNR for each satellite signal received, which was calculated using Eq. (9):

SNRi= 20log10(
Psignal,i
Pnoise,i

) (9)

where Psignal,i represents the power of the received signal from satellite i and Pnoise,i denotes
the power of the background noise. For qualitative data, discrepancies in navigation reports
and driver feedback were meticulously recorded. This process involved documenting any
reported anomalies in navigation accuracy or unexpected vehicle behaviour that could
suggest interference or manipulation of the navigation system. Participants, including
drivers and network operators, were engaged in regular interviews and feedback sessions
to gather comprehensive insights into the user experience and any anomalies encountered.

Observational studies were also conducted, where our designated researchers directly
monitored the behaviour of the vehicles within their operational environments. This
hands-on approach allowed for real-time observation of the effects of potential spoofing
on vehicle navigation and control systems. Our research team employedmobile monitoring
units equipped with BeiDou receivers and data logging tools (i.e., as stated earlier: Sokkia
GRX3, and SolarWinds) to track vehicles during regular operation and under controlled
spoofing attack simulations. By correlating quantitative data on signal strength and quality
with qualitative insights from user reports and direct observations, the study effectively
identified vulnerabilities within the system and assessed the efficacy of implemented
countermeasures. This comprehensive approach ensured a thorough understanding of
both the technical and human factors involved in managing the integrity of navigational
data in complex vehicular networks.
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During the data preparation phase of the study, meticulous cleaning and normalization
processes were applied to ensure the high quality and uniformity of data necessary for
subsequent analyses. Cleaning included the removal of outliers and correction of any
erroneous entries that might distort analytical outcomes. Normalization ensured that
numerical data were adjusted to fall within a consistent range, a critical step for accurate
comparative analyses when applying hybridmachine learning technique (i.e., autoencoders,
and LSTM).

For quantitative analysis, the research harnessed robust statistical tools provided by R
and Python’s SciPy library. These platforms supported extensive statistical testing and the
application of hybrid ML model, tailored to identify and predict spoofing activities. The
selection of Autoencoders and LSTM networks were due to their proficiency in handling
time-series data and detecting complex patterns. Autoencoders helped in reducing data
dimensionality and identifying encoded features that characterize normal and spoofing-
related signal patterns. The functionality of an autoencoder is described by Eq. (10) for
reconstructing input:

x ′= fW2.
(
f (W1.x+b1)

)
+b2 (10)

where x is the input,W1,W2 are weights, b1, b2 are biases, and f is the activation function.
Herewith, LSTMs were utilized to analyse temporal dependencies and anomalies in the
time-series data, critical for predicting the occurrence of spoofing based on historical data
patterns. The updated LSTM unit are described in Eqs. (11)–(14)

ft = σ (Wf .
[
ht−1,xt

]
+bf ) (11)

it = σ (Wi.
[
ht−1,xt

]
+bi) (12)

C̃t = tanh(WC .
[
ht−1,xt

]
+bC) (13)

Ct = ft ∗Ct−1+ it ∗ C̃t (14)

where σ denotes the sigmoid activation function, ft , it are the forget and input gates, Ct is
the cell state, ht−1 is the previous output, and xt is the input at time t .

For qualitative data, NVivo (https://lumivero.com/products/nvivo/) facilitated the coding
and categorization process, allowing for the identification of emergent themes from
qualitative feedback and observations, such as instances of ‘signal interference’ or ’data
manipulation’.

To secure data privacy, especially concerning sensitive network logs and user feedback,
all information was anonymized, encrypted during storage and transfer, and accessible
only to authorized researchers. Strict audit trails and access logs were maintained to ensure
adherence to ethical standards and data protection regulations, reinforcing the integrity
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and reliability of the study’s methodological approach. In this context, it is essential to
reemphasize why hybrid ML techniques, specifically Autoencoders and LSTM networks,
were chosen for data analysis. The decision was driven by their proven effectiveness in
managing high-dimensional data and sequential data, respectively. Autoencoders are
particularly adept at anomaly detection as they learn to compress and then reconstruct the
input data, thereby effectively identifying discrepancies between normal operational data
and potential anomalies indicative of spoofing attacks. Such a capability is vital for the
initial detection of irregular patterns that stray from the expected norm. Moreover, LSTM
networks were chosen due to their ability to process data sequences and their effectiveness
in recognizing long-term dependencies. This feature is particularly important in the
context of vehicular networks where data are collected over time, and patterns may evolve
or repeat intermittently. By utilizing LSTMs, the projected framework captured temporal
anomalies in navigational data that could indicate sophisticated spoofing strategies aiming
to elude simpler detection mechanisms. Our thorough investigation also revealed that the
integration of these models addressed several methodological challenges. One major issue
was the handling of incomplete data sets, a common occurrence due to varying signal
reception quality or sensor malfunctions in real-world environments. The robustness of
LSTMs in dealing with sequence prediction and the ability of Autoencoders to reconstruct
missing parts based on learned data representations were crucial in mitigating the effects
of data gaps. The combined approach allowed for more accurate and reliable anomaly
detection even with incomplete datasets.

Another challenge was distinguishing between anomalies due to spoofing and those due
to non-malicious disruptions, such as environmental interference or technical faults. The
hybrid model’s capacity to learn and differentiate various data patterns enabled a more
nuanced understanding of the data. This differentiation was supported by training the
models on a diverse set of scenarios, both simulated and real, to refine their predictive
accuracy. Anomalies detected by the system were further analysed using a decision function
based on the learned characteristics of spoofing versusnon-spoofing disturbances, expressed
in Eq. (15):

D(x)= σ (Wd .x+bd) (15)

where D(x) denotes the decision function, x is the feature vector extracted by the
Autoencoder,Wd represents the decision weights, bd the bias, and σ the sigmoid activation
function.

Consequently, it is evident that the innovative contribution of proposed deep network-
based model lies in its sophisticated integration of Autoencoders with LSTM networks
which are tailored specifically for the detection of BeiDou spoofing in VANETs. Unlike
standard LSTMmodels, which primarily focus on temporal data dependencies, our hybrid
approach enhances detection capabilities by first employing Autoencoders for effective
dimensionality reduction and feature extraction. This preprocessing step ensures that
only the most relevant features are presented to the LSTM to allow for a more focused
and efficient temporal analysis. The Autoencoder’s ability to cleanse complex data into a
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manageable format significantly reduced the computational load on the LSTM and enabled
it to perform more precise and faster anomaly detection.

This architectural innovation extended the LSTM’s capability beyond typical usage
scenarios, allowing it to effectively handle the multi-dimensional and noisy data
environments (such as, high variability in signal strength; frequent signal interruptions and
losses; diverse signal interference from various sources; rapid changes in network topology;
heterogeneous data from multiple sensors and devices; high volume of data generated
by numerous nodes; variable data transmission rates; environmental noise and physical
obstacles affecting communication signals, etc.). By doing so, projected model addresses
a critical gap in current approaches—specifically, the need for robust preprocessing to
improve the signal-to-noise ratio in datasets used for training and inference in real-time
systems.

The projected framework further devised three-fold strategy to enhance security through
detection, tolerance, and management of spoofing attacks. In the detection phase, ABE
was employed to ensure the integrity and authentication of messages. ABE provided
a flexible and scalable approach to encryption, allowed data access to be controlled
by attributes and policies, which proved especially useful in the diverse and dynamic
environment of VANETs. The effectiveness of ABE in this context relied on its capability
to secure communication channels against unauthorized access and spoofing attacks. This
cryptographic measure was complemented by advanced signal characteristic analysis and
the implementation of sophisticated anomaly detection algorithm, designed to identify
and flag inconsistencies in signal behaviours indicative of spoofing activities.

For ensuring data transmission reliability, the proposed strategy employed redundant
paths to mitigate the impact of compromised nodes or channels. This redundancy was
critical in maintaining network functionality even under attack conditions. Weighted
voting scheme was also integrated to further enhance system resilience, allowing the
network to assess the reliability of data based on the trustworthiness of the source. We
developed a real-time-responsive Trust model to dynamically evaluate and update the
credibility of each node based on historical data and behaviour patterns, ensuring that
the network adapts to ongoing threats and changes in node integrity. Furthermore, the
management aspect of the strategy focused on the isolation of compromised nodes to
prevent the spread of spoofing within the V2X network. Procedures were established for
quick identification and quarantine of affected nodes, coupledwith robust countermeasures
to neutralize potential threats. Applied procedures involved automatedmonitoring systems
that promptly detected anomalies in network behaviour and triggering isolation protocols
for affected nodes. These nodes were then quarantined to prevent the spread of potential
spoofing, while security updates and tactical countermeasures were swiftly applied to
mitigate the threat and stabilize the network. Emulated framework continuously updated
the security protocols to respond to emerging spoofing techniques and vulnerabilities
discovered through ongoing network monitoring and analysis. This comprehensive
approach was underpinned by the formulation and evaluation of mathematical model
that supported decision-making processes within the network. The probability of a node
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being compromised was calculated using Eq. (16):

Pcomp(n)= 1−
k∏

i−1

(1−pi,n) (16)

where Pcomp(n) is the probability of node n being compromised, pi,n is the probability of
compromise through path i, and k is the number of paths to node n. The prime purpose
to implement this model was to facilitate the dynamic assessment of node reliability and
informed the deployment of redundancy and countermeasures effectively. Herewith,
Algorithm 1 outlines the step-by-step outlook of the projected framework.

Ultimately, the integration of Autoencoders and LSTM networks with ABE formed
the core of the proposed methodology, which significantly reinforced the defence against
sophisticated spoofing attacks. This method not only improved anomaly detection through
ML techniques that scrutinized both immediate and historical data anomalies but also
enhanced communication security by encrypting data transfers across the network. The
inclusion of redundancy in data pathways, combined with a weighted voting system and
evolving trust assessments, ensured that network operations could continue seamlessly
even under attack, by prioritizing inputs from the most reliable sources and swiftly
isolating compromised nodes. Together, these strategies created a robust framework that
not only detected but also swiftly neutralized threats, thereby maintaining the integrity and
functionality of examined transportation infrastructure.

For our applied methodology, the energy consumption estimation during the detection
and mitigation of spoofing attacks was a necessary factor because it effectively influences
the feasibility of expressed real-world VANET applications. Considering the computational
intensity of LSTM and Autoencoders for real-time data processing, alongside the
cryptographic overhead introduced by ABE, we outline the total energy consumption
to evaluate the sustainability of the proposed detection system. Herewith, in Eq. (17), the
Etotal represents the sum of the energy used by the Autoencoder Eae , the LSTM Elstm and
the ABE Eabe , thus:

Etotal = Eae+Elstm+Eabe (17)

where Eae and Elstm are determined by the number of operations required for feature
extraction and temporal analysis respectively, calculated as:

Eae =Nae× cop×V × I (18)

Elstm=Nlstm× cop×V × I (19)

As per Eq. (18), Nae and Nlstm represent the number of operations in the Autoencoder and
LSTM respectively, cop is the energy cost per operation, V and I denote the voltage and
current specifications of the processing unit. The energy usage for ABE Eabe is modelled
based on the number of encryption and decryption processes, denoted as Nenc and Ndec

with the energy per process quantified by eenc and edec . Thus,

Eabe = (Nenc×eenc+Ndec×edec). (20)
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Algorithm 1: Pseudocode of proposed Detection, and Mitigation framework
Initialize Autoencoder and LSTMmodels
Load pre-trained weights and biases if available
For each incoming signal packet do:
Extract features using Autoencoder:
Encoded_Features= Autoencoder.Encode(signal_packet)
Decoded_Signal= Autoencoder.Decode(Encoded_Features)
Calculate reconstruction error:
Error=Mean Squared Error(signal_packet, Decoded_Signal)
If Error exceeds threshold, then:
Flag packet as potential spoofing attempt
Use LSTM to analyze time-series of Encoded_Features:
Predicted_State= LSTM.Predict(Encoded_Features)
If Predicted_State indicates spoofing, then:
Quarantine the node sending the signal
Trigger Alert to network administrator
Implement Attribute-Based Encryption:
For each message sent between nodes do:
Encrypt message using receiver’s attributes
Send encrypted message
Monitor network paths for data transmission:
If primary path fails or shows signs of tampering, then:
Switch to redundant path
Log event and analyse for patterns of failure
Implement Weighted Voting Scheme:
Collect data from multiple nodes
Assign weights based on Trust Model
Calculate weighted average of reported data
If discrepancies detected above threshold, then:
Re-evaluate trust scores of contributing nodes
Update Trust Model periodically:
For each node in network do:
Adjust trust score based on behaviour and feedback
Increase trust for consistent, accurate data reporting
Decrease trust for anomalies and discrepancies
Quarantine Process:
On detection of spoofing:
Isolate affected node from network
Perform forensic analysis to determine cause and impact
Apply security patches if necessary
Restore node to network after verification of integrity

This formulation (i.e., Eqs. (17) to (20)) allowed us to critically evaluate the trade-offs
between detection accuracy and energy efficiency. Our assessment revealed that optimizing
the exhibited relationship is essential for ensuring that the security enhancements provided
by the proposed methodology do not disproportionately drain the vehicular unit’s
power resources, thereby maintaining operational integrity without compromising on
performance.
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EXPERIMENTAL SETUP AND ASSESSMENT OUTCOME
The experimental setup for evaluating the proposed methodology involved a combination
of hardware and software to rigorously test the detection and mitigation of BeiDou BDS
spoofing (i.e., exhibited in Fig. 2). The setup included the use of a specialized BeiDou
signal simulator equipped with a temperature compensated crystal oscillator (TCXO)
known for its high stability and precision. This simulator was vital in generating controlled
spoofing signals to assess the resilience of the system under test. The selected TCXO ensured
minimal frequency drift, crucial for maintaining the integrity of the spoofing signals during
experiments.

Hardware involved in the tests included a spectrum analyzer set to specific parameters:
resolution bandwidth was fixed at 10 kHz; internal preamplifier was activated to enhance
signal detection; internal attenuation was set to 0 dB to avoid any signal loss; and marker
bandwidthwas calibrated to 1 kHz to accurately isolate the frequencies of interest. This setup
allowed precisemeasurement of the spoofed signals’ power and distortion levels, facilitating
detailed analysis of the spoofing impact. The software component of the test setup utilized
applied novel detection algorithm that could monitor the carrier-to-noise ratio (C/No)
to identify overpowered attacks. This approach was critical in differentiating between
legitimate and spoofing signals by analyzing their power levels. Detection algorithms
were tested in scenarios involving both cold-start and tracking modes to evaluate their
effectiveness across different operational states of a BeiDou receiver. Figure 3 illustrates
our implementation of a jam-then-spoof attack sequence across the code phase domain,
depicted progressively from left to right. It begins with the receiver tracking only the
genuine signal. The spoofer then introduces a jamming signal, increasing the noise to the
extent that the receiver loses connection with the original signal. Ultimately, the attacker
sends a more powerful signal, strong enough to stand out against the high noise level,
which the receiver’s tracking taps subsequently latch onto.

In the process of spoofing signal generation, multiple data types were preferred,
including real-time and synthetic navigational data, to comprehensively evaluate the
system’s response to various spoofing scenarios. Statistical processing techniques (i.e.,
pseudorange residuals and the continuity fault tree) were applied to multiple metrics to
enhance the detection strategy’s robustness by identifying subtle anomalies indicative of
spoofing. Our experimental results confirmed the effectiveness of the implemented ‘signal
quality monitoring (SQM)’ metrics in detecting spoofing activities (i.e., as exhibited in
Table 4). These metrics played a crucial role in quantifying the impact of spoofing on
navigational accuracy and the continuity of VANET operations.

During our experiments, we observed that the received power of BeiDou signals at Earth’s
surface via a traditional RHCP antenna typically fell below the thermal noise floor power.
For instance, with a bandwidth of 2 MHz, the noise floor is registered at−112 dBm. As the
bandwidth expands to 3 MHz and 8 MHz, the noise floor values rise slightly to −110 dBm
and −106 dBm, respectively. Figure 4 illustrates how system bandwidth affected the
noise power levels. Deeper investigation revealed that the relationship between bandwidth
and noise floor is crucial for understanding vulnerabilities in BeiDou signal reception.
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Figure 2 Emulation processes in the controlled environment. (A) The chart tracks the number of
source to destination connection requests over a 24-hour period, depicted as a scatter plot with light blue
dots. These dots show fluctuations in the number of requests, ranging from approximately 2,160 to 2,300,
with a noticeable spike around 2:00 AM, where the requests briefly surge. The overall pattern is dense,
indicating a consistent level of activity throughout the day, with only a few significant variations in the
connection requests. (continued on next page. . . )

Full-size DOI: 10.7717/peerjcs.2419/fig-2
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Figure 2 (. . .continued)
(B) The chart displays session pings over a 24-hour period using light blue bars and dots. The bars show
regular pings while isolated blue dots indicate sporadic higher pings, with notable spikes occurring pri-
marily during nighttime hours. (C) The chart illustrates session connection history over 24 h using a scat-
ter plot with light blue dots. Most data points cluster between 20 and 60 sessions, with occasional higher
spikes, most notably a sharp increase around 20:00. (D) The chart tracks active session disconnections
over 24 h, represented by blue lines and dark-pink dots. These elements highlight fluctuations and specific
peak disconnection events, especially notable in the early morning and late evening hours. (E) The chart
shows event detection activity over a day, depicted through green dots and gray lines that illustrate signifi-
cant variability and peaks, notably during midday and late evening hours. (F) The chart presents the num-
ber of spoofed localization signals detected over 24 h, depicted by red dots and lines, highlighting the fluc-
tuations and spikes. (G) The chart tracks vehicles left in V2X networks over 24 h, shown in purple. The
plot mostly rests at the baseline with periodic sharp spikes (i.e., indicated as red straight line), indicating
sudden increases in departures. (H) The chart visualizes the quarantine rate after detection of an adversary
event over a day, marked by a pink baseline with notable peaks in green and pink, highlighting isolated in-
cidents.

Increased bandwidth generally results in higher noise floors, which can potentially obscure
weaker signals and create openings for spoofing attacks. We implemented anomalies that
could exploit these conditions by broadcasting stronger, deceptive signals that overshadow
authentic BeiDou signals, thus misleading the receiver.

Simultaneous processing of spoofed and authentic signals was another focal area of
proposed framework, with the setup capable of identifying multiple correlation peaks
per ‘pseudo-random noise (PRN)’, which is essential in environments where spoofing
signals may overlap with legitimate ones. This capability was pivotal in environments
with distorted signal peaks and multipath effects, common in urban settings. Thus, the
effectiveness of the experimental framework was significantly substantiated through its
application on real-time spoofing data, showcasing its practical viability and the robustness
of the implemented detection strategies. The deployment of performance metrics such as
accuracy, precision, recall, and F1-score yielded high levels of reliability and confirmed
the algorithms’ capacity for precise identification and neutralization of spoofing threats
within. Accuracy was computed using the ratio of correctly identified instances (both true
positives and true negatives) to the total number of cases, as outlined by Eq. (21):

Accuracy =
TP+TN

TP+TN +FP+FN
. (21)

This metric was pivotal in assessing the overall effectiveness of the detection system across
various testing scenarios, reflecting the system’s ability to correctly classify both spoofed and
authentic signals. Herewith, precision, whichmeasures the accuracy of positive predictions,
was examined as:

Precision=
TP

TP+FP
. (22)

Equation (22) exhibits the detector’s effectiveness in identifying only actual spoofing
incidents, minimizing the occurrence of false positives which is crucial in avoiding
unnecessary alerts that could disrupt network operations. To further strengthen the
assessment, we also measured the recall, or sensitivity that involved the proportion of
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Figure 3 Jam-then-spoof attack sequence across the code phase domain. (A) A plot of peak ampli-
tude against code offset, represented by a single line in dark gray with circular data points. This line peaks
sharply at a code offset of 0 with a value of 1, indicating the highest signal strength, and tapers off symmet-
rically to near zero as the offset increases or decreases, illustrating how the signal amplitude diminishes
with increasing distance from the center code offset. (B) Three types of signals: the true signal, spoofer
signal, and combined signal are shown using a radar plot. Each signal type is shown using a distinct line
style—dotted for the true signal, dash-dot for the spoofer signal, and dashed for the combined signal.
These line styles contrast in grayscale to differentiate the relative strength and interference patterns of each
signal within the radar plot, illustrating how the spoofer impacts the true signal. (C) The impact of spoof-
ing on signal integrity using three types of lines to represent different signals. The true signal is shown with
a solid black line, peaking sharply at the center, representing its strongest point at zero code offset. The
spoofer signal, depicted with a gray line, also peaks at zero but with less amplitude, indicating a weaker but
present interference. The combined signal, shown with a dark gray line, peaks higher than both the true
and spoofer signals, illustrating the amplified effect when both signals are present. Note: Image color is
gray upon the request of editorial staff.

Full-size DOI: 10.7717/peerjcs.2419/fig-3
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Table 4 Ten-fold experimental outcome of proposed methodological framework.

Experiment Accuracy (%) Precision (%) Recall (%) F1-score (%)

1 94.2 93.7 92.5 93.1
2 95.6 94.9 93.8 94.3
3 96.1 95.5 94.6 95.0
4 93.8 93.1 91.9 92.5
5 94.4 93.9 92.7 93.3
6 95.0 94.4 93.2 93.8
7 95.8 95.2 94.1 94.6
8 94.6 94.0 92.9 93.4
9 93.9 93.2 92.0 92.6
10 96.4 95.8 94.7 95.2

actual positives that were correctly identified and was defined in Eq. (23):

Recall =
TP

TP+Fn
. (23)

This measure was essential for determining the system’s capability to detect all potential
spoofing attacks, ensuring that no malicious activities went unnoticed. Ultimately, the
F1-score, combining precision and recall, was formulated in Eq. (24):

F1− score= 2×
Precision×Recall
Precision+Recall

. (24)

F1-score provided a balanced view of both precision and recall, especially useful in scenarios
where an equilibrium between false positives and false negatives was critical. The ten-fold
experimental outcome, detailed in Table 4, demonstrates the robustness of these metrics
(i.e., accuracy, precision, recall, and F1-score) across multiple iterations of the testing
protocol. It merits attention that during assessment we particularly laid a critical focus on
performance metrics such as error checking, collision rate, efficiency, and data loss rate to
accurately evaluate the system’s resilience and operational efficacy.
(a) Error checking was implemented using advanced cyclic redundancy checks (CRC)

and checksum methods that ensured data integrity is maintained despite the high-risk
environment posed by potential spoofers.

(b) The collision rate, an indicator of the frequency of data packet conflicts due to
simultaneous transmissions, was closely monitored to evaluate the effectiveness of our
network access protocols under stress conditions.

(c) Efficiency metrics were particularly crucial; they were assessed by comparing the ratio
of successfully transmitted data packets to the overall network energy consumption,
offering insights into the system’s capability to maintain high throughput even when
resources were constrained.

(d) Data loss rate, a critical parameter especially in the context of spoofing attacks, was
analyzed through the lens of network resilience by tracking the rate at which data
packets are lost due to spoofing activities and the subsequent recovery mechanism.
Furthermore, the presented mathematical model for the proposed LSTM network,

integrated within our hybrid machine learning framework, underwent rigorous validation
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Figure 4 System bandwidth relevance with the noise power levels. The chart visually represents the re-
lationship between bandwidth, measured in megahertz (MHz), and the noise floor, quantified in decibels
(dBm), using a single color-coded line in blue. Labeled as ‘‘Noise Floor (dBm)’’, the blue line depicts how
the noise floor increases (becomes less negative) as the bandwidth expands from 2 MHz to 10 MHz. This
trend suggests that as more bandwidth is utilized, the overall noise level in the system also increases, which
is a typical characteristic in communication systems where larger bandwidths tend to accommodate more
noise. The chart is clearly conveying that the noise floor is sensitive to changes in bandwidth.

Full-size DOI: 10.7717/peerjcs.2419/fig-4

(i.e., performance benchmarking (e.g., accuracy, precision, recall, and F1-score); cross-
validation (k-fold validation to assess themodel’s performance stability); anomaly detection
accuracy validation through controlled tests; temporal consistency check by recognizing
and responding to temporal patterns & deviations in spoofed signal data; feature relevance
analysis; and robustness against noise by testing performance under various noise levels
& interference conditions) to confirm its efficacy in detecting and mitigating BeiDou
spoofing attacks. Our investigation revealed the recommendation to adopt the hybrid
model comprising both Autoencoders and LSTM networks due to the complementary
capabilities of these techniques in handling high-dimensional, sequential data inherent to
navigational signals. This combination is particularly adept at distilling complex temporal
and spatial dependencies that are characteristic of spoofing attacks, which single-model
systems might overlook. Similarly, we observed that the Autoencoder excels in reducing
dimensionality and extracting salient features from raw data which is vital in creating
a more manageable and representative dataset for the LSTM to process. The LSTM, in
turn, analyses these features over time to effectively identify anomalies that deviate from
established patterns of signal behavior which is a crucial factor in real-time spoofing
detection. This synergy allowed for a more nuanced and dynamic understanding of data
which facilitates the detection of subtle and sophisticated spoofing tactics that would
otherwise evade simpler, non-hybrid systems.
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Table 5 Average energy consumptionmetrics for spoofing detection across ten experimental iterations.

Iteration Nae Nlstm Nenc Ndec caeop (Joules) c lstmop (Joules) eenc (Joules) edec (Joules) Voltage
(V)

Current (I)
(Amperes)

1 1000,000 500,000 100 100 0.0001 0.00002 0.001 0.0008 3.3 0.1
2 950,000 450,000 150 150 0.0001 0.00002 0.001 0.0008 3.3 0.1
3 1200,000 600,000 120 120 0.0001 0.00002 0.001 0.0008 3.3 0.1
4 1100,000 550,000 130 130 0.0001 0.00002 0.001 0.0008 3.3 0.1
5 1050,000 500,000 140 140 0.0001 0.00002 0.001 0.0008 3.3 0.1
6 1000,000 480,000 160 160 0.0001 0.00002 0.001 0.0008 3.3 0.1
7 950,000 470,000 110 110 0.0001 0.00002 0.001 0.0008 3.3 0.1
8 1150,000 580,000 115 115 0.0001 0.00002 0.001 0.0008 3.3 0.1
9 1200,000 600,000 125 125 0.0001 0.00002 0.001 0.0008 3.3 0.1
10 1000,000 550,000 130 130 0.0001 0.00002 0.001 0.0008 3.3 0.1

Table 4 confirms the consistent efficacy of our detection algorithm by demonstrating its
reliability in accurately pinpointing and counteracting spoofing attacks under varied testing
conditions. The experimental results further highlight the hybrid model’s unique ability
for both feature extraction and temporal analysis—capabilities that traditional single-layer
networks often used in VANET security lack. This architectural distinction allows our
model not only to identify but also to anticipate spoofing threats by analyzing evolving
data patterns, thus offering a proactive defense strategy rather than a purely reactive one.

Table 5 systematically quantifies the computational load and corresponding energy
consumption of the proposed hybrid detection system across ten experimental iterations.
This assessment was essential for evaluating the operational efficiency and sustainability
of the system within the highly dynamic network. Each iteration represents a unique
configuration of operational parameters (such as, number of Autoencoder & LSTM
operations; number of encryption/decryption processes; energy cost per Autoencoder &
LSTMoperation; energy per encryption/decryption process; voltage, and current) reflecting
the dynamic conditions under which VANETs operated. The variablesNae ,Nlstm,Nenc , and
Ndec represent the number of operations executed by the Autoencoders, LSTM network,
encryption, and decryption processes, respectively. The energy cost per operation for the
Autoencoders and LSTMs (caeop and c lstmop ) , along with the energy per encryption (eenc) and
decryption (edec) process, were critical for calculating the total energy consumed during
each test iteration.

The voltage (V ) and current (I ) settings were consistent across the tests, mirroring
the typical power supply specifications for onboard vehicular systems. This consistency
ensured that the energy consumption estimates were directly comparable across different
test scenarios which were valuable in providing a robust basis for evaluating the energy
efficiency of the proposed methodology. The resultant computations, as represented in
Eqs. (17) to (20), facilitated a granular analysis of the energy demands imposed by novel
spoofing detection method. This analysis was pivotal for ensuring that the deployment
of such security measures does not compromise vehicular operational longevity due to
excessive power consumption. Assessment of energy consumption also enriched us with a
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comprehensive understanding of the trade-offs between enhanced security capabilities and
the associated energy costs in controlled experiment setting.

In our comprehensive experimental assessment of the proposed methodology against
established techniques, the focus was sharpened on evaluating the robustness of spoofing
detection and mitigation across various satellite platforms including BeiDou and GPS.
This evaluation investigated into intricate aspects such as applied cryptogram technologies,
sophisticated authentication methods, and specific countermeasures tailored against
spoofing and meaconing attacks which are critical for safeguarding satellite navigation
data integrity. Unlike the traditional methods predominantly centered around GPS as
investigated by Yang et al. (2023), Rajendra, Subramanian & Shukla (2024), Mina et al.
(2024), and Ivanov, Scaramuzza & Wilson (2024), our methodology integrated a broader
scope of satellite navigation platforms, enhancing the relevance and effectiveness of the
proposed solution in diverse operational scenarios.

The incorporation of BeiDou added a layer of complexity and offered a distinct angle
to the spoofing defense strategies, which was reflected in the rigorous testing of navigation
message designing, cipher key updating protocols, and signature information protection
mechanisms. These components were critical in enhancing the security framework and
were meticulously evaluated through an array of performance metrics, as indicated in
Fig. 5. The results from this analytical approach demonstrated a marked improvement
in detection capabilities, showcasing the advanced engineering and adaptation of hybrid
security solution that combined traditional cryptographic defense with cutting-edge
machine learning algorithm.

Our comparative experimental setup also ensured each system was subjected to a variety
of attack simulations to assess their resilience and adaptability in real-time threat scenarios.
The evaluation matrix provided a detailed assessment of how each methodology held
up under stringent testing environments, emphasizing the superior performance of our
proposed system. Not only did the proposed methodology exhibit higher efficacy in all
key metrics (i.e., as outlined in Fig. 6), but it also set new standards in the application of
integrated technological solutions for satellite navigation security.

Figure 6 exhibit that the proposed method exceled in identifying spoofing attacks
by maintaining a superior ‘Message Reception Probability’ across varying distances
between the transmitter and receiver. Projected method consistently achieved higher
reception probabilities even as the distance increases, which highlights its robustness
and effectiveness in real-world scenarios with fluctuating signal conditions. Maintaining
high message reception probabilities regardless of distance was essential for reducing the
system’s vulnerability to signal degradation or disruptions caused by spoofing attacks. This
capability ensured that communication integrity remained intact. The proposed method’s
ability to preserve connectivity under changing conditions has significantly enhanced the
reliability and security of vehicular networks, where transmission distances often change
due to vehicular mobility. Alongside high reception probabilities, the method also reduced
communication latency, which was critical for real-time data transmission in VANETs.
Lower latency enabled faster message exchanges between nodes, which was vital for timely
decision-making processes in dissimilar applications. Moreover, in our experimental
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Figure 5 Benchmarking proposed scheme against the state-of-the-art existing approaches. The chart
displays performance metrics for various methodologies applied to a specific task, differentiated by color.
The method of Yang et al. (2023) is represented in chartreuse, shown across all four evaluation criteria:
accuracy, precision, recall, and F1-score. The results of Rajendra, Subramanian & Shukla (2024) are de-
picted in orange, indicating a consistently high performance, particularly in precision and F1-score. The
technique ofMina et al. (2024), shown in green, exhibit to excel in recall but has slightly lower scores in
other metrics. The approach of Ivanov, Scaramuzza & Wilson (2024) indicated in pink, presents robust
outcomes, especially in precision and F1-score. The proposed method, marked in purple, generally is lead-
ing closely for the highest metrics across accuracy, precision, recall, and F1-score, emphasizing its effec-
tiveness in balancing different aspects of performance.

Full-size DOI: 10.7717/peerjcs.2419/fig-5

settings, the throughput remained consistently high, showing that the network can manage
a substantial volume of data packets without significant loss or delay, even when facing
the challenge of a spoofing attack. This high throughput was essential for maintaining the
flow of crucial information such as positional data and safety alerts, which are necessary
for vehicular coordination and accident prevention. By combining high message reception
probability, low latency, and high throughput, the proposed method not only effectively
detected spoofing attacks but alsomaintained optimal network performance, rapid response
times, and robust security.

SUMMARY
Our experimental investigation conclusively demonstrated that the hybrid machine
learning approach, integrating Autoencoders with LSTM networks has significantly
enhanced the detection and mitigation of spoofing attacks by achieving an average
accuracy of 94.98%, precision of 94.37%, and recall of 93.24%. These metrics underscore
the robustness of our detection system in an emulated environment which reflects a
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Figure 6 Resilience analysis of VANET security frameworks to GNSS spoofing attacks at varying
distances. The chart compares the message reception probability in vehicle-to-vehicle communications as
a function of distance, using different methodologies represented by various colors. The chartreuse bars
correspond to the method by Yang et al. (2023) referenced as, which shows how this approach performs
across increasing distances. The orange bars represent findings by Rajendra, Subramanian & Shukla
(2024), demonstrating their method’s performance. The green bars forMina et al. (2024) and the purple
for Ivanov, Scaramuzza & Wilson (2024) also show similar distance-based performance metrics. The
proposed method is shown in purple bars, highlighting its comparative effectiveness, while the pink dotted
line provides a linear approximation of this proposed method’s performance, serving as a simplified or
theoretical model against which other methods’ performances are measured.

Full-size DOI: 10.7717/peerjcs.2419/fig-6

broad spectrum of spoofing scenarios. The application of ABE further fortified the security
framework, ensuring data integrity across vehicular communication channels. Our findings
assert the critical role of advanced cryptographic and machine learning techniques in
safeguarding intelligent transportation systems against emerging cyber threats. This study
not only extends the current understanding of GNSS spoofing countermeasures but also
sets a new benchmark for future research in vehicular network security, emphasizing the
necessity for continuous adaptation and enhancement of security protocols to thwart
sophisticated spoofing strategies effectively.

CONCLUSION
The presented research conveyed a thorough assessment of BeiDou signal spoofing
in VANETs, addressing a critical security issue to modern vehicle communications.
By integrating hybrid machine learning methods, specifically Autoencoders and LSTM
networks, with the advanced cryptographic technique of ABE, the study proposed a robust
framework that significantly enhanced the detection and mitigation of spoofing attacks.
The proposed methodology focused on a dual approach: leveraging machine learning for
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dynamic threat detection and applying cryptographic security to ensure data integrity. Our
experimental results confirmed the effectiveness of the strategies employed in an emulated
environment, showing their promise for application in real-world settings. Nonetheless, the
study acknowledges limitations such as variability in signal conditions and the controlled
nature of these experiments. The findings highlight the critical need to improve security
within vehicular networks and lay the groundwork for future research that should focus on
refining projected methods. Future work should aim to expand the variety of test scenarios
and tailor the model to oversee various spoofing attacks by facilitating better integration
of these strategies into existing vehicular infrastructure and stirring towards a more secure
and robust vehicular communication system.
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