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ABSTRACT
Crafting a lucrative stock trading strategy is pivotal in the realm of investments.
However, the task of devising such a strategy becomes challenging task the intricate
and ever-changing situation of the stock market. In recent years, with the development
of artificial intelligence (AI), some AI technologies have been proven to be successfully
applied in stock price and asset management. For example, long short-term memory
networks (LSTM) can be used for predicting stock price variation, reinforcement
learning (RL) can be used for control stock trading, however, they are generally used
separately and cannot achieve simultaneous prediction and trading. In this study, we
propose a hybrid deep learning model to predict stock prices and control stock trading
tomanage assets. LSTM is responsible for predicting stock prices, while RL is responsible
for stock trading based on the predicted price trends. Meanwhile, to reduce uncertainty
in the stock market and maximize stock assets, the proposed LSTM model can predict
the average directional index (ADX) to comprehend the stock trends in advance and
we also propose several constraints to assist assets management, thereby reducing the
risk and maximizing the stock assets. In our results, the hybrid model yields an average
R2 value of 0.94 when predicting price variations. Moreover, employing the proposed
approach, which integrates ADX and constraints, the hybrid model augments stock
assets to 1.05 times than initial assets.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Long short-term memory, Reinforcement learning, Proximal policy optimization,
Stock prediction, Stock trading

INTRODUCTION
Developing a successful automated stock trading strategy is crucial for investment
firms and hedge funds, as it plays a pivotal role in optimizing capital deployment and
enhancing investment outcomes, including maximizing expected profits. Achieving profit
maximization hinges on accurate assessments of both potential profits and associated risks.
Nevertheless, analysts encounter considerable difficulty in comprehensively accounting
for all pertinent factors within the intricate and ever-changing landscape of the stock
market (Bekiros, 2010; Kim et al., 2017; Zhang & Yang, 2016).

The application of deep learning techniques in forecasting stock prices and trends
has garnered significant attention in recent years, driven by the quest for more accurate
and efficient investment strategies in the dynamic realm of financial markets (Dong,
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Wang & Abbas, 2021). Traditional approaches to stock price prediction often rely on
statistical models or technical indexes, which may struggle to capture the complexities
and non-linearities inherent in market data. In contrast, deep learning offers a powerful
framework for automatically learning intricate patterns and relationships from large-scale
data, making it well-suited for tackling the challenges of stock market prediction.

LSTM is a type of recurrent neural network (RNN) architecture, it has garnered
significant attention for its ability to model temporal dependencies over long sequences of
data (Hochreiter & Schmidhuber, 1997; Servan-Schreiber, Cleeremans & McClelland, 1988).
This characteristic makes LSTM well-suited for capturing the intricate dynamics and
latent patterns present in historical stock price movements. Unlike traditional statistical
models, LSTM excels at learning from sequential data with varying time lags, allowing
them to adapt to changing market conditions and capture both short-term fluctuations
and long-term trends. While LSTM networks have shown advantage in modeling complex
temporal dependencies and predicting stock prices, they are not without their limitations.
As with any predictivemodeling technique, LSTM-based stock price forecasting approaches
face several challenges that can impact their accuracy, reliability, and practical utility in
real-world trading scenarios (Ma et al., 2024). One of the primary limitations of LSTM-
based stock price prediction is the unpredictability of stock markets. While LSTMs excel
at capturing patterns within historical data, they may struggle to differentiate between
genuine market trends and random fluctuations, leading to suboptimal performance
during periods of market volatility or structural shifts.

RL is inspired by principles of behavioral psychology, offers a paradigm shift by
enabling agents to learn optimal decision-making policies through interaction with their
environment (Williams, 1992). In the context of stock trading, RL algorithms learn to
maximize cumulative rewards, such as profit or portfolio by dynamically adjusting buy
and sell actions based on market observations and feedback signals. Despite the promising
potential of RL in stock trading, challenges such as model interpretability, data efficiency,
and the inherent risks associated with algorithmic trading remain significant concerns.
Additionally, the deployment of RL-based trading strategies in real-world financial markets
necessitates careful consideration of regulatory compliance, market liquidity, and ethical
implications.

In response to the aforementioned issues, this paper proposes a hybrid model aimed
at maximizing potential total assets. The hybrid model comprises LSTM and RL, with
LSTM responsible for predicting variations in stock prices and RL operating stocks for
stock trading based on these price variations. To ensure maximum responsiveness to
market uncertainty, we propose several constraints and risk indexes to depreciate such
uncertainties as much as possible.

The rest of this paper is organized as follows. ‘Related Work’ introduces the related
work with literature. ‘Background’ introduces the necessary background knowledge for
this paper. ‘Problem Description and Hybrid Deep Learning Model Design’ describes
problem details and designs the hybrid deep learning model. ‘Experiment’ introduces
several experiments about proposed hybrid deep learning model. ‘Discussion’ discusses
the experiment results. ‘Conclusion’ concludes this paper.
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RELATED WORK
Seethalakshmi (2018) studied which factor is used to determine specific factors that are
providing the most impact on the prediction of the stock closing price. He analyzed with
S&P 500 Index using statistical methods in the R environment. Two prediction models
have been proposed to predict. The experimental results showed model 1 with all features
fitted with R2 value 0.997. This indicates open, high, low, volume and adj close are essential
for predicting closing value accurately. Model 2 with open, high and low predict close
value fitted with R2 value 0.992. This indicates prediction of close value is not affected with
adj close. This study reveals with open, high, low and volume itself enough for finding
approximate prediction of close value.

Panwar et al. (2021), proposed an approach to predict stock price by using support
vector machine (SVM) and linear regression. First, they used web scrapping to collect
datasets from stock data. Then they plot the data on the graph, from the graph they can
analyze the stock prices going high or low. After this, they trained the model to predict
stock prices. Their results showed linear regression for stock market analysis is better than
the SVM for the same.

Mondal, Shit & Goswami (2014) used the Auto Regressive Integrated Moving Average
(ARIMA) model on fifty-six Indian stocks from different sectors. Their results showed
accuracy of the ARIMA model in predicting stock prices is above 85%, which indicates
that ARIMA gives good accuracy of prediction. For Information Technology sector, the
standard deviation is not too low or not too high, whereas they are obtaining an above
90% accuracy in prediction for this sector.

Saud & Shakya (2020) conducted experiments helps in deciding which RNN (recurrent
neural network) is best suited for the stock price prediction task. Three variants of RNN
are tested. They are VRNN (Vanilla RNN), long short-term memory (LSTM) and gated
recurrent unit (GRU). The results showed GRUs, LSTM, recurrent neurall network (RNN)
and convolutional neural network (CNN) provide exceptional results in stock price
forecasting.

Pothuganti (2021) presented a RNN and LSTM way to deal with anticipated stock
market files. Their results showed including the LSTM and artificial neural network (ANN)
algorithm LSTM will give better accuracy and here ANN gave an accuracy of 94% yet after
performing the LSTM algorithm, they got 97% accuracy.

Lee (2002) presented an innovative method that leverages reinforcement learning to
forecast stock prices. The authors conceptualize stock price prediction as a dynamic
Markov process and advocate the utilization of the TD(0) algorithm for optimization,
benefiting from its ability to learn from experiences. To estimate the values of states
representing various stock price trends, an artificial neural network is utilized for function
approximation. Through this approach, the authors aim to capture and understand
interactions within real-world scenarios, ultimately enhancing the accuracy of stock price
predictions.

Gondkar et al. (2021), proposed a novel model for predicting stock price index values.
Leveraging data from transportation and traffic departments, the study evaluates and
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compares the performance of various algorithms. It employs four machine learning
techniques: naive Bayes theory, decision trees, random forests, and logistic regression to
generate stock price forecasts. Through methods such as constructing confusion matrices,
prioritizing data categorization, and comparing against desired accuracy, recall, and F1
score benchmarks, the proposed system undergoes evaluation.

Roobini et al. (2022), mainly focus on predicting either stock price rises or stable states.
Additionally, their study scrutinizes the efficacy of diverse machine learning techniques,
including logistic regression, random forest, decision trees, and naive Bayes theorem, in
producing stock price forecasts. To gauge thesemethodologies, data from the transportation
traffic department is utilized, facilitating a comprehensive comparative examination.

Roy (2019) proposed the Auto-ARIMA and Holt-Winters models are applied for
predicting future stock prices. Moreover, linear programming is employed for optimizing
portfolios. By continuously updating the model with the latest market data, it becomes
adept at capturing the most recent market trends, broadening its applicability across
various portfolios over time. The trend analysis obtained can assist in forecasting improved
investment strategies in the stock market, empowering investors to make well-informed
decisions based on real-time market analysis. This methodology is geared towards
maximizing returns and minimizing losses, ultimately supporting investors in making
prudent investment selections.

Ilyas et al. (2022) introduces an innovative hybrid model for predicting stock closing
prices. This model combines a fully improved Hodrick-Prescott (Hodrick-Prescott) filter
to reduce noise in time series data, introduces new features including company returns,
changes in opening and closing prices, and applies machine learning algorithms such as
SVM, Random Forest, ARIMA, and deep learning techniques such as LSTM and GRUs.
The strengths of the model include enhanced predictive accuracy, achieving a prediction
accuracy of 70.88% and a root mean square error of 0.04, while reducing the error rate of
the model. However, potential drawbacks of the model may include a strong dependence
on the length of historical data, challenges with the vanishing gradient problem when
dealing with long sequence data in deep learning models, and the high computational
complexity of the model, which may require substantial computational resources and
time. Overall, this paper proposes a great prediction model and demonstrates excellent
prediction results.

BACKGROUND
Long short-term memory network
LSTM belongs to the family of RNN and excels in capturing long-term dependencies
within sequential data (Wikipedia Contributers, 2024). Unlike traditional RNN, LSTM
are adept at handling sequential data like time series, text, and speech. They employ a
sophisticated architecture comprising memory cells and gates to regulate information flow.
This mechanism enables LSTM to selectively retain or discard information as necessary,
thereby mitigating the issue of vanishing gradients commonly encountered in conventional
RNN. Given these capabilities, LSTM finds extensive applications across various domains,
including natural language processing, speech recognition, and time series forecasting.

Huo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2493 4/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2493


Figure 1 LSTM running mechanism.
Full-size DOI: 10.7717/peerjcs.2493/fig-1

An LSTM network is proficient in managing and analyzing sequential data. LSTM
running mechanism is shown in Fig. 1 (Banoula, 2023). Its architecture comprises LSTM
cells organized in a sequence, wherein each cell integrates input, output, and forget
gates. These gates serve to regulate the information flow within the cell, enabling selective
retention or omission of information from previous time steps. This mechanism empowers
the LSTMnetwork to preserve long-termdependencies present in the input data, facilitating
effective sequential data processing. The LSTM cell also has a memory cell that stores
information from previous time steps and uses it to influence the output of the cell at the
current time step. The output of each LSTM cell is passed to the next cell in the network,
allowing the LSTM to process and analyze sequential data over multiple time steps.

Markov decision process
A Markov decision process (MDP) is a mathematical framework used to model decision-
making problems where an agent interacts with an environment over a sequence of discrete
time steps. The key feature of an MDP is the Markov property, which states that the future
state of the system depends only on the current state and action, and not on the sequence
of events that preceded them. This property simplifies the modeling of complex systems
by focusing on the most recent information (Bellman, 1957). The MDP is defined by the
tuple (S,A,P,R) where:

• S is the set of states.
• A is the set of actions.
• P is the state transition probability function: P(s′|s,a) represents the probability of
transitioning to state s′ given the current state s and action a.
• R is the reward function: R(s,a,s′) represents the immediate reward obtained after
taking action a in state s and transitioning to state s′.

Reinforcement learning
Reinforcement learning (RL) is a branch of machine learning that focuses on how an agent
learns tomake a sequence of decisions tomaximize cumulative rewards through interaction

Huo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2493 5/31

https://peerj.com
https://doi.org/10.7717/peerjcs.2493/fig-1
http://dx.doi.org/10.7717/peerj-cs.2493


with an environment. In RL, the agent learns by interacting with the environment,
observing its states, taking actions, receiving rewards, and learning how to maximize
cumulative rewards over time. RL can be seen as a framework that utilizes MDP to model
decision-making problems. MDP provides the formalism for RL problems, defining the
structure of the environment, possible actions, and the consequences of those actions.
RL algorithms, such as Q-learning and policy gradient methods, operate within the MDP
framework to learn the optimal policy. The core concepts in RL as follows (Sutton & Barto,
2005):

• State (s): Represents a specific configuration or situation in the environment.
• Action (a): Represents the possible actions the agent can take in a given state. The action
set is denoted by A, including all possible actions.
• Policy (π): Represents the probability distribution of taking specific actions in a given
state. Denoted by π , where π(a|s) is the probability of taking action a in state s.
• Reward (r): Represents the immediate feedback the agent receives from the environment
after taking an action.
• Value function: There are two types of value function. The first type is the state value
function (Vπ (s)): Represents the expected cumulative reward starting from state s under
policy π . The equation is shown as follows.

Vπ (s)=Eπ

[
∞∑
t=0

γ t rt |s0= s

]
(1)

The second type is action value function (Qπ (s,a)): Represents the expected cumulative
reward starting from state s, taking action a under policy π . The equation is shown as
follows.

Qπ (s,a)=Eπ

[
∞∑
t=0

γ t rt |s0= s,a0= a

]
(2)

The goal of RL is to find an optimal policy π∗ that maximizes the expected cumulative
reward. This is achieved by maximizing the value functions:

V ∗(s)=maxπVπ (s) (3)

Q∗(s,a)=maxπQπ (s,a) (4)

where V ∗(s) and Q∗(s,a) represent the optimal state value and action value under the
optimal policy.

PROBLEM DESCRIPTION AND HYBRID DEEP LEARNING
MODEL DESIGN
In this section, we propose a hybrid deep learning model designed for stock asset
management. This model comprises two parts: LSTM and RL model. The LSTM model
focuses on predicting variations in stock prices and risk index, while the RL model is tasked
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with making decisions regarding stock trading, such as selling, holding, or buying stocks.
These two parts work together to build a hybrid deep learning model that can both predict
stock prices and operate stock trading.

Problem description and model architecture design
The most difficult and important component of using AI to predict the stock price is
Market uncertainty (Connolly, Stivers & Sun, 2005). Stock markets are influenced by
various factors, including economic data, political events, natural disasters, and more.
These factors are often unpredictable, making stock price prediction very challenging. To
address the aforementioned issues, many researchers utilized various technologies to settle
them. For instance, LSTM is used to predict stock price variation and RL is used for stock
trading, etc. Additionally, to solve market uncertainty, several risk indexes are usually used
to describe the degree of market uncertainty, such as Average Directional Index (ADX),
Relative Strength Index (RSI), Commodity Channel Index (CCI), and so on (Wang et al.,
2018). However, many of research only utilized one type of model to predict stock price
variation or operate stock trading, including ADX, RSI and CCI are calculated based on
historical data.

In this study, we innovatively propose a hybrid deep learning model that combines
the aforementioned models (LSTM and RL), it can predict stock price variation and
intelligently opreate stock trading according to price variation, concurrently, the proposed
hybrid model can predict risk index to master stock trends in advance that adopt more
intelligent policy to operate stock trading. If compared to using one type of deep learning
model, the proposed hybrid model offers several potential advantages, such as LSTM can
capture long-term dependencies in sequential data, enabling more accurate predictions of
stock price changes. By combining with RL, the LSTM’s predictions can be used as inputs to
the RL model, enhancing the accuracy and reliability of the trading strategy. Solely relying
on an LSTM model may perform poorly in volatile markets or unexpected situations. By
combining with RL, a more robust trading strategy can be achieved, as the RL model can
adapt to real-time market feedback and exhibit some level of adaptability, etc. The whole
architecture of the hybrid deep learning model is shown in Fig. 2. The LSTM model is
responsible for stock price and risk index prediction, the RL model is responsible for stock
trading by stock price and risk index variation. In terms of different stock prices and risk
indexes, the trained agent can adopt the different actions (selling, holding and buying).

Stock price and risk index prediction using LSTM
In the Introduction, we introduced features of LSTM, It is suitable for handling and
predicting time-series data. In stock price prediction, LSTM can be used to analyze
historical stock price data, identify patterns and trends within it, and make predictions
for future prices. In stock trading, there are four price indexes that people generally pay
attention to, which are as follows (Mur, 1999):

• Open: The first transaction price at the beginning of a trading day.
• High: The highest price reached during a trading day.
• Low : The lowest price reached during a trading day.
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Figure 2 Architecture of hybrid deep learning model.
Full-size DOI: 10.7717/peerjcs.2493/fig-2

• Close: The last transaction price at the end of a trading day.

These four different prices each have their own usage. In this study, we mainly focus
on Close Price. The close price is widely regarded as one of the most crucial prices for
investors because it represents the final transaction price at the end of a trading day. If the
close price trend can be predicted in advance, it can reduce unnecessary investment risk.
For predicting close price variation, we tend to use LSTM to execute this task. The LSTM
architecture is shown in Fig. 3, we plan to adopt a four-layer LSTM architecture and use
Dropout layers after each LSTM layer for prediction. The Dropout layer can reduce the
complexity of the neural network, decreasing the model’s reliance on the training data
and thus reducing the risk of overfitting (Hinton et al., 2012). Meanwhile, the number of
LSTM layers should not be utilized too much, because LSTM layers are computationally
intensive, especially when the network becomes deeper, having too many LSTM layers can
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Figure 3 LSTM architecture.
Full-size DOI: 10.7717/peerjcs.2493/fig-3

significantly increase the computational cost of training and inference, requiring more
memory and processing power.

For the risk index, we mainly focus on ADX (Wilder, 1978). The ADX is a technical
indicator used to evaluate the strength of trends in stocks or other financial assets. The value
of the ADX index typically ranges from 0 to 100, with higher values indicating stronger
trends. Some common ranges and meanings are as follows.
• 0∼ 20: Typically considered signals of weakening trends or sideways markets. ADX in
this range indicates a lack of clear trend direction, and prices may be in a consolidation
phase.
• 20∼ 30: This range suggests that the trend in the market is beginning to emerge, but
the trend strength is weak. Traders may start to take notice of the emerging trend, but
caution is advised as the sustainability of the trend is still uncertain.
• 30∼ 40: ADX further increases, indicating an increase in trend strength.
• 40∼ 50: Market trends are considered quite strong within this range.

By combining stock price predictions with risk index predictions, it can be made in
advance when market uncertainty is high. Meanwhile, in order to verify the robustness of
the proposed model, the LSTM architecture in Fig. 3 will be adopted for both stock price
prediction and risk index prediction.

Stock trading operating using RL
To leverage RL for operating stock trading, it’s essential to pre-define crucial parameters,
with the ultimate objective of maximizing assets through stock transactions. The MDP of
stock trading is designed as follows:

• Environment : We select 10 well-known American companies in different fields around
the world, The details are shown in Table 1. These 10 companies cover multiple fields
such as technology, finance, and entertainment.
• State: The state consists of four parts: [At , ct , ht , Xt ]. At represents potential total assets
in time step t .ct represents close price of each type of stock in time step t .ht represents
shares owned of each stock. Xt represent ADX.
• Actions: For each stock, the action spaces are defined as [St , Ht , Bt ]. Here, St represents
the action of selling the stock at time step t , HT represents the action of holding the
stock at time step t , and Bt represents the action of buying the stock at time step t .
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Table 1 Ten well-known American companies.

Ticker symbol (TIC) Company name Information

AAPL Apple Technology company
AMGN Amgen Biotechnology company
BA Boeing company Manufacturer of aircraft
DIS Disney company Entertainment company
INTC Intel corporation Semiconductor design, manufacturing
KO Coca-cola company Beverage company
MCD McDonald corporation Fast-food restaurant
MSFT Microsoft corporation Technology company
TRV Travelers company Insurance products and services
V Visa Inc. Payment technology

• Rewards: For maximizing potential total assets, three actions come into play, each
influencing the outcome. The selling price of stocks is determined by the closing price,
leading to an increase in potential total assets upon selling. Conversely, buying stocks
decreases potential total assets. The magnitude of increase/decrease is described in
Eqs. (5) and (6). If potential total assets at time step t exceed those at time step t −1,
the reward increases by 1; otherwise, it decreases by 1. However, if potential total assets
turn negative, the reward drops by 100. While these equations are straightforward, it’s
important to note that increased potential total assets don’t always translate to profit.

At =At−1+ht ct . (5)

At =At−1−ht ct . (6)

In certain scenarios, stock prices may decline successively, prompting the need to sell off
depreciating stocks to limit losses. While this action increases potential total assets, actual
profits decrease. To solve this issue, it is imperative to impose constraints. Equations (7)
and (8) are proposed in this study to address this concern.

When selling stocks, three constraints are applied. Firstly, the remaining shares after
selling must be greater than or equal to 0, denoted by h′t ensuring no overselling. Secondly,
the difference between the closing price at time step t and the purchased price c

′

should
equal or exceed the threshold θc1 to ensure profitability. Thirdly, the ADX value must
be below the threshold θX1 , providing insight into trend strength and helping prevent
profit decrease. These constraints collectively ensure that stocks are sold under favorable
conditions, with the ADX aiding in anticipating trend changes and preserving profits.

When buying stocks, three constraints are also applied. Firstly, the difference between
the closing prices at time step t and t −1 must be greater than or equal to the threshold
θc2, ensuring stocks are purchased during upward trends. Secondly, the number of shares
bought should be less than or equal to θ s, preventing excessive purchases. Thirdly, the
ADX value must exceed θX2 , indicating strong trend momentum and maximizing profit
potential for each stock. These constraints collectively ensure that stocks are acquired
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Table 2 Stock trading thresholds.

Threshold Value

θc1 20
θX1 20
θc2 10
θs 500
θX2 40

during favorable market conditions, with the ADX serving as a preemptive index of trend
strength.

selling =


ht −h′t ≥ 0
ct − c

′

≥ θc1
Xt <θX1

. (7)

buying =


ct − ct−1≥ θc2
st ≤ θs
Xt >θX2

. (8)

When holding stock, the RL agent refrains from taking any action to actively manage
stock trading. Nonetheless, potential total assets may continue to rise during this status, as
described by Eq. (9). Even without operating trades, fluctuations in stock prices can still
influence potential total assets, leading to changes in their value.

holding =At−1+ht (ct − ct−1). (9)

Based on Eqs. (7) to (9), RL model can train agent operate stock trading, the critical
threshold values from Eqs. (7) to (9) are shown in Table 2, the details about threshold
value are as follows:

• For θc1 , we calculate the difference between the prices of each stock on the first day
(2010/07/01) and the last day (2023/10/24), with MSFT having the maximum price
difference of 312.77 and INTC having the minimum difference of 21.73. Here we set
20 as the θc1 value which is most approximate to the minimum difference. The reason
is stocks with the smallest increases may have relatively lower market risk sensitivity. In
the stock market, stocks with large price fluctuations are usually associated with high
risk. Therefore, selecting the price differential of the stock with the smallest increase as a
trading signal implies that the overall market volatility is low, thereby reducing the risk
of the investment portfolio.
• For θX1 we set the threshold is 20. As we introduced in ‘Stock Price and Risk Index
Prediction using LSTM’, when the ADX is below 20, it typically indicates that the market
is in a state of weak trend or lacks a clear trend. The market may be in a sideways or
consolidating phase. An ADX value below 20 is generally considered a period of unclear
trend, where traders may encounter more oscillations and sideways movements.
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Table 3 Experimental results on the potential total assets of different θc1 and θc2 .

θc1 θc2 Potential total assets

20 10 1,036,800.936
19 11 1,035,848.228
18 12 1,030,829.868
17 13 1,019,809.701
16 14 1,020,766.918
15 15 1,006,301.803

• For θc2 we set the threshold is 10. Selling too early may overlook the possibility of the
stock continuing to rise, thus potentially forfeiting greater profits in the future. However,
waiting for a significant price increase before selling may result in missing the optimal
selling opportunity, leading to a price decline and potential loss of profit. So in order to
achieve balance, we take a value of 10.
• For θs we set the threshold is 500. Diversifying investments across multiple stocks helps
to reduce the risk associated with any single stock. Concentrating all investments in a
few stocks may expose the portfolio to significant risks if any of those stocks encounter
issues. Setting a maximum limit of 500 shares per stock forces RL agent to diversify
investments, thereby reducing concentration risk.
• For θX2 we set the threshold is 40. Also as we introduced in ‘Stock Price and Risk Index
Prediction using LSTM’, ADX above 40 suggests a very strong trend in the market,
whether it’s an uptrend or downtrend. This indicates that the current trend is likely to
continue, combining with the concurrent action of θc2 , buying stocks at this juncture
can significantly enhance the potential for maximizing profits.

Furthermore, in order to maximize the potential total assets obtained and prove
threshold values are effective, we conducted preliminary comparative experiments on θc1
and θc2 with different value ranges. In Table 3, we present the experimental setup and
results. The initial values for θc1 and θc2 are both set to 15, with incremental changes of 1.
We compare different combinations of θc1 and θc2 . The first column lists θc1 values ranging
from 15 to 20, while the second column shows θc2 values ranging from 10 to 15. From the
results, we observe that when θc1 is 20 and θc2 is 10, the potential total assets achieve the
optimal value, reaching 1,036,800.936. This finding aligns with the discussion in ‘Stock
Price and Risk Index Prediction using LSTM’, where it corresponds to the universal index
used in financial modeling.

EXPERIMENT
Experiment data
In the experiment, the primary foundation lies in the dataset. We select Table 1 data
spanning from July 1, 2010, to October 24, 2023, encompassing a comprehensive thirteen-
year period (Liu et al., 2020). This dataset is particularly significant as it includes the onset
and aftermath of the COVID-19 pandemic, which exerted a profound influence on the
stock market (Zhu et al., 2020). Therefore, this dataset serves as a robust choice for training
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Table 4 Optimized hyperparameters for the stock price prediction model.

Layer Searching range Optimal value

LSTM 1 32∼ 256 160
Dropout 1 0.1∼ 0.5 0.2
LSTM 2 32∼ 256 64
Dropout 2 0.1∼ 0.5 0.2
LSTM 3 32∼ 256 64
Dropout 3 0.1∼ 0.5 0.1
LSTM 4 32∼ 256 64
Dropout 4 0.1∼ 0.5 0.4

Table 5 Optimized hyperparameters for the ADX prediction model.

Layer Searching range Optimal value

LSTM 1 32∼ 256 224
Dropout 1 0.1∼ 0.5 0.3
LSTM 2 32∼ 256 192
Dropout 2 0.1∼ 0.5 0.1
LSTM 3 32∼ 256 96
Dropout 3 0.1∼ 0.5 0.1
LSTM 4 32∼ 256 160
Dropout 4 0.1∼ 0.5 0.5

and evaluating the performance of the proposedmodel. The dataset needs to be partitioned,
70% datasets are used to train and the remaining datasets are used for validation.

Stock price and ADX prediction experiment
Initially, we utilize LSTM to train and predict both stock price and ADX. The LSTM
model is implemented using Keras framework (Chollet, 2018). The LSTM architecture is
illustrated in Fig. 3. However, to attain the optimal outcome, the number of units for each
layer should be dissimilar, their value should be optimized. To achieve this objective, we
utilize the Hyperband algorithm to search the optimal hyperparameters for the LSTM
model (Li et al., 2017). The optimized hyperparameters of the stock price prediction and
the ADX prediction are shown in Tables 4 and 5.

About the evaluation index for LSTM model, we use the coefficient of determination.
The coefficient of determination (R2) is a statistical measure used to assess the goodness of
fit of a regression model (Pearson, 2010). R2 values range from 0 to 1, where 1 indicates a
perfect fit of the model to the data, and 0 indicates that the model does not explain any of
the variability in the dependent variable. Its Equation is shown as follows. Where:

R2
= 1−

SSR
SST

(10)

• SSR (Sum of Squared Residuals) represents the total sum of squared differences between
the predicted values of the model and the actual observed values.
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Table 6 R2 of stock price prediction results.

TIC R2

AAPL 0.98
AMGN 0.91
BA 0.89
DIS 0.96
INTC 0.95
KO 0.96
MCD 0.96
MSFT 0.96
TRV 0.97
V 0.83
Average 0.94

• SST (Total Sum of Squares) represents the total sum of squared differences between the
target variable and its mean.

By utilizing Tables 4 and 5 optimized hyperparameters, the R2 of stock price prediction
results using validation data are shown in Table 6. Based on these results we can clearly
know the R2 of AAPL stock has impressive performance, achieving a splendid 0.98. The
minimal R2 is observed for V stock, although it still reaches a respectable 0.83. The price
trend of AAPL and V over time is shown in Figs. 4 and 5, this result by using validation data.
In Fig. 4, the blue curve represents the original stock price and the red curve represents
the predicted price. From these figures, we can perceive the predicted price are not only
consistent with the overall trend of the original price, but also predict the subtle changes
in prices very well. In Fig. 5, the predicted results are consistent with the overall trend of
the original values, but there are still some shortcomings in price fluctuations, especially in
peak changes.

The R2 of ADX prediction results are shown in Table 7. The optimal prediction results
using validation data in BA, DIS and MCD, their R2 can achieve 0.80. On the contrary, The
minimal R2 is stock V, the result is 0.67. To compare the difference between the optimal
and minimal results, the validation result of ADX value of BA and V over time is shown
in Figs. 6 and 7. Based on these findings, the prediction results generally exhibit poor
performance within the range of low to 10 ADX values. Additionally, accurate predictions
are challenging to achieve during peak periods. The reason probably is inadequate model
complexity, the proposed LSTM model may hard to capture the complex nonlinear
relationships of ADX, requiring a more complex model structure or additional parameters
to improve predictive performance, however, the more complex the model, the longer it
takes to train it. Fortunately, in ‘Stock Price and Risk Index Prediction using LSTM’, we
introduced the several ranges of ADX indicating different trend strengths. Between 0 and
20, the markets show weak trend strength and normally greater than 40, the trend strength
is strong. Based on this analysis, we consider it will not have a significant impact on the
stock trading by the model, and the ADX values predicted by the model are available.
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Figure 4 Stock price trend of AAPL.
Full-size DOI: 10.7717/peerjcs.2493/fig-4

Figure 5 Stock price trend of V.
Full-size DOI: 10.7717/peerjcs.2493/fig-5
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Table 7 R2 of ADX prediction results.

TIC R2

AAPL 0.77
AMGN 0.74
BA 0.80
DIS 0.80
INTC 0.75
KO 0.72
MCD 0.80
MSFT 0.72
TRV 0.71
V 0.67
Average 0.75

Figure 6 ADX value of BA.
Full-size DOI: 10.7717/peerjcs.2493/fig-6

To validate the effectiveness of our proposal model, we compared the performance
of various loss functions to determine the most suitable one. Specifically, we evaluated
the lproposal model using mean squared error (MSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE) to analyze their respective results. MSE is a
commonly used loss function in regression analysis that measures the average squared
difference between predicted and actual values. The equations for the three loss functions
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Figure 7 ADX value of V.
Full-size DOI: 10.7717/peerjcs.2493/fig-7

are presented below, starting with MSE.

MSE =
1
n

n∑
i=1

(yi− ŷi)2 (11)

where:
• n is the number of data points.
• yi is the actual value.
• ŷi is the predicted value.

MSE penalizes larger errors more heavily than smaller ones, making it sensitive to
outliers. A smaller MSE indicates better model performance, with anMSE of 0 representing
a perfect fit (James et al., 2013). The second equation isMAE.MAE is a loss function used in
regression analysis tomeasure the averagemagnitude of errors between predicted and actual
values, without considering their direction (Willmott & Matsuura, 2005). It calculates the
absolute differences between the predicted and actual values and then averages them. The
equation for MAE is:

MAE =
1
n

n∑
i=1

|yi− ŷi| (12)

where:

• n is the number of data points.
• yi is the actual value.
• ŷi is the predicted value.
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MAE is less sensitive to outliers than MSE since it does not square the errors. A lower
MAE indicates better model performance, with an MAE of 0 representing a perfect fit. The
last loss function we show MAPE equation as follows. MAPE is a loss function commonly
used to measure the prediction accuracy of a model in terms of percentage error. It
calculates the average absolute percentage difference between predicted and actual values.
MAPE is widely used because it expresses the error as a percentage, making it easy to
interpret (Armstrong & Collopy, 1992). The equation for MAPE is:

MAPE =
100%
n

n∑
i=1

∣∣∣∣yi− ŷiyi

∣∣∣∣ (13)

where:

• n is the number of data points.
• yi is the actual value.
• ŷi is the predicted value.

MAPE is sensitive to small actual values, which can lead to disproportionately large errors
when the actual value is close to 0. A lower MAPE indicates better model performance,
with a MAPE of 0% representing a perfect fit.

In Table 8, we compare the R2 results for different loss functions when stock price
prediction. This Table consists of three columns. The first column presents the MSE
results, with an average R2 is 0.94 across 10 companies. The optimal performance is
achieved by AAPL with an R2 is 0.98, while the lowest is by V with 0.83. The second
column shows the MAE results, where the average R2 remains 0.94, the same as the MSE
results. However, the R2 values for BA and V are higher under MAE compared to MSE,
whereas the result for TRV is lower. The third column contains theMAPE results, where six
companies exhibit successful fitting. This limited success may be due to MAPE’s sensitivity
to small or 0 values and its lack of robustness to outliers. As MAPE relies on percentage
errors, it is particularly vulnerable to unevenly distributed data or outlier effects.

In Table 9, we compare the R2 results of different loss functions when ADX prediction.
Like the previous table, it contains three columns. The first column lists the MSE results,
with an average R2 is 0.75 across the 10 companies. The optimal R2 scores is 0.80 are
observed for BA, DIS, and MCD, while V has the minimum at 0.67. The second column
reports the MAE results, with an average R2 is 0.73, which is slightly lower than the MSE
results. Notably, the R2 for MSFT is higher under MAE thanMSE. The third column shows
the MAPE results, where none of the companies demonstrate successful fitting. As with
stock price predictions, MAPE’s sensitivity to small or 0 values and its poor handling of
outliers likely contribute to these poor results, particularly given its reliance on percentage
errors, which makes it less robust in cases of unevenly distributed data. On the basis of the
above experimental results, it can be concluded that setting the loss function to MSE and
MAE yields outstanding experimental results.

Stock price and ADX prediction comparison experiment
In Tables 10 and 11, we present the results of comparison experiments for stock price and
ADX prediction using different train-validation split ratios. For stock price prediction,
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Table 8 R2 of stock price prediction results with different loss function.

TIC R2 (MSE) R2 (MAE) R2 (MAPE)

AAPL 0.98 0.97 0.96
AMGN 0.91 0.92 −11.21
BA 0.89 0.93 −4.44
DIS 0.96 0.95 −2.21
INTC 0.95 0.96 0.96
KO 0.96 0.96 0.94
MCD 0.96 0.96 0.95
MSFT 0.96 0.96 0.95
TRV 0.97 0.93 −7.08
V 0.83 0.87 0.89
Average 0.94 0.94 −1.92

Table 9 R2 of ADX prediction results with different loss function.

TIC R2 (MSE) R2 (MAE) R2 (MAPE)

AAPL 0.77 0.77 −2.00
AMGN 0.74 0.73 −2.30
BA 0.80 0.76 −1.80
DIS 0.80 0.76 −1.65
INTC 0.75 0.74 −2.02
KO 0.72 0.71 −1.98
MCD 0.80 0.78 −1.98
MSFT 0.72 0.75 −2.74
TRV 0.71 0.70 −2.34
V 0.67 0.67 −1.83
Average 0.75 0.73 −2.06

when the validation split ratio is set to 0.2, the R2 results of BA, DIS, and INTC are better
compared to the results when the validation split ratio is 0.3. However, for KO, the R2 score
turns negative. Several factors may explain this. First, if the distribution of the validation
data differs significantly from the training data, the model may struggle to generalize,
performing well on the training set but poorly on the validation set, resulting in a negative
R2. Second, an overly large proportion of training data can lead to overfitting, where the
model learns noise and specific patterns from the training data that do not generalize well.
This can also result in a negative R2 on the validation data. For the ADX prediction results,
when the validation data split ratio is 0.2, the R2 result of AMGN is higher than that for a
0.3 split ratio. However, the R2 results for other companies are lower when the split ratio
is 0.2 compared to 0.3. The average R2 result of the 0.2 split ratio is 0.71, which is lower
than the 0.75 R2 result of the 0.3 split ratio. These results indicate that a 0.3 validation data
split ratio offers better overall performance.

For validating our proposal model performance, we use the traditional ARIMA model
and non-linear MLP model to compare. For non-linear MLP model, we choose SRV

Huo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2493 19/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2493


Table 10 R2 of stock price prediction results using different split ratio.

TIC Validation data (0.3) Validation data (0.2)

AAPL 0.98 0.92
AMGN 0.91 0.90
BA 0.89 0.91
DIS 0.96 0.98
INTC 0.95 0.97
KO 0.96 −0.26
MCD 0.96 0.93
MSFT 0.96 0.89
TRV 0.97 0.97
V 0.83 0.76
Average 0.94 0.79

Table 11 R2 of ADX prediction results using different split ratio.

TIC Validation data (0.3) Validation data (0.2)

AAPL 0.77 0.71
AMGN 0.74 0.75
BA 0.80 0.77
DIS 0.80 0.76
INTC 0.75 0.71
KO 0.72 0.68
MCD 0.80 0.77
MSFT 0.72 0.72
TRV 0.71 0.61
V 0.67 0.62
Average 0.75 0.71

model. The support regression vector (SRV) model is a machine learning model that is
derived from support vector machines (SVM) but adapted for regression tasks (Smola &
Schölkopf, 2004). Instead of classifying data points into categories, as in the case of SVM,
SRV is used to predict continuous values. The model seeks to find a function that deviates
from the true target values by no more than a certain margin, while also being as flat
as possible. SRV is particularly useful when dealing with high-dimensional data and has
strong theoretical foundations in convex optimization. It aims to minimize the error by
balancing the complexity of the model and the precision of predictions. To ensure the
consistency of the experiment, we set the ratio of training data to validation data to 0.7
and 0.3 when using the SRV model, the split ratio is same as proposal model training. In
Table 12, we show the R2 results of stock price and ADX prediction.

From Table 12, we observe that for stock price prediction using the SRV model, the R2

results are significantly worse compared to our propossal model. The SRV model struggles
to fit the stock price, showing negative R2 values for all 10 companies, with an average
accuracy of −9.05. This performance is considerably lower than that of our proposed
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Table 12 R2 of stock price and ADX prediction results using the SRVmodel.

TIC SRV (Stock price) SRV (ADX)

AAPL −13.46 0.69
AMGN −22.60 0.71
BA −0.14 0.70
DIS −0.61 0.65
INTC 0.28 0.64
KO −6.18 0.65
MCD −7.76 0.67
MSFT −14.30 0.60
TRV −2.53 0.57
V −23.26 0.56
Average −9.05 0.64

model. For the ADX prediction results, the SRV model does perform better, successfully
fitting the data with positive R2 values for all companies. However, when we compare the
R2 results of the SRV model with those of our proposal model, the SRV model consistently
underperforms. The average R2 of SRV is 0.64, while the proposal model achieves 0.75. This
comparison clearly demonstrates the superior performance of our propossal model. Next
we compare traditional ARIMAmodel results with our proposal model. The autoregressive
integrated moving average (ARIMA) model is a popular statistical method used for time
series forecasting (Geurts, Box & Jenkins, 1977). ARIMA combines three components:

• AR (AutoRegressive): The model uses the relationship between an observation and a
number of lagged observations (previous values).
• I (Integrated): This involves differencing the data to make it stationary, which means
removing trends or seasonal effects.
• MA (Moving Average): The model uses the relationship between an observation and a
residual error from a moving average model applied to lagged observations.

ARIMA is widely used in forecasting because it can model various types of time series
data, including those with trends and seasonality. In the context of stock price prediction,
ARIMA can help analyze historical stock prices and project future prices based on patterns
observed in the past. However, it is generally most effective when the time series is linear
and doesn’t exhibit too much volatility. In Tables 13 and 14, we present the results using
the same training and validation data. Each table includes two columns: the first column
shows the results based on the training data alone, and it is evident that the traditional
ARIMA model struggles to fit both stock prices and the ADX. For stock price predictions,
the average R2 is negative at −2.87, and for ADX predictions, it is −1.35. These values
clearly indicate that the model performs poorly. The second column displays results where
the ARIMA model was trained using the entire dataset. While the average R2 for stock
prices is slightly lower than our proposal model, the ARIMA model performs better for
ADX prediction. Specifically, the average R2 for stock price predictions reaches 0.98, and
for ADX predictions, it reaches 0.74. These results further highlight that the traditional
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Table 13 R2 of stock price prediction results using the ARIMAmodel.

TIC ARIMA (Training data only) ARIMA (Entire data)

AAPL −4.46 0.99
AMGN −4.27 0.97
BA −6.61 0.98
DIS −2.29 0.99
INTC −0.08 0.98
KO −0.51 0.98
MCD −1.85 0.99
MSFT −4.27 0.99
TRV −1.01 0.99
V −3.42 0.96
Average −2.87 0.98

Table 14 R2 of ADX prediction results using the ARIMAmodel.

TIC ARIMA (Training data only) ARIMA (Entire data)

AAPL −1.82 0.77
AMGN −0.49 0.78
BA −0.003 0.79
DIS −1.54 0.80
INTC −0.44 0.73
KO −0.66 0.72
MCD −2.43 0.79
MSFT −0.31 0.75
TRV −4.79 0.69
V −1.04 0.67
Average −1.35 0.74

ARIMA model struggles with nonlinear trends and performs poorly when encountering
unseen data, reinforcing the effectiveness of our proposal model.

Stock trading experiment
Experiment setting
For main experiment, we use RL train agent to operate stock trading. For the RL algorithm,
we choose the Proximal Policy Optimization (PPO). PPO is an algorithm used for training
RL agents, aiming to iteratively optimize the policy while avoiding significant policy
updates. PPO achieves this by constraining the relative difference between the new and old
policies. There are three concepts of PPO (Schulman et al., 2017):
1. Objective: Maximize the expected cumulative reward while limiting the relative

difference between new and old policies in each update.
2. Surrogate objective: PPO employs a surrogate objective function, the optimization of

which ensures that changes to the new policy relative to the old policy are gradual to
prevent large updates.
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3. Importance sampling : Importance sampling is used to adjust the expectation of rewards,
considering the differences between the new and old policies.
In PPO, the surrogate objective function is designed to maximize the ‘‘clipped surrogate

objective’’ expression:

L(θ)=Et
[
min

(
rt (θ)Ât ,clip(rt (θ),1−ε,1+ε)Ât

)]
(14)

where:

• L(θ) is the surrogate objective function.
• θ represents the policy parameters.
• Ât is the advantage function, representing the advantage estimate at time step t .
• rt (θ) is the importance ratio, representing the relative probability between the new and
old policies:

rt (θ)=
πθ (at |st )
πθ,old(at |st )

(15)

• clip(x,a,b) is a clipping function that restricts x to the interval [a,b].

The update rule of PPO utilizes gradient ascent to update policy parameters by
maximizing the surrogate objective function:

θnew= θold+α∇θL(θ) (16)

where α is the learning rate. Thus, the training process of PPO involves iteratively updating
policy parameters to maximize the surrogate objective function, optimizing the agent’s
policy.

Stock trading experiment results with original value
To validate the effectiveness of the risk index ADX, we conducted the experiment in two
parts. The first part excluded the use of ADX, while the second part integrated ADX.
This approach allowed us to demonstrate the effectiveness of ADX through comparative
experiments. We still use the same validation data as ‘Experiment’ and evaluate ten times
using RL model. In Fig. 8, the blue curve represents potential total assets without ADX and
the red curve represents potential total assets with ADX. The x-axis represents the time
step during training and the y-axis represents the potential total assets. The maximum of
potential total assets with ADX is 1,033,523.43, the minimum of potential total assets with
ADX is 1,027,267.20 and the average of potential total assets with ADX is 1,030,095.29.
On the other hand, the maximum of potential total assets without ADX is 1,032,204.86,
the minimum of potential total assets without ADX is 1,020,021.06 and the average of
potential total assets without ADX is 1,024,431.57. In Fig. 8, only one time the potential
total assets without ADX greater than the potential total assets with ADX. it can adequately
proves that using ADX is effective and can increase potential reward values.

Stock trading experiment with hybrid deep learning model
In this experiment, we use predicted stock price and ADX to surrogate original stock price
and ADX of data. We also use the same validation data as ‘Experiment’ and evaluate it ten
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Figure 8 Comparative results of potential total assets using original data.
Full-size DOI: 10.7717/peerjcs.2493/fig-8

times using the RL model. In Fig. 9, the blue curve represents potential total assets without
ADX and the red curve represents potential total assets with ADX. The x-axis represents
the time step during training and the y-axis represents the potential total assets. The
maximum of potential total assets with ADX is 1,051,397.88, the minimum of potential
total assets with ADX is 1,048,939.57 and the average of potential total assets with ADX
is 1,050,156.04. On the other hand, The maximum of potential total assets without ADX
is 1,048,859.81, the minimum of potential total assets without ADX is 1,048,026.19 and
the average of potential total assets without ADX is 1,048,417.05. All the results with ADX
greater than results without ADX, it can adequately prove our approach using ADX is
effective too with prediction data.

Stock trading experiment with sharp ratio
The Sharpe ratio (SR) is ameasure used to evaluate the risk-adjusted return of an investment
or portfolio. It compares the excess return (above a risk-free rate) to the total risk (measured
by standard deviation) of the investment (Sharpe, 1966). A higher SR indicates that the
investment offers a better risk-adjusted return.

The equation for the SR is:

SR=
Rp−Rf

σp
(17)

where:

• Rp is the expected return of the portfolio or investment.
• Rf is the risk-free rate (often a government bond yield).
• σp is the standard deviation of the portfolio’s excess return, which represents the total
risk.
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Figure 9 Comparative results of potential total assets using prediction data.
Full-size DOI: 10.7717/peerjcs.2493/fig-9

The SR helps investors understand how much return they are getting per unit of risk.
Typically, the higher the SR, the better the excess return per unit of risk. However, the value
can also be negative, indicating that the return of the investment is lower than the risk-free
rate. Below are common SR ranges and their meanings, these ranges based on common
knowledge widely used in the finance and investment industries:

• Negative (SR < 0): A negative SR indicates that the investment return is below the
risk-free rate, meaning the investment has performed poorly, possibly resulting in losses.
• Between 0 and 1 (0≤ SR < 1): This range suggests that the investment has relatively low
returns, while accompanied by some risk, the return is acceptable.
• Between 1 and 2 (1≤ SR < 2): A SR in this range is generally considered reasonable,
indicating a balanced risk-return relationship. Most investors view this range as
acceptable.
• Between 2 and 3 (2≤ SR < 3): This range represents very good risk-adjusted returns,
meaning that the investment delivers high returns relative to the risk taken. The
investment performs excellently.
• Above 3 (SR ≥ 3): A SR above 3 is rare and indicates extremely high returns with very
low risk. This usually suggests an exceptionally successful investment strategy.

To ensure the integrity and reliability of our experiment, we simulated 500 times stock
trading scenarios using 10 companies stock.We calculated the SR for both the original stock
data (with and without ADX) and the predicted stock data (with and without ADX). The
results are presented in Table 15. For the original stock data, the results demonstrate that
incorporating ADX significantly enhances trading performance. The SR for the original data
with ADX is 0.62, compared to −0.07 without ADX. As noted, a negative SR signals poor
performance and potential losses. This comparison clearly highlights the positive impact
of ADX on overall asset growth when applied to the original stock data. Similarly, for the
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Table 15 SR comparison experiment results.

Stock type ADX no-ADX

Original data 0.62 −0.07
Prediction data 0.05 0.0059

prediction stock data, the results indicate that using ADX improves trading performance.
The SR for the prediction data with ADX is 0.05, whereas it is only 0.0059 without ADX.
By comparing the original and prediction data in terms of R2 and SR, we observe that the
use of ADX for controlling stock trading, as proposed in this study, leads to a significant
improvement in potenial total asset value in both the original and prediction data compared
to scenarios where ADX is not utilized.

Stock trading experiment results with Williams R%
The Williams percentage range (Williams R%) is a momentum technical indicator that
measures overbought and oversold levels in the market. It was developed by LarryWilliams
and is used to assess the current closing price relative to the high and low of a specified
period, typically 14 days (Mur, 1999). TheWilliams R% is an oscillator that moves between
0 and −100. A reading above −20 indicates that the stock or asset is overbought, while
a reading below −80 signals that the stock or asset is oversold. Traders use this indicator
to identify potential reversals in the market, as an overbought condition might signal a
potential price drop, while an oversold condition may indicate a potential price increase.

In Fig. 10, we present the average potential total asset values when using Williams R%
or ADX to evaluate stock trading performance, applying the same RL algorithm, and
comparing the results to our proposal approach. The figure contains three curves: the
blue curve represents potential total assets without using ADX, the red curve represents
potential total assets with ADX, and the green curve represents potential total assets using
Williams R%. From the results, it is evident that using Williams R% as the stock trading
evaluation metric results in lower potential total assets compared to using ADX or not
using any metric at all. Specifically, the average potential total assets when using Williams
R% is 1,001,264.96, compared to 1,024,431.56 without ADX, and 1,030,095.29 with
ADX. These findings demonstrate that our proposal approach is more effective, leading to
higher potential total assets.

DISCUSSION
In our experiments, we used the proposed approach and hybrid deep learning model to
maximize the potential total assets. The results showed our approach is effective.

First, we trained an LSTMmodel to predict stock price variations, utilizing the stocks of
ten renowned companies worldwide for prediction. We assessed the model’s performance
using the R2 score as the evaluation metric. Table 6 presents the results. The average R2

across the ten stocks is 0.94, with a maximum of 0.98 achieved for AAPL. These findings
underscore the effectiveness of our proposed model in stock price prediction. We also
compare our proposal model with other approach, such as traditional ARIMAmodel, SRV
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Figure 10 Williams R% comparative experiment results.
Full-size DOI: 10.7717/peerjcs.2493/fig-10

model. The results show our proposal model have great performance. Regarding the ADX
prediction model, the average R2 across the ten stocks is 0.75, with a maximum of 0.80.
While these results exhibit slightly lower accuracy compared to stock price prediction, they
still hold superior performance when combined with the insights presented in ‘Stock Price
and Risk Index Prediction using LSTM’.

Secondly, we train RL agent to engage in stock trading with the objective of maximizing
potential stock assets. This phase of our study comprised two sets of experiments. Firstly,
we compared the performance between using the original stock prices with and without
the ADX. Secondly, we evaluated the predicted stock prices under the same conditions.
Our findings demonstrate the effectiveness of our proposed approach, particularly when
incorporating the ADX index. In the experiments utilizing original stock prices, 9 out of
10 results employing the ADX index exhibited superior potential benefits compared to
those without it. Similarly, in experiments involving predicted stock prices, all 10 results
utilizing the ADX index outperformed those without it. Meanwhile, we use SR to evaluate
our proposal model earn profit or not, all results underscore the efficacy of our approach.

In Fig. 11, we present the results of the comparison of the difference in potential total
assets. The initial comparison contrasts the prediction and original outcomes with the
utilization of the ADX index. Our findings indicate that our approach exhibits superior
performance, yielding greater potential total assets. The subsequent analysis focuses on the
predicted results difference between employing the ADX index and not using it, revealing
the effectiveness of the ADX index. Lastly, we examine the disparity in the original results
between utilizing the ADX index and not using it, reconfirming the effectiveness of the
ADX index.
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Figure 11 Comparison of difference in potential total assets.
Full-size DOI: 10.7717/peerjcs.2493/fig-11

CONCLUSION
In this paper, we presented a novel hybrid deep learning model that combines LSTM
for stock price prediction and RL for stock trading control. Our approach addresses the
limitations of using LSTM and RL separately by integrating them into a hybrid model
that enables simultaneous prediction and trading. Additionally, we incorporated the ADX
prediction from the LSTM model and proposed several constraints to enhance asset
management and reduce market uncertainty. Our experiment results demonstrate the
effectiveness of the proposed hybrid model, achieving an impressive average R2 value of
0.94 in predicting price variations. Moreover, by integrating ADX prediction and applying
constraints, our approach significantly increases stock assets to 1.05 times their initial value,
underscoring the practical utility and potential profitability of our methodology. Moving
forward, further research could explore additional refinements to the hybrid model,
investigate its performance across different market conditions, and conduct real-world
deployment to validate its effectiveness in practical trading scenarios. Overall, our study
contributes to the ongoing advancement of AI-driven approaches in stock trading and
asset management, offering valuable insights for investors and practitioners in navigating
the complexities of financial markets.
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