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A B S T R A C T

In pharmaceutical manufacturing, integrating model-based design and optimization can be beneficial for
accelerating process development. This study explores the utilization of Machine Learning (ML) techniques as a
surrogate model for the optimization of a three-unit wet-granulation based flowsheet model for solid dosage form
manufacturing. First, a reduced representation of a wet granulation flowsheet model is developed, incorporating
a granulation and milling process, along with a novel dissolution model that accounts for the effect of particle
size, porosity, and microstructure on dissolution rate. Two optimization approaches are compared, including an
autoencoder-based inverse design and a surrogate-based forward optimization. Both methods address the bi-
objective problem of maximizing dissolution time and product yield by identifying the optimal granulation
and mill process parameters. For this case study, both approaches were effective and incurred a similar
computational cost, averaging under 4 s. However, the autoencoder approach offers an advantage through
dimensionality reduction, a feature not available in surrogate-based optimization. Dimensional reduction is
particularly beneficial for complex process designs with numerous inputs and outputs. The lower dimensional
representation helps improve process understanding through enhanced visualization of the process design space
and facilitates feasibility studies involving multiple constraints. The autoencoder-based inverse design intro-
duced in this work showcases an implementation of AI and ML in pharmaceutical process development,
demonstrating the potential to enhance process efficiency and product quality in complex manufacturing
scenarios.

1. Introduction

The pharmaceutical industry has revolutionized itself significantly
over the past decade, relying on highly innovative solutions to meet the
ever-changing customer demands and strict regulatory requirements
(Algorri et al., 2022). Notably, this evolution is characterized by a pivot
from the development of batch to continuous manufacturing process,
generalized to personalized medicines, and simple dosage forms to 3D
printing and additive manufacturing (Am Ende, 2019). These transitions
have been propelled by advancements in Internet of Things (IoT),
Artificial Intelligence (AI), and advanced computing, which provide the
tools necessary to transform the traditional approaches to the design and
manufacture of pharmaceutical products (Venkatasubramanian, 2019;
Arden et al., 2021). With the introduction of Industry 4.0, the future of
pharmaceutical manufacturing aims to enhance productivity, to
improve quality assurance, cost-effectiveness, and to increase flexibility
to uncertainties, and agility to respond quickly changes (Arden et al.,

2021; Litster and Bogle, 2019). Furthermore, the enthusiasm sur-
rounding AI and machine learning (ML) is also reflected in the phar-
maceutical industry, as evidenced by the US-FDA’s release of articles
outlining their perspective (Administration, 2021; Administration,
2023) and research studies have shown the benefits associated with the
adoption of these technologies. In Research and Development (R&D),
ML can be used for generative discovery of novel molecules with po-
tential therapeutic effects (Sanchez-Lengeling and Aspuru-Guzik, 2018).
Process development can also benefit from ML, particularly in deter-
mining process design spaces (Sampat and Ramachandran, 2022; Mat-
sunami et al., 2023), and for the optimization of formulation and
processing conditions of different drug products (Chen et al., 2023;
Boukouvala and Ierapetritou, 2013; Sampat and Ramachandran, 2023).
ML can also be applied to manufacturing systems for process monitoring
and control (MacGregor et al., 2005), and for automation, enabling
systems to operate with minimal human interaction (Arden et al., 2021).

Deep learning is a class of ML algorithms that utilize multiple
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processing layers (i.e. networks) to learn representation of data (LeCun
et al., 2015; Sarker, 2021). Deep learning techniques have the capability
of processing data in their raw form, and can handle various data types,
such as numeric values, images, and text (Dargan et al., 2020). The
benefit of deep learning lies in its abilities to extract intricate structures
or patterns in high-dimensional data, which enables it to accomplish
more complex tasks to a higher accuracy as compared to shallow net-
works or simpler models (LeCun et al., 2015). In the pharmaceutical
industry, deep learning has been widely applied to drug discovery (Chen
et al., 2018; Gupta et al., 2021; Gentile et al., 2020) and image analysis
(Salami and Skomski, 2023; Preim and Botha, 2013; Zhang et al., 2020).
Despite its potential, the use of deep learning in the process design and
development is not yet widespread. Current industry practices in process
design often rely on heuristics, first-principles, or physics-based process
models to drive decision-making. Thus, there is an opportunity to
innovate by incorporating ML and deep learning methodologies into
workflows. More recently, there have been a few research studies that
have started exploring the potential applications of deep learning in
process development, including the use of Recurrent Neural Networks
(RNN) or Long-Short Term Memory (LSTM) for time-series predictions
of product quality (Aghaee et al., 2023), to support control and opti-
mization of continuous processes (Sampat and Ramachandran, 2023;
Wong et al., 2018), Autoencoders (AE) for dimensionality reduction
(Sampat and Ramachandran, 2022) or fault detection (Agarwal et al.,
2022), and Reinforcement Learning (RL) to optimize drug dosage and
develop personalized treatment plans (Huo and Tang, 2022). Never-
theless, there are still many remaining applications for deep learning
that can be developed which would benefit the design and development
of drug products. In this work, we will the utilize an autoencoder-based
model for inverse design optimization of a wet granulation
manufacturing process, where the objective is to produce the targeted
product quality.

The integration of model-based design and optimization has signif-
icantly contributed to the advancement in pharmaceutical process
development and manufacturing, resulting in an improvement in pro-
cess understanding, product quality, and productivity (Lakerveld et al.,
2013; Gernaey and Gani, 2010). This is particularly evident in down-
stream pharmaceutical drug product manufacturing, which involves the
processing of powders into tablets or capsules through a sequence of unit
operations. Here, the handling of bulk powder materials often presents a
complex and challenging environment, resulting in much of the pro-
cesses being designed empirically due to the lack of scientific under-
standing (Boukouvala and Ierapetritou, 2013). However, in recent
years, there has been a paradigm shift to the utilization of model-based
strategies, such as process models to simulate several unit operations in
powder processing, including mixing (Sen et al., 2012; Sen et al., 2013;
Escotet-Espinoza et al., 2019), roller compaction (Reynolds et al., 2010),
wet granulation (Chaudhury et al., 2014; Barrasso et al., 2015; Bel-
linghausen et al., 2022), milling (Barrasso et al., 2013; Dan et al., 2023;
Reynolds, 2010; Metta et al., 2018; Bilgili and Scarlett, 2005) and tablet
compaction (Matji et al., 2019; Escotet-Espinoza et al., 2018). The
development of predictive process models enables the development of
model-based flowsheet simulators, which can be used for dynamic
simulation (Boukouvala et al., 2013; Rogers et al., 2013), sensitivity
analysis (Metta et al., 2019; Boukouvala et al., 2012), and optimization
(Chen et al., 2023; Boukouvala and Ierapetritou, 2013; Wang et al.,
2017; Sampat et al., 2022) of integrated manufacturing processes. Pro-
cess models commonly used to simulate particulate processes, such as
population balance model (PBM) or discrete element model (DEM), are
known to be computationally inefficient, thus are not suitable to be used
for simulation-based optimization. To overcome the long simulation
time, a common approach is to develop surrogate or reduced-order
models for optimization purposes. Current literature in area of optimi-
zation of processes typically utilizes iterative optimization for objectives
such as minimization of cost, or energy consumption while maintaining
product quality (Chen et al., 2023; Boukouvala and Ierapetritou, 2013).

However, when the objective is an end-goal in terms of product quality
or performance, there is an alternative approach, known as the inverse
design optimization, that could be more suitable. The inverse design
optimization, widely applied in the area of material discovery, where
the goal is to design a product that meets a specific desired properties or
functionalities (Sanchez-Lengeling and Aspuru-Guzik, 2018). Unlike a
traditional forward design method, which typically involves predicting
the product quality based on the input parameters, the inverse design
reverses this approach, by starting with a pre-defined target product
quality and uses computational algorithms to generate the possible
combinations of parameters to produce the final product with the
specified output.

An example of a process where the adoption of inverse design could
be useful is the pharmaceutical drug product manufacturing process via
the wet granulation route, as it is complex and involves multiple unit
operations including mixing, granulation, drying, milling and tableting
to produce solid dosage forms. Solid dosage forms, such as tablets and
capsules, designed for oral administration, works by releasing the drug
substance, known as the active pharmaceutical ingredient (API) through
the gastrointestinal (GI) tract (Zaborenko et al., 2019). While the
determination of drug efficacy through in vivo mechanisms (i.e. drug
release and drug absorption kinetics) is paramount, the successful in
vivo drug absorption into the human body first requires efficient in vitro
drug or API dissolution. This pre-requisite arises because drug sub-
stances need to be dissolved into its molecular or atomic entities before
it can diffuse into living tissue (Siepmann and Siepmann, 2008). Thus,
drug dissolution serves as a key indicator of drug bioavailability and the
characterization of the therapeutic efficacy of a treatment (Siepmann
and Siepmann, 2008). The key to understanding and predicting disso-
lution performance is to correlate formulation, process and equipment
variables, to drug dissolution. It is common practice during development
of a new product, that these factors are adjusted to obtain the targeted
dissolution performance (Zaborenko et al., 2019; Maclean et al., 2024).
In granulation processes, formulation and process variables affect the
drug dissolution performance through its influence on intermediate
granule quality attributes, such as granule size distribution, composition
and microstructure. Here, the microstructure denotes the spatial distri-
bution of different solid components (e.g. API, binder and excipients),
and void space within the granule (Ansari and Stepanek, 2008).
Numerous studies have observed the notable influence of these granule
quality attributes on drug dissolution rates (Ansari and Stepanek, 2008;
Hintz and Johnson, 1989).

Several studies have shown that granule attributes, such as the par-
ticle size had a significant impact on dissolution through its influence on
the surface area and thickness of the diffusion layer (Hintz and Johnson,
1989; Ansari and Stepanek, 2007). The general approach taken to ac-
count for particle size distributions in dissolution modeling is to use a
series of ordinary differential equations (ODEs) for each discretized
particle size (Hintz and Johnson, 1989) or to use a population balance
model (PBM), which are essentially a series of partial differential
equations (PDEs) (Maclean et al., 2024; Djukaj et al., 2022; Wilson et al.,
2012). Separately, studies have also observed through experimental
dissolution and computer simulation of dissolution of single virtual
granules, that the porosity and microstructure have a notable effect on
dissolution rates and release profile (Ansari and Stepanek, 2008;
Štěpánek, 2004; Kimber et al., 2011). However, to the best of our
knowledge, there is not yet a mathematical model that can account for
both the size distribution and microstructure. This gap in dissolution
modeling motivates the objective of this study, which is to develop a
model to predict dissolution rates while accounting for variation in feed
PSD, composition and microstructure, resulting from heterogeneity in
formulation and process parameters. It is important to note that this
work involves modeling the dissolution process of granules and neglects
the effect of tablet disintegration. Depending on the formulation, tablet
disintegration can have a significant contribution to drug dissolution
(Maclean et al., 2024; Wilson et al., 2012; Kalný et al., 2021). However,
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in this work, preliminary experiments that were conducted, showed that
the granule dissolution is the rate limiting step of the dissolution process
for this specific formulation, hence the disintegration kinetics were
neglected for model simplification purposes. This assumption was also
supported by Abdulla and Murtada, who observed that for an APAP and
MCC formulation, the disintegration occurs in under 2 min, whereas the
dissolution time takes up to 60 min.

This study will focus on the development of a simplified wet gran-
ulation flowsheet model, which accounts for the granulation and milling
process. To determine the dissolution rate of the granules, a novel
dissolution model which accounts for various intermediate granule
properties, such as particle size, porosity and microstructure of the
granules, will be developed. This dissolution model will be incorporated
in the flowsheet model, as the dissolution rate is the key product quality
metric. Sensitivity analysis will be used to determine the critical process
parameters of the process affecting the dissolution rate and product
yield. Two different optimization framework – surrogate-based forward
optimization and the autoencoder-based inverse optimization will be
designed to optimize the process parameters based on the multi-
objective optimization problem consisting of product yield and disso-
lution time. The types of surrogate models evaluated in this work
included Artificial Neural Networks (ANN), and Support Vector
Regression (SVR), and the better performing model was used to repre-
sent the processes for the surrogate-based optimization. Additionally,
since latent variables are generated via the autoencoder, the latent space
will be used to visualize the process design space, and feasibility analysis
with multiple constraints will be performed on the process design space.

2. Materials & methods

2.1. Flowsheet model

While a typical wet granulation manufacturing line includes pro-
cesses such as feeder, mixer, granulator, dryer, mill, and a tablet press,
as the focus of this study is to indicate a proof-of-concept of the inverse
optimization framework, a reduced representation of a wet granulation
process, as shown in Fig. 1, was used as the case study. The process was
simplified to highlight the unit operations that have significant impact
on the key intermediate granule properties – size, porosity and content
uniformity, which in turn impacts the drug dissolution rate. For the
specific formulation used in this study, assumptions were made to
simplify the process, which includes the exclusion of the drying process,
as we assume that the liquid content of the granule is the only properties

that is changed during the drying process, and the exclusion of the
tableting process, due to the assumption that the tablet disintegration
process occurs very quickly, and granule dissolution is the rate limiting
step of the process. So, only the granule dissolution process was
considered here. The basis of the assumption on the drying process can
be referred to in Sampat et al. (Sampat et al., 2022) and on the disso-
lution assumption can be supported by findings from Abdulla and
Murtada (Abdulla and Oshi, 2024).

A total of 7 granulator experiments and 12 Comil experiments were
carried out, and these experimental results were used to validate the
process models used to simulate the process and predict granule prop-
erties. For both the granulation and milling process, 3-dimensional
population balance models were used to model the process.

2.2. Experimental setup and design

The formulation used in this study was a bi-component formulation
of Acetaminophen, dense powder grade (Mallinckrodt Pharmaceuticals,
North Carolina, USA) as the active pharmaceutical ingredient (API), and
Micro-crystalline cellulose, Avicel PH102 grade (FMC Corporation,
Pennsylvania, USA), as the excipient. Since this was a wet granulation
process, and liquid binder was used, consisting of PVPK30 (Millipore
Sigma, Missouri, USA), which was dissolved at 12.5%w/w on Deionized
water.

Granulation experiments were carried out in a bench-top high shear
granulator (KEY International Inc., NJ), and milling experiments were
conducted on a Comil (Quadro Engineering, Ontario, Canada), with a
grater-type classification screen with 1016 μm opening. Experimental
data used in this work were based on a previous publication (Dan et al.,
2023; Dan et al., 2022), thus more comprehensive details on the
equipment setup, experimental design and material characterization
techniques used can be found in the authors’ previous publications (Dan
et al., 2023; Dan et al., 2022). A full factorial design of experiment with
3 factors and 2 levels with 1 additional center point, resulting in 9 total

Fig. 1. Schematic illustrating the transfer of information for the development of the flowsheet model.

Table 1
DOE variables and levels used in the experimental design.

Unit Operation Process Variables Low Level High Level

Granulation Liquid-to-Solid Ratio 0.65 0.8
Wet Massing Time (Minutes) 4 8
Impeller Speed (RPM) 180 200

Mill Impeller Speed (RPM) 1500 3000
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runs, was performed based on parameter ranges indicated in Table 1.
These parameters are associated with the granulation process, and the
batch of granules produced in each run was milled at two different screw
speeds (1500 rpm and 3000 rpm) and was collected at various time
points. The selection of the ranges for the parameters in Table 1 were
determined based Sampat et al. (Sampat et al., 2022), which conducted
granulation experiments on the same formulation and equipment, where
the parameter boundaries were selected based on equipment constraints
and the requirement to produce viable granules.

Characterization of the granules post-granulation and post-milling
was done to determine the particle size distribution, porosity and drug
(API) distribution across sizes after each process. Sieve analysis was
performed to determine the particle size distribution, using a stack of
sieves with mesh sizes ranging from 90 to 4000 μm, which was shaken
for 15 min on an Endecotts shaker. The weights of granules in each sieve
used was recorded to compute the cumulative size distribution, enabling
the calculation of particle d10, d50 and d90. Granule porosity was
measured using mercury intrusion porosimeter, where incremental
intrusion of mercury was introduced to gauge pore size with diameters
ranging from 10 to 100,000 nm. For composition analysis, the granule’s
drug or API content was determined using UV/VIS spectroscopy. The
solution was prepared by dissolving 200 mg of the sample in 50 mL of
methanol, sonicating for an hour, diluting with methanol, and analyzing
via the UV/VIS spectroscopy at 248 nm wavelength. Methanol was
selected as the solvent due Acetaminophen’s solubility in methanol and
Microcrystalline cellulose’s insolubility.

Results of the experiments and granule characterization for both the
granulation and mill run are listed in Table A1 and Table A2 in the
Appendix section.

2.3. Process models

Process models for the granulation and milling process were devel-
oped for the purposes of predicting the key granule properties – particle
size distribution, porosity and API content, and a dissolution model was
developed to predict dissolution rates based on those key granule
properties. The type of model used to simulate each process, as well as
the model inputs and outputs are specified in Table 2. The material
properties related inputs were used to initialize the model, which
included the determination of the grid discretization, calculation of the
number of particles and the distribution of particles into different bins
on the discretized grids, whereas the process parameters were used as
inputs to the kernel rate calculations.

2.3.1. Granulation
A population balance model (PBM), commonly used to model par-

ticulate processes, was used to model the granulation and milling pro-
cesses. PBMs comprises of a series of partial differential equations
(PDEs) used to track the number of entities as they evolve with time due
to the occurrence of rate processes, such as nucleation, aggregation and
breakage (Barrasso et al., 2015; Ramkrishna and Mahoney, 2002). In
this study, a high shear wet granulation process is simulated using a 3-
dimensional (3-D) PBM, where the internal coordinates consist of two
solid components and one gas component. The use of a higher dimen-
sional PBM was implemented despite it being more computationally
expensive, because 1-D PBMs are limited in their abilities to accurately
capture the process dynamics, as the model assume that a granule can be
described sufficiently by size alone, and there are no considerable var-
iations in other particle properties within a size class (Iveson, 2002;
Barrasso and Ramachandran, 2012).

The 3-D PBM equation with lumped liquid component was used and
is given by Eq. 1, where F represents the number density and the internal
coordinates used to characterizes the particle are represented by the API
(s1), excipient (s2) and gas (g) volume. The lumped liquid volume
component is represented by Eq. 2.

δ
δt
F(s1,s2,g,t)+

δ
δg

[

F(s1,s2,g,t)
(
dg
dt

)]

=Ragg(s1,s2,g,t)+Rbreakage(s1,s2,g,t)

(1)

δ
δt
L(s1,s2,g, t)= F(s1,s2,g, t)

(
dl
dt

)

+Ragg,liq(s1,s2,g, t)+Rbreakage,liq(s1,s2,g, t)

(2)

The formation and depletion of aggregation, represented by Ragg, is a
function of aggregation rate, expressed as β, which uses the Madec
(Madec et al., 2003) kernel and incorporates the Matsuokas (Matsoukas
et al., 2009) correction factor. In the Madec kernel, shown in Eq. 3, the
aggregation rate is a function of liquid binder content (LC) and granule
volume (V). Matsuokas correction factor (ψ) was added to account for
the composition dependencies, as the parameter aab indicates an
attraction or repulsion that occurs between two solid components, and x
and xʹ indicates the fraction of API and excipient volume, respectively.
The addition of the Matsuokas correction factor (Matsoukas et al., 2009)
ensures that this aggregation kernel is size, liquid content and compo-
sition dependent.

β
(
s1,s2,g,sʹ1,s

ʹ
2,g

ʹ)=β0*ψ*(V+Vʹ)*
(

(LC+LCʹ)α
(

100 −
(
LC+LCʹ

2

))δ)α

(3)

ψ
(
s1, s2, ś1, ś2

)
= exp( − aab ×(x+ xʹ − 2xxʹ) ) (4)

The formation and depletion due to breakage (Rbreakage), is deter-
mined via the breakage rate kernel (Kbreak) from Pandya and Spielman
(Pandya and Spielman, 1983), shown in Eq. 5. The breakage rate is a
function of impeller shear rate (Gshear), particle diameter (D), and esti-
mated parameters (P1, P2). The impeller shear rate, Gshear, can be corre-
lated to the diameter (Dimp) and rotational speed (Vimp) of the impeller
using the equation Gshear =

π
60*Dimp*Vimp (Chaturbedi et al., 2017).

Kbreak(s1, s2, l, g) =
P1Gshear(D(s1, s2, g) )P2

2
(5)

The rates of particle transfer between bins are indicated by the rate of

consolidation
(

dg
dt

)

, and the rate of liquid addition
(

dl
dt

)

, which are

shown in Eqs. 6 and 7, respectively. In Eq. 6, ϵmin is the minimum granule
porosity, and c is a rate constant, and in Eq. 7, the liquid addition rate is
indicated by V̇spray. The amount of liquid received by each particle is
dependent on the granule volume.

Table 2
Model type, inputs and outputs for each process model used to develop the
flowsheet model.

Unit
Operation

Model Inputs Outputs

Material
Properties

Process
Parameters

Granulation 3-D
Population
Balance
Model

• Powder
composition

• Powder PSD
• Solid density
• Liquid density

• Liquid-
to-Solid
ratio

• Wet
massing
time

• Impeller
speed

• PSD
• Porosity
• API content

uniformity

Mill 3-D
Population
Balance
Model

• PSD
• Porosity
• API
composition

• Milling
Time

• Impeller
speed

• PSD
• Porosity
• API content

uniformity
Dissolution ODE Model • PSD

• Porosity
• API
composition

• Microstructure

– • Dissolution
Curve
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dg
dt

= − c1*rpmc2*(s1
+ s2 + l+ g)(1 − ϵmin)

s1 + s2

[

l −
ϵmin(s1 + s2)
1 − ϵmin

+ g
]

(6)

dl
dt

=
V̇spray*ol(s1, s2, g)

∫∞
0

∫∞
0

∫∞
0

∫∞
0 F(s1, s2, g)ds1 ds2 dg

(7)

The ordinary differential equations (ODE) in the PBEs are solved
simultaneously using a first-order explicit Euler integration technique.
The selected time step satisfied the Courant-Friedrichs-Lewy (CFL)
conditions (Ramachandran and Barton, 2010), ensuring that the steps
were sufficiently small to prevent the number of particles leaving any
given bin from exceeding the number of particles present in that bin
during a single time step. All three internal coordinates were discretized
into a volume-based non-linear grids of x = x1*(2.1)i− 1, to encompass a
large range of sizes. Here, i represents the number of bins in the grid, and
x1 represents the volume of the smallest bin of each internal coordinate
(s1, s2, g). A 3-dimensional cell average technique (Chaudhury et al.,
2013) was used to redistribute particles that are formed in the inter-
mediate range of two bins into the discretized bins.

The parameters present in the equations above, as well as the initial
conditions of the model are listed in Table 3. Since the kernels utilized in
this model were semi-empirical, some parameters were used as tuning
parameters to calibrate the model to better match the experimental re-
sults. These tuning parameters include the aggregation kernel constants
(β0,α0), breakage kernel constants (P1,P2), and consolidation constants
(c1, c2). The estimation of the tuning parameters was conducted by

minimizing the difference between the experimental data and the model
prediction of the quality attributes. The optimization-based algorithm
fminsearch on MATLAB was used to minimize the objective function,
shown in Eq. 8, which is the sum of squared errors (SSE) for the particle
d10,d50,d90,average porosity and API fraction across the size fractions,
average over the number of experiments, Nx. A more detailed explana-
tion of the model equations for a 3D, lumped liquid PBM, can be found in
Barrasso and Ramachandran (Barrasso and Ramachandran, 2012).

ϕx =
1
Nx

∑Nx

i=1

(
fexp,i − fsim,i

fexp,i

)2

(8)

2.3.2. Mill
Similar to the granulation model, a 3-D PBM with internal co-

ordinates of the API (s1), excipient (s2) and gas (g) volume is used to
simulate the mill model, and predict the key quality attributes, namely
particle size distribution, porosity and composition, as shown in Eq. 9. In
order to simulate the dynamics of the milling experiments, which are
described in further detail in Dan et al. (Dan et al., 2022), Ḟinwas kept at
0, and Ḟoutwas calculated based on particle exit classification model by
Metta et al. (Metta et al., 2018).

δ
δt
F(s1, s2, g, t) = Rbreakage(s1, s2, g, t)+ Ḟin(s1, s2, g, t) − Ḟout(s1, s2, g, t) (9)

In milling processes, the only rate process that is considered is
breakage, and the rate of particle formation and depletion due to
breakage is described by Eq. 9, where the first and second part of the
equation denotes the rate of formation and depletion of particles,
respectively. In Eq. 10, daughter particles (s1, s2, g) are formed from
parent particles

(
ś1, ś2, gʹ

)
at a rate of K(s1, s2, g), shown in Eq. 11, and the

daughter particles sizes follows a breakage distribution function,
b
(
ś1, s1, ś2, s2, gʹ, g

)
, which is based on a binominal and multivariate log-

normal distribution, shown in Eq. 12 and Eq. 13. The binomial distri-
bution was introduced to account for the two breakage modes, namely
impact and attrition mode that are critical to the Comil process dy-
namics, whereas the multivariate was used to accommodate the three
internal coordinates of this multi-dimensional model.

K(s1, s2, g) =

⎧
⎪⎨

⎪⎩

β
(

vimp
vimp,min

)a1( x
xref

)a2( ρ
ρref

)a3

, if x ≥ xlimit

0, otherwise

(11)

b
(
ś1, s1, ś2, s2, g

ʹ, g
)
= z*b1

(
ś1, s1, ś2, s2, g

ʹ, g
)
+(1 − z)*b2

(
ś1, s1, ś2, s2, g

ʹ, g
)

(12)

bi
(
sʹ1, s1, s

ʹ
2, s2,g

ʹ,g
)
=

C
(2π)d/2

|Σ|−
1
2exp

(

−
1
2
(log(V) − μ)Σ− 1(log(V) − μ)T

)

(13)

In Eq. 12, b1 and b2 represent the distribution function in relation to
attrition mode and impact mode, respectively. Thus, z in the equation is
indicative of the probability of occurrence attrition breakage mode. This
probability varies with time, material properties and dynamic process
conditions and is given by Eq. 14, which is determined at every timestep.

Table 3
Model parameters and initial conditions used in the granulation model.

Parameters (Granulation) Value Units

Aggregation constant (ß0) 7.47× 10+3 mol− 1s− 1

Aggregation constant (a) 2.54 –
Aggregation constant (δ) 0.01 –
Breakage Kernel constant (P1) 4.91 m− 1

Breakage Kernel constant (P2) 1.255 –
Consolidation rate constant (c1) 1.25x10− 7 –
Consolidate rate constant (c2) 8.51
Minimum granule porosity (ϵmin) 0.1 –
Initial particle radius (R) 75 μm
Diameter of impeller (D) 0.203 M
Total number of bins in each dimension 10
Liquid binder spray interval 120 < t < 300 S
Volume of first bin, solid component 1 (s1) 1× 10− 13 m3

Volume of first bin, solid component 2 (s2) 1× 10− 13 m3

Volume of first bin, gas (g) 1× 10− 13 m3

Initial particle count F in bin (1,1,1) 3 × 10–13 mol
Initial particle count F in bin (1,2,1) 7 × 10–13 mol

Rbreakage(s1, s2, g, t) =
∫ s1

0

∫ s2

0

∫ g

0
K
(
ś1, ś2, g

ʹ)F
(
ś1, ś2, g

ʹ, t
)
b
(
ś1, s1, ś2, s2, g

ʹ, g
)
dś1dś2dg

ʹ − K(s1, s2, g)F(s1, s2, g, t) (10)

Table 4
Model parameters and initial conditions used in the mill model.

Parameters (Mill) Value Unit

Breakage constant (β) 0.026 mol− 1s− 1

Breakage constant (a1) 3 –
Breakage constant (a2) 1 –
Breakage constant (a2) 4 –
Breakage distribution mean (n) 0.795 –
Breakage distribution standard deviation (σ) 1.855 –
Breakage distribution correlation coefficient (ρ) 0.6875 –
Material retention ratio (γ) 0.904 –
Critical screen size parameter (ϵ) 0.7405 –
Critical screen size parameter (α) 0.2474 –
Screen size 1016 μm
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z = − 0.042+ 0.63e− 4RPM+0.70e− 2t − 0.372*HoldUp − 0.086ϵfeed
(14)

The particle outflow, Ḟout, described by Eq. 15, is a function of a
particle exit classification model (fd) and the particle retention ratio (γ).
fd is a linear piece-wise model developed by Metta et al. (Metta et al.,
2018), which is dependent on the particle size (x), mill screen size
(dscreen) and critical screen size (Δ).

Ḟout(s1, s2, g, t) = Rbreakage(s1, s2, g, t)(1 − fd)(1 − γ) (15)

Δ = dscreen*ϵ
(
vimp,min
vimp

)α

(17)

Since the Comil operation was a starve-fed Comil, some amount of
holdup materials are retained inside the mill at the end of the milling
process. The amount of holdup in the mill is dependent on the feed
properties and process parameters and is used to determine the yield of
the process, as shown in Eq. 18.

Yield =
(batch mass − holdup mass)

batch mass
(18)

A detailed explanation in of the model equations can be found in Dan
et al. (Dan et al., 2023). The numerical method and discretization used
to solve the mill PBM is similar to the granulation model discussed in the
section earlier. Similar to the granulation model, the mill model is
calibrated and validated against experimental data, by minimizing the
normalized sum of square errors, as shown in Eq. 8. The relevant mill
parameters and initial conditions of the model is listed in Table 4.

2.3.3. Dissolution
The granule dissolution process was modelled using the ordinary

differential equation (ODE) model based on the Noyes-Whitney (Noyes
andWhitney, 1897) and Nernst-Brunner (Nernst, 1904) equation, where
the concentration balance of the bulk solute and the mass balance dis-
solving granule is denoted by Eq. 19 and Eq. 20, respectively.

dCb,i

dt
= ki(Csat − Cb), i = s1, s2 (19)

dmi

dt
= − kiAi(Csat − Cb), i = s1, s2 (20)

Here, Cb is the bulk concentration, Csat is the saturation concentra-
tion, k is the mass transfer coefficient, and A is the surface area. The
surface area Ai, can be expressed in terms of the particle diameter xi.

The mass transfer coefficient k, expressed as Eq. 21, is determined

based on the size-dependent Sherwood number (Eq. 12) and material
specific diffusion coefficient, Di, which was used as a tuning parameter.
This correlation to determine k was based on work by Djukaj et al.
(Djukaj et al., 2022).

ki(x) =
Sh(x)Di

x
, i = 1,2 (21)

Sh(x) = 2+0.52 Re(x)0.52Sc
1
3 (22)

The Sherwood number (Eq. 22) is a function of the Reynolds (Re =

ϵ
1
3x

4
3
i ρf/ηf

)
and Schmidt number

(
Sc = ηf/

(
D*rhof

) )
. More details of

these equations can be found in Djukaj et al. (Djukaj et al., 2022).
Since variation in granulation and milling process parameters leads

to heterogeneity in particle size distribution, porosity, and composition,
it is critical that the dissolution model account for these variations when
predicting drug dissolution rates. Additionally, studies that have focused
on understanding high shear granulation dynamics have found that the
powder formulation and process parameters can affect the nucleation
mechanisms that occur during granulation, resulting in a dominant
formation of either a solid-spreading nuclei or immersion nuclei

Fig. 2. Radial discretization of a granule.

fd(s1, s2, g) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for xUL⩽Δ
xUL − 0.5(dscreen + Δ)

xUL − xLL
for xUL > dscreen, xLL < Δ

xUL − dscreen +
(0.5xLL + 0.5dsereen − Δ)(dscreen − xLL)

dsureen − Δ

)

xUL − xLL
for xUL > dscreen, xLL > Δ

0.5(xUL − Δ)
2

(dscreen − Δ)(xUL − xLL)
for Δ < xUL < dscreen, xLL < Δ

x − Δ
dscreen − Δ

for xUL < dscreen, xLL > Δ

1 for xLL⩾dscreen

(16)
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(Muthancheri and Ramachandran, 2020). The significance of nucleation
mechanism is due to its effect on the corresponding granule growth
mechanisms, which impacts themicrostructure of the produced granules
(Muthancheri and Ramachandran, 2020). Granule microstructure per-
tains to the spatial distribution of different solid components, binder,
and void spaces within a granule (Ansari and Stepanek, 2008). Granule
microstructure, along with particle size and porosity of the granule, has
been shown to have significant effect on the drug dissolution profile
(Ansari and Stepanek, 2008). To account for the size, porosity, compo-
sition, and microstructure of a granule in its prediction of dissolution
rates, each granule is discretized by its radius, as shown in Fig. 2.

The spatial distribution of the active ingredient (s1) and excipient
(s2) can be quantified by the radial distribution function (RDF) (Kataria
et al., 2018). In this work, RDF indicates the volume fraction of each
component, and is expressed as Eq. 23, where Vs1,Vs2,Vg indicates the
API, excipient and void spaces volume, respectively.

RDF,φi(r) =
Vi(r)

Vs1(r) + Vs2(r) + Vg(r)
i = s1, s2 (23)

For this work, RDF is a pre-defined granule property, used to
calculate the volume in each discretized radii layer of the granule, as
shown in Eq. 24. Given that particle mass relates to volume by,
density (ρ) = mass/volume, the volume in Eq. 24 can be altered into a
mass to be used in the mass balance in Eq. 20.

vi(r) = φi(r)*
[(

4
3

πr3n
)

−

(
4
3

πr3n− 1
)]

(24)

In this proposed model, it is assumed that both solid components
must be entirely dissolved from the outermost layer before materials in
the next inner layer can begin dissolving. While this assumption is not
entirely reflective of what occurs theoretically, it is useful in the process
of developing this dissolution model, as it helps capture the significance
of microstructure and dissolution rate differences between two
components.

The methodology described above details a single-granule dissolu-
tion model. However, in a wet granulation process, a relatively large
distribution of granule sizes can be generated, where the granules can
range from 50 μm to 1000 μm. To incorporate different sizes in this
model, granule sizes are discretized into multiple size bins, and the
dissolution model is iterated over each bin, resulting in one dissolution
curve generated for the granules of each bin. The representative disso-
lution curve based on the population of sizes is determined based on Eq.
25. An example of a PSD output from a granulation process, the

corresponding dissolution curves of each discretized size bin, and the
final dissolution curve is illustrated in Fig. 3. This dissolution model
contains several parameters that were used as constants, which are listed
in Table 5.

Cb,total =
1
n
∑

Cbi*fi (25)

Since there were no experimental results available to validate the
dissolution model, we used findings in the literature on dissolution
studies to create a list of dissolution rules to verify that this dissolution
model correctly captures the physical nature of the dissolution process,
for a representative prediction. The dissolution model was verified using
dissolution rules established based on literature studies on experimental
and simulated granule dissolution process (Ansari and Stepanek, 2007;
Štěpánek, 2004; Ansari and Stepanek, 2006). The categories of these
rules include granule size, porosity, diffusion coefficients of each solid
component, and microstructure.

A larger particle size has been associated with a lower dissolution
rate due to the lower specific surface area which reduces the surface
contact area of the granule to the liquid phase. Additionally, larger
particles can create a thicker stagnant layer of solvent around them,
known as the diffusion layer. This thicker layer increases the path length
over which the drug must diffuse to be exposed to the bulk solution and
this also contributes to the overall slower dissolution rate (Siepmann

Fig. 3. (a) Dissolution curve of each discretized granule size and the combined curve (black) based on (b) particle size distribution.

Table 5
Model parameter values used for the dissolution model.

Parameter Value Units

Solid density (ρs) 1500 kg/m3

Fluid density
(
ρf
)

853 kg/m3

Saturation concentration (Csat) 2.935 mPas
API Diffusion coefficient (DAPI) 1.25e− 8 m2/s
Excipient Diffusion coefficient (De) 5e− 8 m2/s
Energy dissipation per unit mass (ϵ) 0.085 J/kg

Table 6
Critical parameter values at different perturbations.

Parameters/Levels − 1 0 +1

Size (μm) 800 1000 1200
Porosity 0.1 0.3 0.5
De at low API % De = 0.5DAPI De = DAPI De = 2DAPI

De at high API % De = 0.5DAPI De = DAPI De = 2DAPI
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and Siepmann, 2008). A higher porosity, on the other hand is associated
with faster dissolution. Assuming that pore saturation occurs quickly, a
higher porosity attributes to a larger available contact area to the
dissolution medium, resulting in a faster dissolution (Ansari and Ste-
panek, 2007).

When considering a bi-component or multi-component formulation,
the dissolution rate of the granule is dependent on the composition and
the dissolution rate of each component. For granules with a low drug
composition, the drug dissolution is limited by the slower dissolving
component, as they create a trapping effect on the faster dissolving
component (Ansari and Stepanek, 2007). Whereas, for a higher drug
composition granule, the drug dissolution is limited by the solvent
saturation, because the driving force is lower as the solvent gets satu-
rated (Ansari and Stepanek, 2007).

Granule microstructure, which denotes the spatial distribution of the
active ingredient dictates the drug dissolution rate. When the drug is on
the outer layer of the granule the drug dissolution occurs faster than if
the active ingredient is in the inner layer (Ansari and Stepanek, 2008).

To ensure that the model captures the accurate dissolution dynamics
as stipulated in the dissolution rules above, sensitivity analysis was
conducted to determine the model outputs at different parameter vari-
ations. These parameters include size, porosity, diffusion coefficient of
the active ingredient and the excipient, which was perturbed at three
levels (− 1, 0,+1). The input parameter values at each perturbation level
are denoted in Table 6. The sensitivity is expressed as Eq. 26, where
yij denotes the model output at the i-th perturbation of the j-th param-
eter, and y0j is the base value for the model output at the j-th parameter.

Sensitivity =
y0j − yij
y0j

(26)

2.4. Sensitivity analysis

A global sensitivity analysis was used to identify the critical inputs
that have significant contributions to variations in the model outputs
(Saltelli et al., 2008). In this case, the model outputs are the product
yield and time taken for 10 %, 50 %, and 90 % of drug dissolution. A
regression-based, partial rank correlation coefficient methodology was
used to access the sensitivity of each input-output pair over the input

range. PRCC is a variation of the Partial Correlation Coefficient (PRC)
which utilizes rank transformed values instead of raw values for both the
model inputs and outputs (Wang et al., 2017). This variation allows the
PRCC method to be applicable to nonlinear and monotonic systems, as
the rank transformation transfers nonlinear relationships into linear
(Marino et al., 2008). The regression using the rank transformed values
are indicated by Eq. 27 and 28, and the correlations are calculated by Eq.
29 and 30 (Marino et al., 2008). The PRCC output standardizes the
measured correlation between each input-output variable into a − 1 to 1
range, with values closer to +1 and − 1 having the stronger positive and
negative correlation, respectively.

X̂i = c0 +
∑k

j=1,j∕=1
cjXj (27)

ŷi = b0 +
∑k

j=1,j∕=1
bjXj (28)

PRCC = CC(Xi − X̂i , yi − ŷi) (29)

CC(Xi, yi) =

∑m

i=1
(Xi − Xi)(yi − yi)

√
∑m

i=1
(Xi − Xi)

2
(yi − yi)2

(30)

Latin Hypercube Sampling (LHS) (McKay et al., 2000) was used to
sample across the continuous space of the specified input parameter
ranges while ensuring a uniform distribution is sampled. The ranges for
the input parameters are listed in Table 1 and was based on the exper-
imental process design, which was determined based on preliminary
experiments which indicates the parameter boundaries necessary to
produce viable granules.

2.5. Optimization

Design optimization in process systems typically pertains to the
determination of ideal operating conditions that maximize performance
or productivity metrics under the specified constraints. Traditionally

Fig. 4. Comparison of two different design optimization approaches - inverse design and forward (iterative) optimization.
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optimization can be carried out on iterative optimization on a forward
model, however, an inverse design approach can also be a viable option
for design optimization. Both approaches are illustrated in Fig. 4 and the
implementation of both approaches will be discussed in this work.

2.5.1. Autoencoder-based inverse optimization
A deep learning based inverse optimization utilizes deep learning

algorithms to generate potential optimal solutions for the objective
function. One common algorithm that is used for inverse design is the
autoencoder.

Autoencoders are a type of artificial neural network that are designed
for representation learning, with the goal of mapping high-dimensional
data into a lower-dimensional representation space, for the purposes of
dimensionality reduction or feature extraction (Tschannen et al., 2018).
Autoencoders consist of two main components: the encoder, which
compresses the input data into a lower-dimensional latent space repre-
sentation, and the decoder, which reconstructs the input or original data
from the compressed representation. The training process of the
autoencoder aims to minimize the error between the reconstructed data
and input data (Kingma and Welling, 2013).

While autoencoders are traditionally implemented as unsupervised
learning techniques, recent research has highlighted a trade-off between
the degree of supervision and the usefulness of the learnt representation
(Tschannen et al., 2018). Integrating supervised learning into the
autoencoder framework has been shown to improve generalization and
robustness of the model in various ML tasks (Le et al., 2018).In partic-
ular, supervised autoencoders are advantageous when the applications
require both dimensionality reduction and accurate predictions. In the
supervised autoencoder framework, the latent space layer is utilized not
only for data reconstruction but also as input to a regressor for pre-
dicting the response variables.

The autoencoder model used was developed in Python v3.8.13 using
Keras, which is an open-source neural network library written in Python
that provides a high-level interface for building and training deep
learning models. The autoencoder model developed consists of 10 input
nodes (9 dissolution time metrics and yield), and the encoding step

included 2 hidden layers and one dropout layer with 10 nodes each. The
prediction of the last hidden layer is passed to a 3 node bottleneck layer,
which is then used for decoding or reconstruction using the same
number of layers and nodes as the encoding. The dropout layers were
introduced at a dropout rate of 0.2, to add regularization which prevents
the model from overfitting (Srivastava et al., 2014). The model was
trained for 30 epochs at a batch size of 16, and the ‘Adam’ optimizer
used to train the model at a learning rate of 0.01. The loss function used
was the mean squared error of both the reconstruction and prediction
variables.

In an inverse design framework, illustrated in Fig. 5, the inputs to the
supervised autoencoder (SAE) are defined as the product outcome (i.e.
dissolution time and yield). The dissolution time t10 to t90 indicates
time taken for 10 % to 90 % of the granule to dissolve into the bulk
solution. The autoencoder is trained to reproduce these inputs, through
the encoding and decoding of a lower dimensional latent representation.
The regressor attached to the latent layer will use the latent represen-
tation as inputs, to predict the critical process parameters for the gran-
ulation and milling process. The generation of the latent representation
can serve as a lower dimensional process design space, which can be
useful for design space visualization and feasibility studies.

2.5.2. Forward optimization
Forward optimization is a mathematical procedure where first an

initial solution is provided to the problem and the objective function is
evaluated. The solution is then improved through multiple iterations of
function evaluation based on the defined criteria or algorithm. The
process is completed, and the iteration stops when the convergence
criteria is met either by the optimal solution being within the error
tolerance or reaching the maximum iteration. SciPy, which is an open-
source Python library was used for optimization, specifically the scipy.
optimize.minimize function using the Nelder-Mean algorithm, which is a
simplex transformation algorithm, was utilized to minimize the objec-
tive function. Eq. 31 shows an objective function example where the
goal is to maximize both dissolution time t90 and yield, to ensure that the
formulation produces granules with extended-release properties within
the design space. Since this is a bi-objective optimization the objective
function that is minimized is a weighted sum of each function, with the
weightages denoted by w1 and w2.

Minimize − (w1*Yield+w2*t90) (31)

s.t.θLB ≤ θ ≤ θUB

2.5.2.1. Surrogate models. Due to the computational complexity and
time-intensive nature of the differential equation-based process models
within the flowsheet, surrogate models were developed as a computa-
tionally efficient replicates to the original models, for improved system
analysis and optimization costs. The development of surrogate models
first involves identifying an efficient sampling strategy to generate
representative data points, which are later used to construct surrogate
models. The effectiveness and accuracy of the surrogate model was
assessed based on its ability to approximate the global optimum value. If
necessary, the model can be refined through iterative adaptive sampling
which improves the accuracy (Kim and Boukouvala, 2020).

For this work, the Latin Hypercube Sampling (LHS) method was
chosen as the sampling design. LHS is a popular type of space-filling
design that uniformly distributes samples across each variable axis,
thereby preventing overlap and ensuring controlled randomness (McKay
et al., 2000).This approach explores the full range of the input param-
eters in a representative manner while minimizing sampling bias
(Gramacy, 2020). The sampled data points served as training data for
developing the surrogate models. Two types of common machine
learning (ML) based surrogate models were built, namely artificial
neural network (ANN) and support vector regression (SVM). These
models were compared to determine their accuracy and ability toFig. 5. Schematic detailing the supervised autoencoder architecture (Note: Y

indicates yield)

A. Dan and R. Ramachandran International Journal of Pharmaceutics: X 8 (2024) 100287 

9 



represent the dynamic behaviors of the system.
Artificial neural networks (ANN) are efficient function approxima-

tions with capabilities of capturing non-linear effects between the inputs
and outputs, and can be used for both regression and classification
problems (Csáji, 2001). A standard neural network architecture consists
of an input layer, hidden layer(s), and an output layer. These layers are
connected using elements known as nodes or neurons, where the output
of each neuron serves as the input of the corresponding neuron in the
next layer. The mathematical representation of the output of a neuron
can be shown by Eq. 32,

zli = σ
(
∑n

i=1
Wl

ia
l− 1 + bli

)

(32)

where, i indicates the neuron in layer l, W i are the weights for each
input connected to the neuron, bi is the bias for the neuron and al− 1

indicates the output of the neuron in the previous layer. The function is
passed through an activation function, denoted by σ, which introduces
non-linearity to the function approximation (Sharma et al., 2017). There
are numerous activation functions that can be used depending on the
nature of the problem and the dynamics of the system. Some examples
include linear, sigmoid, Tanh, ReLU and softmax functions (Sharma
et al., 2017).

The process of training a neural network model comprises of the
tuning of weights and biases to minimize the prediction error. Another
important element of building ML models is hyperparameter tuning,
where configuration variables relating to the model architecture is tuned
for optimized performance. For this work, hyperparameter tuning was

conducted using grid search, which evaluates the model’s performance
at different combinations of hyperparameters to find the optimal
configuration to minimize loss or error on the validation dataset. The
range of values and the optimal value of the hyperparameters are
tabulated in Table 7. The number of epochs was kept constant at 40, and
the loss function used to train the model was the mean absolute error.
Additionally, it is important to note that to ensure reduced model
complexity, only a one hidden layer model architecture is considered for
the ANN to ensure the model remains shallow.

The second surrogate model evaluated was the support vector
regression (SVR),which is a variant of support vector machines (SVM)
introduced by Drucker et al. (Drucker et al., 1996). SVR is designed for
regression problems, while SVM is used for classification tasks. The basic
principle of the SVR algorithm involves fitting a hyperplane or decision
boundary that best fits the data while minimizing complexity. The
regularization is done by introducing an error margin, also known as the
ʹϵ − insenstive tubé , where zero prediction error is assigned to the points
within the tube, while penalizing slack variables (i.e. variables outside
the tube) by its distance (ξ) to the tube boundary (Awad and Khanna,
2015). A regularization parameter, C, is also introduced to handle the
outliers more robustly, which helps controlling the trade-off between
maximizing the margin and minimizing prediction error. SVR can also
handle non-linear regressions by using kernel functions, which trans-
forms the feature space into a higher-dimensional space, where the
function, f(x), can be solved. Some common kernel functions for the SVR
include linear, polynomial, radial basis function (RBF) and sigmoid. The
hyperparameter ranges and optimal values are for the SVR model
development is tabulated in Table 7.

3. Results and discussion

3.1. Process model validation and verification

The granulation and mill process models were calibrated using 80 %
of the experimental data, and the remainder of the 20 % was used to
validate the model. The results for normalized outputs including d10,
d50, d90, porosity and drug composition are indicated in parity plots, R2
and RMSE values. For the mill model, an additional output, which is the
cumulative mass in the mill outlet, was also included in the parity plots.

Fig. 6, which shows the results for both granulation and mill model,
indicates good predictive performance and accuracy on both the
training and validation dataset.

Since there was no experimental data available for validation of the
dissolution model results, model verification was carried out based on
sensitivities of various parameters following the dissolution rules listed

Table 7
Ranges and optimal value of hyperparameters of the surrogate models.

ML Model Hyperparameter Range Optimal
value

Artificial Neural
Network (ANN)

No. of neurons in the
hidden layer

1–10 9

Learning rate 0.001–1 0.01
Activation function tanh, relu relu
Batch Size 16, 32, 64,

128
16

L1 Regularization factors 0.001–0.1 0.01
Support Vector
Regression (SVR)

Kernel Type linear, poly,
rbf

rbf

Regularization parameter
C)

0.1–1000 10

Kernel Coefficient
(Gamma)

0.001–10 1

Epsilon 0.01–1 0.1

Fig. 6. Parity plots for the (a) Granulation PBM and (b) Mil PBM.
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in Section 2.3.3. These parameters were perturbed at three levels, as
shown in Table 6, to ensure that the model physics is reflective of the
experimental observations. The results of t90 (i.e. time taken for 90 % of
drug to be dissolved) at each perturbation for size, porosity and diffusion
coefficient are shown in Table 7.

As shown in Fig. 7(a), t90 is inversely proportional to size and directly
proportional to porosity, which is in agreement with the discussion in
previous literature and in The next two columns in Fig. 7 (a) discusses
the effect of diffusion coefficient of the excipient (De) at low and high
API content composition formulations. De is fraction of the diffusion
coefficient of the drug. Based on the figure, the De parameter shows
significant sensitivity at lower API content, but less so at higher API

content. This is also in agreement with the discussion in the Section
2.3.3. We see that at low API content, the slower dissolving component
is the limiting factor of drug dissolution.

The microstructure of granules significantly influences their disso-
lution behavior. In this part of the study, we consider three theoretical
microstructures, where the active pharmaceutical ingredient (API) is
concentrated in the core, the API in the outer layer, and the API uni-
formly distributed throughout the granule. These configurations are
established by pre-defining the radial distribution function (RDF) of the
drug components, to reflect these varied microstructures. The dissolu-
tion curves of each microstructure are illustrated in Fig. 7. Here, it is
evident that the granules with the API in the core exhibit a noticeable

Fig. 7. Sensitivity of the dissolution t90 at different critical parameter values for (a) size, porosity, diffusion coefficients, and (b) granule microstructure.

Fig. 8. Sensitivity analysis PRCC results of the model parameters in the flowsheet model.

A. Dan and R. Ramachandran International Journal of Pharmaceutics: X 8 (2024) 100287 

11 



time delay in dissolution. This delay is primarily due to the “trapping
effect,” where excipient components surrounding the core must first
dissolve before the API molecules are exposed to the dissolution me-
dium. Consequently, the dissolution rate of the core API microstructure
is initially slower compared to other structures. In contrast, granules
with the API in the outer layer dissolve more rapidly, as the API is
immediately available for dissolution upon contact with the solvent. The
uniformly distributed API microstructure presents an intermediate
dissolution profile, with the API dissolving steadily as the granule pro-
gressively shrinks in size. These findings highlight the critical role of
microstructure in determining the dissolution kinetics of drug granules,
which is essential for optimizing drug delivery and ensuring consistent
therapeutic outcomes.

3.2. Sensitivity analysis

The PRCC method was used to evaluate the impact of the input
variables on the outputs variables, and identify the critical process pa-
rameters, and the results of the sensitivity analysis was depicted in the
intensity plots in Fig. 8. Fig. 8 represents the input and output variables
in the x-axis and y-axis, respectively, and the coefficient is denoted by
the values and the box color. Here, the darker red color indicates
stronger positive correlation, while the darker blue color indicates
stronger negative correlation. The output variables include intermediate

quality attributes, such as size, porosity and API content from the
granulation andmilling process, and final quality attributes (highlighted
in the black box), such as product yield and dissolution metrics
(t10, t50, t90). Yield is defined as the fraction of mass of material in the
mill outlet over the feed.

The analysis above reveals that granulation L/S ratio and wet
massing time exhibit the strongest positive correlations with dissolution
metrics (t50, t90). Conversely, mill RPM shows a weaker negative corre-
lation with the dissolution metrics. Granulation impeller speed (RPM)
and mill time demonstrate a lower impact on dissolution metrics.
However, mill time and L/S ratio notably correlated strongly with
product yield, where the mill time denotes a positive correlation and L/S
denotes a negative correlation. This is because as milling time increases,
more material within the mill holdup undergoes breakage and exits the
mill. On the other hand, the L/S ratio strongly influences the granule
particle size and porosity. At a higher L/S ratio, a granule is formed with
larger size and lower porosity, both of which contributes to a higher mill
holdup, resulting in lower yield.

Additionally, in this process design space range, the granulation RPM
is shown have minimal sensitivity to all final quality attributes, thus, to
simplify the optimization problem dimension, granulation RPM was
kept constant at 190 RPM.

Fig. 9. ANN model parity plot and prediction performance metrics.
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3.3. Surrogate-based optimization

3.3.1. Surrogate model development
The effectiveness of the surrogate model was assessed using the

model prediction performance, which can be indicated by parity plots
and metrics such as the coefficient of determination (R2) which mea-
sures the goodness of fit of the model. Fig. 9 and Fig. 10 depicts the
parity plots and R2 values for both the optimized ANN and SVR models
based on hyperparameters listed in Table 7. The comparison of both
figures indicates that the NNmodel more effectively captures the pattern
of data in this system, as indicated by the better model performance.
This may be attributed to the more weights that can be tuned for better

fit to the data in the ANN model. The computational time associated
with training these models are minimal with the ANN requiring
approximately 3 s and the SVR taking 0.4 s.

3.3.2. Forward optimization
An optimization case study was designed to conduct forward opti-

mization on the surrogate models. A bi-objective function based on
maximizing both dissolution time (indicated by t90 and yield is formu-
lated. Both weighted sum optimization and pareto optimization meth-
odology was compared. The results of the weighted sum are tabulated in
Table 8, where the function weighted for the two objectives vary at the
different cases. From Table 8 it is evident that as the weights for maxi-
mizing yield decreases and the weights for maximizing dissolution time
increases (going from left to right), the optimal solution shows an in-
crease in the L/S, wet massing time, and a decrease in milling time. The
higher L/S and wet massing time results in a more significant densifi-
cation and consolidation in the granulation mechanism, resulting in
larger granules with lower porosity formed. These attributes contribute
to a lower yield as they are more difficult to break during milling, but
also contributes to a slower dissolution time.

3.4. Autoencoder-based inverse design

3.4.1. Autoencoder model performance
The supervised autoencoder training was based on minimizing the

mean squared error (MSE) of both the reconstruction and prediction
variables. The errors for the reconstruction and prediction variables

Fig. 10. SVR model parity and prediction performance metrics

Table 8
Optimal solutions at different function weightages of the weighted sum multi-
objective optimization.

Function
Weightage

Yield (w1) 1 0.9 0.5 0.1 0
t90(w2) 0 0.1 0.5 0.9 1

Optimized
Parameters

L/S 0.68 0.68 0.72 0.765 0.8
WMT (sec) 240 281.8 309.5 240 480
Mill RPM 2477.8 2276.4 1500 1500 1500
Mill Time
(min)

15 15 14.93 13.74 0.5

Predicted Quality
Metrics

Yield 0.90 0.87 0.77 0.67 0.18
t90(hrs) 3.37 3.88 4.38 4.44 4.62
t50(hrs) 1.78 1.93 2.04 2.02 2.16
t10(hrs) 0.39 0.43 0.44 0.40 0.42
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Fig. 11. Parity plots for the (a) reconstructed and (b) prediction variables of the supervised autoencoder.

Fig. 12. Latent space representation, colored by (a) yield, (b) t10, (c) t50 and (d) t90.
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were calculated based on difference to the process outcome (dissolution
time and yield) and process parameters, respectively. The model per-
formance is denoted by the normalized parity plots and R2 (measure of
the goodness of fit) values, illustrated in Fig. 11. Since the training and
validation R2 are quite similar, overfitting is concluded to be minimal as
the model generalizes well to new inputs. Fig. 11 also shows that the
performance for the prediction variables (process parameters) are
poorer in comparison to the reconstruction variables (dissolution time
and yield). This is because the process parameters have different level of
sensitivity affecting the process outcome, as shown in Fig. 8. Thus, while
the variables with higher sensitivity have good predictive performance,
the variables with lower sensitivity have poorer performance. However,
the goodness-of-fit is still within acceptable predictive performance
required for this work. The computational cost of training this super-
vised autoencoder for 50 epochs at a batch size of 8 took 4.3 s.

3.4.2. Latent space representation
The latent space representation is represented by the three latent

variables in the ‘bottleneck’ layer of the autoencoder. These latent
variables are described as lower dimensional representation of the sys-
tem. For this dataset, the minimum number of variables that was needed
to explain the dynamics of the system was three, when one or two
variable(s) was used in the latent layer, the reconstruction prediction
was much poorer.

Fig. 12 shows the three latent variables in a 3-dimensional plot with

each variable in one of the axes. In Fig. 12(a) the data points are colored
by product yield values, where values closer to 1 indicates high yield and
values closer to 0 indicates low yield. It is observed that yield is pro-
portional to latent variable 2 and inversely proportional to latent vari-
able 3. Yield is not significantly correlated to latent variable 1. Fig. 12(b,
c,d) colors the data points by dissolution time (t10, t50, t90). t50 and t90was
shown to be inversely correlated to latent variable 2, while t10 was
inversely correlated to variable 1.

The reduction of dimensionality of the autoencoder is similar to that
of the PCA/PLS algorithms except that non-linear functions can be used
in autoencoders, whereas PCA/PLS relies entirely on linear correlations.

3.4.3. Feasibility analysis
Feasibility analysis is a technique used for evaluating the ability of a

process to satisfy all relevant operating, quality and production con-
straints (Grossmann et al., 2014). The goal of a feasibility analysis is to
identify the feasible region, which denotes the range of conditions which
a process can operate while satisfying all the relevant constraints
(Rogers and Ierapetritou, 2015).

Eq. 33 describes the constraints on both the product quality and
process parameters that were established for the problem. A surrogate-
based feasibility analysis was conducted by utilizing the autoencoder
as the surrogate model. The feasible region, which is represented by the
autoencoder latent variables and determined based on the constraints
established, are shown in Fig. 13. The gray shaded region indicates the

Fig. 13. (a) 3-D representation and (2) 2-D representations of the feasible region.
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feasible region denoted by the process design space (i.e. constraints only
on L/S, WMT, Mill RPM and Mill Time), whereas the green region in-
dicates additional constraint on yield and the blue region indicates
additional constraint on t90. The overlap between the green and blue
region indicates the feasible region where all the constraints listed in Eq.
33 are satisfied.

Yield ≥ 0.7

t90 (hours) ≥ 4.3 (33)

L/S ∈ (0.68,0.8)

WMT (min) ∈ (4,8)

Mill RPM ∈ (1500,3000)

Mill Time (min) ∈ (0.5,15)

Data generation was performed using the decoder and regressor
components of the autoencoder. To generate data points, the encoded
values, determined by the Latin Hypercube Sampling (LHS) algorithm,
served as inputs. The outputs generated included both process param-
eters and product quality metrics. Initially, 5000 data points were
sampled. After filtering for the process design space, 2500 data points
remained. These 2500 data points were then used in the feasibility
analysis. Out of the 2500 analyzed data points, 21 possible solutions
were identified within the feasible region. The process parameter ranges
within the feasibility region are, L/S ratio (0.7–0.74), wet massing time
(4.1–7.2 Minutes), mill RPM (1507–2315 rpm), mill time (13.3–15min).
These results show similarity to those obtained from weighted sum
optimization, indicating the applicability and consistency of both
methods.

4. Conclusions

In conclusion, this study demonstrates the successful optimization of
a three-unit flowsheet model using two distinct approaches:
autoencoder-based inverse design and surrogate-based optimization.
Both methods effectively addressed the multi-objective problem of
maximizing dissolution time while maximizing yield to achieve target
product quality.

The supervised autoencoder approach showed comparable results to
the surrogate-based method, with the added benefit of dimensional
reduction. This feature proves particularly advantageous for high-
dimensional problems involving numerous process inputs and outputs.
The lower-dimensional representation facilitates improved process un-
derstanding, enhanced visualization, and enables feasibility studies on
latent variables. The inverse design capability of the supervised
autoencoder makes it particularly well-suited for targeting specific
product qualities, as demonstrated in this study.

In this case study, both the autoencoder and surrogate models (ANN/

SVR) required comparable training times, each completing within sec-
onds, and prediction accuracy with R2 of 0.87 for the ANN and R2 of
0.83 for the autoencoder. The surrogate-based optimization, which it-
erates over the surrogate model to find the optimal solution is also
computationally efficient as it completes in under a minute. However,
for more complex problems, the autoencoder training would likely take
longer than training the ANN/SVR surrogate models, due to a larger
number of tuning parameters in the autoencoder. Despite the initial time
investment, the autoencoder method offers superior efficiency in the
subsequent optimizations by allowing direct sampling from the latent
space without the need for iterative model runs. As the problem
complexity increases, the advantages of the autoencoder-based inverse
design approach woule likely become more pronounced, because of the
prolonged run time required to iterate over a forward optimization
framework when searching for a solution to a complex optimization
problem containing many inputs.

This research contributes to the field of process design and devel-
opment by presenting a novel application of optimizing processes using
supervised autoencoders to implement inverse design in pharmaceutical
manufacturing. The findings suggest that this approach can be a
powerful tool for efficiently optimizing complex multi-objective prob-
lems, and can be a great alternative option to the more common
surrogate-based optimization, especially when targeting specific prod-
uct qualities in complex process operations.
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Appendix A. Appendix

Table A1
Experimental results for the granulation based on full factorial DOE design.

Run Label L/S W.M.T (min) Impeller Speed (rpm) d10 (μm) d50 (μm) d90 (μm) Porosity (%)

1 HHH 0.8 8 200 538 876 2117 26.57
2 HLL 0.8 4 180 495 863 1927 –
3 LHH 0.65 8 200 133 390 1375 –
4 HHL 0.8 8 180 666 1356 2743 –
5 LLL 0.65 4 180 166 300 643 40.9

(continued on next page)
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Table A1 (continued )

Run Label L/S W.M.T (min) Impeller Speed (rpm) d10 (μm) d50 (μm) d90 (μm) Porosity (%)

6 LLH 0.65 4 200 178 326 576 –
7 LHL 0.65 8 180 147 423 885 –
8 MMM 0.725 6 190 310 578 1347 32.82

Table A2
Experimental results for the mill.

Run Feed Material - Granulation Run Mill Impeller Speed (rpm) Collection Time d10 d50 d90 Yield Porosity (%)

1 HHH 1500 0.25 398 539 738 0.546 –
2 HHH 1500 0.5 401 543 745 0.601 –
3 HHH 1500 1 404 548 753 0.641 –
4 HHH 1500 5 407 556 771 0.695 –
5 HHH 1500 10 408 559 777 0.714 –
6 HHH 1500 15 406 560 783 0.727 31.07
7 HHH 3000 0.25 334 495 631 0.546 –
8 HHH 3000 0.5 337 497 636 0.601 –
9 HHH 3000 1 339 501 649 0.641 –

10 HHH 3000 5 340 510 694 0.695 –
11 HHH 3000 10 332 511 704 0.714 –
12 HHH 3000 15 319 510 708 0.727 33.46
13 HLL 1500 15 278 450 604 0.869 –
14 HLL 3000 15 254 419 586 0.941 –
15 LHH 1500 15 80 206 393 0.897 –
16 LHH 3000 15 76 197 379 0.919 –
17 HHL 1500 15 398 559 764 0.547 –
18 HHL 3000 15 276 529 735 0.691 –
19 LLL 1500 15 64 169 300 0.932 –
20 LLL 3000 15 60 155 288 0.926 38.7
21 LLH 1500 15 73 187 336 0.906 –
22 LLH 3000 15 68 177 305 0.927 –
23 LHL 1500 15 137 356 832 0.952 –
24 LHL 3000 15 125 305 780 0.967 –
25 MMM 1500 15 155 275 449 0.887 –
26 MMM 3000 15 145 262 421 0.932 36.29

Table A3
List of possible solutions of in the feasible region.

Optimized Outputs Process Parameters

t10 t50 t90 Yield LS WMT Mill RPM Mill Time

0.43 2.06 4.36 0.733 0.7 303.3 1535 14.3
0.44 2.06 4.32 0.733 0.72 253.5 2315 14.7
0.44 2.06 4.31 0.732 0.71 277.5 2301 14.7
0.44 2.06 4.32 0.728 0.72 268.4 2274 14.6
0.43 2.06 4.34 0.728 0.71 256.8 1940 14.1
0.44 2.07 4.34 0.724 0.72 250.3 2134 15
0.43 2.06 4.34 0.723 0.71 260.6 1963 14.1
0.43 2.05 4.33 0.722 0.7 289.4 1666 14
0.42 2.03 4.32 0.72 0.7 304.9 1507 13.8
0.44 2.06 4.36 0.72 0.72 246.9 2247 13.7
0.44 2.06 4.3 0.713 0.71 284.6 2315 13.7
0.44 2.07 4.34 0.71 0.72 255.6 2270 13.8
0.44 2.05 4.31 0.709 0.72 262.4 2266 13.3
0.43 2.04 4.31 0.709 0.71 284 1849 13.7
0.43 2.06 4.37 0.708 0.72 303.7 1834 14.6
0.45 2.07 4.34 0.708 0.7 316.3 1523 14.9
0.41 2.02 4.31 0.707 0.71 327.1 1533 13.8
0.41 2.05 4.39 0.703 0.7 434.3 1519 14.4
0.44 2.07 4.35 0.701 0.73 258.2 2111 13.9
0.4 2.03 4.37 0.7 0.71 408.2 1589 14.1

0.43 2.07 4.39 0.7 0.74 274.3 2189 15
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