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ABSTRACT
Immunogenic cell death (ICD) is a distinct type of stress-induced regulated cell death that can lead to 
adaptive immune responses and the establishment of immunological memory. ICD exhibits both 
similarities and differences when compared to apoptosis and other non-apoptotic forms of regulated 
cell death (RCD). The interplay between ICD-mediated immunosurveillance against cancer and the ability 
of cancer cells to evade ICD influences the host-tumor immunological interaction. Consequently, the 
restoration of ICD and the development of effective strategies to induce ICD have emerged as crucial 
considerations in the treatment of cancer within the context of immunotherapy. To enhance compre-
hension of ICD in the setting of cancer, this paper examines the interconnected responsive pathways 
associated with ICD, the corresponding biomarkers indicative of ICD, and the mechanisms through which 
tumors subvert ICD. Additionally, this review explores strategies for reinstating ICD and the therapeutic 
potential of harnessing ICD in cancer immunotherapy.

ARTICLE HISTORY 
Received 25 June 2024  
Revised 14 November 2024  
Accepted 2 December 2024 

KEYWORDS 
Cancer; immunogenic cell 
death; cell stress; 
immunotherapy; 
nanoparticle

Introduction

The demise of cells through various crucial cell death pathways 
facilitates physiological homeostasis in both normal and stress- 
challenged conditions.1 The loss of control over single or mixed 
types of cell death in response to different stresses contributes to 
the turnover process in the context of the tumor 
microenvironment.2,3 Regulate cell death (RCD) can be classi-
fied as either immunogenic RCD or non-immunogenic RCD, 
depending on its capacity to elicit an adaptive immune response. 
Immunogenic RCD, including necroptosis, ferroptosis, pyrop-
tosis, and cuproptosis, has been identified as playing pivotal 
roles in modulating the immunosuppressive tumor microenvir-
onment (TME) and influencing the clinical outcomes of cancer 
therapeutic strategies via tuning tumor immunity.4–6

To elucidate the fundamental determinants governing the 
capacity of dying cells to elicit an adaptive immune response 
and foster the development of enduring immunological mem-
ory, the mechanisms endowing dying cells with antigenicity and 
adjuvanticity have been examined.7,8 Furthermore, surrogate 
biomarkers, including soluble DAMPs and cytokines associated 
with ICD, have played a pivotal role in delineating the principal 
molecular participants and identifying potential ICD inducers 
through extensive screening endeavors.9 Nevertheless, the eva-
luation of ICD necessitates empirical validation from a variety of 
in vitro and in vivo assays to certify the ability of malignant cells 
undergoing ICD to recruit antigen processing cells (APCs) and 
initiate adaptive anti-cancer immunity.10

In contrast, the microenvironment surrounding developing 
tumors can hinder the initiation or execution of ICD through 
various mechanisms.11–13 To address this deficiency, several 
strategies have been suggested to counteract the compromising 
effect of cancer on the ability of RCD to stimulate adaptive 
immunity. In this review, we have examined the immunosup-
pressive factors within the tumor microenvironment (TME) 
that impede ICD and proposed corresponding strategies to 
enhance its efficacy. Furthermore, we have highlighted the 
significance of ICD-based immunotherapy, as well as nano-
particle-based ICD, as prominent therapeutic approaches for 
activating the immune system against cancer, which in turn 
determines the long-term success of anticancer therapies.14–16

Immunogenic RCD and ICD

Cells, including tumor cells, can undergo various forms of 
death in response to different stresses, facilitating the elimina-
tion of unwanted cells by the body. According to the 
Nomenclature Committee on Cell Death (NCCD), cell death 
can be categorized into accidental cell death (ACD) and RCD 
based on functional characteristics.17 ACD is an uncontrolled 
process of cell death that occurs in response to an unexpected 
attack or injury. Conversely, RCD denotes a genetically 
encoded molecular-controlled form of autonomous and 
orderly cellular demise.18 According to the ability to drive 
antigen-specific adaptive immune response culminating in 
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immunological memory or not, RCD can be further categor-
ized as ICD or non-immunogenic cell death.

Apoptosis

Apoptosis, an early recognized form of RCD, was traditionally 
believed to be immunologically silent or even tolerogenic. 
During apoptosis, cells exhibit cytoplasmic membrane bleb-
bing, nucleus condensation, fragmentation of cellular orga-
nelles and DNA, and the formation of apoptotic bodies that 
encapsulate the ruptured nucleus and cell debris.19 However, 
late apoptotic cells are ultimately engulfed by phagocytic cells 
of the innate immune system, without releasing pro- 
inflammatory cellular contents into the extracellular environ-
ment. However, in the presence of prolonged and severe 
endoplasmic reticulum stress (ERS), including factors such as 
oxidative stress, ischemia, hypoxia, disruption of calcium 
homeostasis, and viral infection, the immunogenicity of apop-
tosis can be attained.20,21 In such circumstances, apoptosis and 
ICD exhibit a mutually reinforcing association. Consequently, 
a significant area of interest in cancer therapy revolves around 
the induction of cancer cell-specific apoptosis within the 
tumor microenvironment (TME), while also ensuring its 
immunogenicity.22,23

Immunogenic RCD

In addition to apoptosis, a series of non-apoptotic RCD 
mechanisms have been gradually discovered in recent years. 
These include necroptosis, ferroptosis, pyroptosis, cupropto-
sis, PANoptosis, entosis, PARthanatos, alkaliptosis, oxeiptosis, 
lysosome-dependent cell death.24,25 Some of these mechanisms 
have also been found to have immunogenic potential and are 
connected to tumor immunity, promoting the enrichment of 
either anti-tumor effector immune cells or regulatory immune 
cells, ultimately leading to either tumor regression or progres-
sion, as shown in Figure 1. However, the ability of immuno-
genic RCD to induce adaptive immunity relies on two main 
factors: antigenicity and adjuvanticity, both of which are not 
inherently intrinsic to dying cells.

Immunogenic RCD plays a collaborative role in modu-
lating the tumor microenvironment (TME).5,26,27 The four 
potentially novel mechanisms of immunogenic cell death, 
namely necroptosis, ferroptosis, pyroptosis, and cupropto-
sis, have been confirmed to exhibit reciprocal interaction 
between tumor cell death and the activation of antitumor 
immunity.3,28 Necroptosis, for instance, has been exten-
sively studied concerning various stimuli, including the 
activation of death receptors (e.g., Fas and TNFRA), toll- 
like receptors (e.g., toll-like receptors 3 and 4), as well as 
RNA- and DNA-sensors (e.g., Z DNA-binding protein 1 
[ZBP1], retinoic acid receptor responder 3 [RIG1], trans-
membrane protein 173 [TMEM173, also known as 
STING]).29 Mechanically, RIPK3-stimulated MLKL is 
necessary for membrane rupture formation in 
necroptosis;30 Pyroptosis is primarily induced by the clea-
vage of gasdermin D (GSDMD) by CASP1 and CASP11 in 
response to pathogen-associated molecular patterns 
(PAMPs), damage-associated molecular patterns 

(DAMPs), or cytosolic lipopolysaccharide (LPS);31 

Ferroptosis is typically initiated by the excessive accumula-
tion of intracellular reactive oxygen species (ROS) follow-
ing lipid peroxidation-induced destruction of cellular 
membranes in an iron-dependent manner.32 Enhanced sus-
ceptibility to ferroptosis is correlated with reduced expres-
sion of GPX4, which can be induced directly through the 
binding of compounds such as RSL3, or indirectly through 
the inhibition of the cystine/glutamate antiporter(system 
xc-);33 Cuproptosis is a recently discovered RCD that is 
linked to the immunogenicity of the tumor microenviron-
ment. The underlying mechanism involves the transporta-
tion of excess Cu(II) from cells to mitochondria through 
ionophores. Within the mitochondria, the enzyme ferre-
doxin 1 (FDX1) reduces Cu(II) to Cu(I). The increased 
amount of Cu(I) directly binds to lipoylated components 
(like DLAT) of the tricarboxylic acid (TCA) cycle, leading 
to lipoylated proteins aggregation and destabilization of 
Fe – S cluster proteins, eventually, cell death.34

Figure 1. The core mechanism underlying four distinct forms of immunogenic 
non-apoptotic RCD. Within the context of various extracellular stresses and 
intracellular signaling pathways, cancer cells have the potential to undergo 
a specific type of cell death that is regulated by a specific set of genes and 
signaling molecules. These four types of RCD, namely necroptosis, pyroptosis, 
ferroptosis, and cuproptosis, represent typical immunological processes within 
the microenvironment(tme). These processes play a crucial role in balancing the 
TME by promoting the enrichment of either anti-tumor effector immune cells or 
regulatory immune cells, ultimately leading to either tumor regression or 
progression.
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Detection of ICD

To distinguish the immunogenicity of certain variants of RCD 
from ICD, standardized experimental assays have been devel-
oped and guidelines for interpreting ICD have been 
established.10,35 Various cellular stressors have been linked to 
ICD in immunocompetent syngeneic hosts, some of which are 
commonly used in the therapy of cancer patients.36,37 

Mechanistically, a crucial characteristic of molecules that 
induce ICD is their ability to render dying cells antigenicity 
and adjuvanticity through stress-responsive pathways, such as 
endoplasmic reticulum (ER) stress, and transcriptional/trans-
lational stress. The common inducers of ICD and the asso-
ciated cellular stress related to antigenicity or adjuvanticity 
have been discussed, as shown in Figure 2.

Antigenicity from ICD

Antigenicity is attributed to the expression and presentation of 
antigens that do not induce clonal deletion within the frame-
work of central or peripheral tolerance in their basal state.38 

Transcriptional and translational stress seem to be particularly 
effective in generating potential neoantigens.39 While there are 
at least three approaches to confer sources of ICD antigenicity, 
it is generally believed that the majority of ICD inducers have 
minimal impact on antigenicity. Firstly, it has been observed 
that latent endogenous retroviruses and/or retroviral genes can 
be activated in response to certain ICD stressors, leading to the 
production of potentially antigenic proteins.40 Secondly, the 
antigenic peptide repertoire can be enhanced through 

enzymatic or non-enzymatic post-translational modifications 
(PTMs) that modify the structure of proteins. These modifica-
tions include but are not limited to, phosphorylation, acetyla-
tion, glycosylation, citrullination, nitration/nitrosylation, 
glycation, oxidation, and ubiquitination.41 Lastly, the accumu-
lation of mutations and the landscape of tumor neoantigens 
evolve in response to increased genetic stress, under the pres-
sure of ICD stressors, such as chemotherapeutic or radiother-
apeutic interventions.42,43

Adjuvanticity from ICD

Multiple mechanisms contribute to the adjuvanticity of 
ICD, which plays a significant role in the initiation of 
adaptive immunity. These mechanisms include: (1) ICD- 
associated pattern recognition receptors (PRRs) activation, 
encompass numerous Toll-like receptors (TLRs), cyclic 
GMP-AMP synthase (CGAS), RIG-I-like receptors (RLRs), 
NOD-like receptors (NLRs), Z-DNA binding protein 1 
(ZBP1), and heterogeneous nuclear ribonucleoprotein A2/ 
B1 (HNRNPA2B1);44 (2)Integrated stress response(ISR) 
activation, which is a part of the ER stress response, ulti-
mately stimulate the phosphorylation of eukaryotic transla-
tion initiation factor 2 subunit alpha(eIF2α) and the 
upregulation of activating transcription factor 4 (ATF4);45 

(3)activation of autophagy, a cytoprotective mechanism 
related with ISR. However, the ultimate impact of autop-
hagy on damage-associated molecular patterns (DAMPs) 
emission by ICD exhibits considerable context dependency. 
For example, autophagy limits the exposure of 

Figure 2. The core mechanisms of ICD involve the induction of transcriptional/translational stress or ER stress in dying cells by ICD inducers. These dying cells are then 
endowed with antigenicity or adjuvanticity through various approaches. Several immunostimulatory DAMPs and cytokines released during ICD have been identified as 
biomarkers of this process.
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calreticulin(CALR) by cancer cells undergoing photody-
namic therapy (PDT)-driven ICD, but optimizes ATP 
release in the course of chemotherapy-driven ICD;7,46 (4) 
release of immunostimulatory DAMPs and cytokines, most 
of them have been recognized as the biomarkers of ICD, 
which enable the recruitment of antigen processing cells 
(APCs) or their precursors to sites of ICD (eg, ATP), 
spatially guide the interaction between APCs and dying 
cells (eg, ANXA1), favor the phagocytosis of dying cells 
or their corpses (eg, CALR, ERp57, HSP70/90), promote 
the maturation and cross-presentation of APCs (eg, ATP, 
HMGB1, type I IFN and TFAM), or facilitate the recruit-
ment of T cells (eg, CCL2, CXCL1 and CXCL10).8,47

Interpretation of ICD

It is important to note that not all inducers of ICD operate 
through the same molecular mechanisms, and the release 
of damage-associated molecular patterns (DAMPs) asso-
ciated with ICD is not always sufficient for antigen- 
presenting cells (APCs) to initiate cytotoxic T lymphocyte 
(CTL)-dependent immune responses against dying 
cells.48,49 Therefore, it is necessary to conduct gold- 
standard vaccination and therapeutic assays in vivo to 
confirm genuine ICD inducers. In the vaccination assay, 
malignant cells that have undergone cell death in vitro due 
to a potential ICD inducer are utilized as a vaccine, either 
in their original form or loaded onto immature, syngeneic 
dendritic cells (DCs). The ability of mice to reject or 
control tumor growth reflects the level of 
immunogenicity.35,50 Specificity is confirmed by re- 
challenging tumor-free mice with another syngeneic cancer 
cell line at the conclusion of the experiment, which is 
anticipated to result in the development of palpable neo-
plastic lesions in 100% of the mice. In the therapeutic 
assay, grafted tumors that are either genetically-driven or 
chemically-induced are established in subcutaneous or 
orthotopic locations and subsequently treated with 
a putative inducer of ICD in both immunocompetent and 
immunodeficient mice. In this experimental configuration, 
genuine ICD inducers demonstrate optimal antineoplastic 
effects in immunocompetent mice, but not in immunode-
ficient mice.50,51 Importantly, the therapeutic assay is of 
significant importance in validating the outcomes of vacci-
nation experiments. However, it is insufficient on its own 
to distinguish between the induction of ICD and immu-
nostimulation unrelated to ICD.

Tumor subversion of ICD and corresponding 
restoring strategies

Malignant cells have devised various strategies to diminish 
the antigenicity and adjuvanticity of ICD, including direct 
inhibition of the essential components of the ICD-associated 
responsive apparatus. These mechanisms employed by can-
cerous cells enable them to evade the adaptive immune 
response triggered by ICD.52,53 Enhancing our comprehen-
sion of this process is expected to facilitate the clinical 
application of ICD.

Defects compromising the antigenicity and adjuvanticity 
in cancer

Numerous studies have documented the involvement of tumor 
subversion in the reduction of antigenicity, including loss of 
chromosome 6 and 15 (LOH), mutations in the beta-2-micro-
globulin (β2 M), and alterations in the IFN signaling 
pathway.54–56 These alterations significantly impact the synth-
esis of a functional major histocompatibility complex (MHC) 
class I exposure. Therefore, it is imperative to restore MHC class 
I defects in tumor cells to ensure efficient antigenicity of ICD.

Additionally, malignant cells can interfere with the release 
of ICD-associated damage-associated molecular patterns 
(DAMPs), such as Calreticulin (CALR), ATP, and annexin 
A1 (ANXA1), thereby subverting the adjuvanticity of ICD. 
For example, Certain malignant cells have the ability to manip-
ulate CALR signaling through the internal retention of CALR 
upon interaction with stanniocalcin 1 (STC1) or by limiting 
CALR binding sites on the cell surface.57 Additionally, these 
malignant cells can evade the release of ATP associated with 
ICD by upregulating or promoting the upregulation of two 
ectonucleotidases, CD39 and CD73, which sequentially con-
vert extracellular ATP into adenosine.58,59 Furthermore, stu-
dies have demonstrated that some malignant cells reduce the 
expression of ANXA1, thereby impacting the ability of cancer 
cells to expose CALR in response to ICD inducers.60

TME factors influencing ICD and corresponding enhancing 
strategies

In addition to the aforementioned factors originating from 
malignant cells, the microenvironment surrounding dying can-
cer cells significantly influences their capacity to induce adaptive 
immunity at the microenvironmental level, even when there is 
an adequate presence of antigens and adjuvants. The TME 
factors influencing ICD and corresponding enhancing strategies 
have been studied extensively, as shown in Figure 3.

Firstly, The presence, activation, and costimulation of 
tumor-infiltrating lymphocytes (TILs), such as CD8+ T cells, 
CD4+ T cells, B cells, and innate lymphoid cells, are essential 
for a successful immune response against tumors and are 
correlated with favorable prognoses in various types of 
tumors.61,62 However, in tumors characterized as immune- 
desert or immune-excluded (“cold” tumors), tumor- 
infiltrating lymphocytes (TILs) are either absent or fail to 
efficiently penetrate the tumor, thereby impeding the induc-
tion of adaptive immunity through ICD. The utilization of 
adoptive cell therapy (ACT) involving TILs has been exten-
sively studied in various solid tumors, revealing sustained 
responses by enhancing T-cell infiltration, even in patients 
resistant to immune checkpoint blockade (ICB).63,64 

Nonetheless, in immune-inflamed tumors (“hot” tumors), 
the issue of T-cell exhaustion continues to pose a challenge 
to effective anti-cancer immune responses.65 Immune check-
point blockade therapy targeting coinhibitory receptors 
expressed by infiltrating T cells, including CTLA-4, TIM-3, 
and PD-L1, has been shown to enhance the effectiveness of 
ICD.66,67
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Secondly, immunosuppressive immune cells, such as mye-
loid-derived suppressor cells (MDSC), M2-like macrophages 
(M2), and regulatory T cells (Treg), play a crucial role in 
suppressing antitumor immune responses in cancer 
immunity.68,69 However, the efficacy of systemic cell depletion 
in promoting antitumor immunity is not always guaranteed, as 
these cells possess a wide range of functions and the tumor 
microenvironment is highly complex. Consequently, the utili-
zation of various therapeutic approaches, currently being eval-
uated in clinical settings, encompasses diverse strategies such 
as targeting recruitment and differentiation, as well as enga-
ging activating or inhibitory receptors (checkpoint receptors) 
to reprogram the functionality of immunosuppressive immune 
cells.70,71 Overall, these approaches are currently not consid-
ered independent strategies, but myeloid checkpoint therapy 
has demonstrated promising outcomes. Notably, the pharma-
ceutical inhibition of c-Rel, a myeloid checkpoint in MDSCs, 
has exhibited significant inhibition of cancer growth in mice.72

Thirdly, cancer cells possess the ability to suppress immune 
cells by generating immunosuppressive metabolic byproducts 
such as adenosine, kynurenine, prostaglandin E2 (PGE2), as 
well as norepinephrine and epinephrine.73,74 The synthesis and 
signaling pathways of these potent immunosuppressive meta-
bolites exhibit inherent redundancy. This redundancy has 
posed a significant challenge in the development of effective 
pharmacological interventions against these metabolites. 
Consequently, the efficacy of inhibitors targeting only one 
metabolite is limited due to compensatory metabolic path-
ways. Currently, clinical trials are underway to evaluate the 
effectiveness of “pan-antagonists” for each subclass of the 
“metabolic immunosuppressive receptor,” including A2A/2  

BAR, AhR, EP2/EP4, and β-adrenergic receptors. 
Additionally, broad inhibitors of kynurenine (IDO1/TDO or 
IDO1/IDO) and PGE2 (COX-1 and COX-2) are being 
tested.75,76

Fourthly, The intricate TME is characterized by a low pH, 
elevated redox status, and hypoxia, which have been linked to 
the suppression of immunotherapy.77 Reactive oxygen species 
(ROS) have been extensively investigated in the context of 
cancer and exhibit a dual nature. At lower to moderate con-
centrations, ROS serve as signal transducers, stimulating cell 
proliferation, migration, invasion, and angiogenesis. In con-
trast, elevated levels of reactive oxygen species (ROS) have the 
potential to induce cellular demise.78 Under conditions of 
oxidative stress, tumor-infiltrating regulatory T cells (Treg 
cells) undergo programmed cell death, known as apoptosis, 
resulting in a more potent immunosuppressive effect com-
pared to viable Treg cells.79 Furthermore, ROS can impede 
the effectiveness of anti-tumor immune responses by activat-
ing endoplasmic reticulum (ER) stress-XBP1 signaling in den-
dritic cells (DCs).80 These collective findings suggest that 
heightened ROS levels represent a contributing mechanism 
underlying the resistance to immunotherapies, including the 
induction of anti-tumor immunity through ICD.

Fifthly, The tumor vasculature consists mainly of hypoxia- 
induced vessels that are distorted, malformed, and leaky, 
resulting in inefficiency. This abnormal vasculature has impli-
cations for the trafficking and accumulation of CD4+ and CD8 
+ cells within the tumor.81 Researchers have investigated vas-
cular normalization therapy, including the use of anti-VEGF 
and small-molecule RTK inhibitors, to induce the develop-
ment of high endothelial cells in the vasculature (HEVs).82,83 

Figure 3. The TME factors influence the capacity of ICD to induce adaptive immunity at the microenvironmental level, along with corresponding strategies aimed at 
enhancing ICD for improved immunotherapy.
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This may facilitate lymphocyte trafficking into the tumor and 
potentially enhance the effects of immunotherapy by promot-
ing the formation of tertiary lymphoid structures.

Sixly, The desmoplastic reaction to a tumor refers to the 
proliferation of fibrous connective tissue surrounding tumor 
cells, which is closely linked to the infiltration of immune cells 
within the tumor. Several studies have shown that an imma-
ture desmoplastic reaction and the presence of myxoid stroma 
are associated with lower densities of tumor intraepithelial 
memory cytotoxic T cells and stromal M1-like 
macrophages.84,85 Additionally, the presence of a dense extra-
cellular matrix (ECM) and fibrous stroma is also associated 
with the recruitment of immunosuppressive cells, such as 
Tregs, which hinder the effectiveness of antitumor 
immunity.86 The manipulation of mechanotransduction path-
ways in myofibroblasts has demonstrated the potential to 
mitigate organ fibrosis and reduce tumor burden in experi-
mental models. The implementation of mechano-therapeutics, 
such as inducing a quiescent phenotype in myofibroblasts, 
promoting myofibroblast apoptosis, or inhibiting pro-fibrotic 
gene expression programs and TGF-β1 activation, could serve 
as innovative therapeutic interventions to enhance the efficacy 
of immunotherapy.87,88

ICD-based immunotherapy

In light of an enhanced comprehension of ICD within the 
context of cancer, ICD-based immunotherapy has emerged 

as a compelling option for integrating cancer immunotherapy 
combination regimens in clinical settings. These regimens 
encompass chemo-immunotherapy, radio-immunotherapy, 
photo-immunotherapy, and cancer vaccines. The process of 
ICD-based immunotherapeutic approaches in activating anti- 
tumor immunity is shown schematically in Figure 4.

ICD-based chemo-immunotherapy

Several traditional chemotherapeutic drugs, including anthra-
cyclines, taxanes, cyclophosphamide, bortezomib, crizotinib, 
and oxaliplatin, have been identified as genuine inducers of 
ICD. These drugs can trigger the immunogenic demise of 
tumor cells, leading to a CD8+T cell-mediated response 
against tumor antigens expressed by the dying cells.37,89 The 
combination of immune checkpoint inhibitors (ICIs) with 
ICD-inducing drugs has shown promising results in the treat-
ment of various tumors, particularly in challenging-to-treat 
cancers, with minimal risks of overlapping toxicities among 
the individual drugs, although the optimal dose, timing, and 
sequence of chemo-immunotherapy combinations needed to 
be further explored.90,91

ICD-based radio-immunotherapy

Irradiated tumor cells experience ICD, which can stimulate 
a potent anti-tumor immune response. The integration of 
radiotherapy (RT) and immunotherapy is increasingly being 

Figure 4. The process of icd-based immunotherapeutic approaches in activating anti-tumor immunity. Chemotherapy, radiotherapy, phototherapy, and cancer vaccine 
can induce the ICD of cancer by upregulating the antigenicity and adjuvanticity of cancer, then initiate the anti-tumor immunity, including NK cell activation, DC cell 
maturation, and T cell proliferation.
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utilized in routine clinical practice, despite limited high- 
quality evidence to inform clinical management.92 In addition 
to conventional photon RT (utilizing X-ray or gamma-ray 
beams), particle RT, such as proton RT, carbon-ion radio-
therapy (CIRT), and boron neutron capture therapy (BNCT), 
also exerts a significant impact on tumor cells and various 
immune cells within the tumor microenvironment, resulting 
in the release of ICD biomarkers.93,94 However, the combina-
tion of particle RT with immunotherapy is still limited in 
clinical, because of costs and technique restrictions.

ICD-based photo-immunotherapy

Phototherapies employing suitable photoagents and light 
doses have been observed to elicit ICD within specific tumors, 
thereby generating tumor-associated antigens (TAAs) and 
damaged-associated molecular patterns (DAMPs) as potential 
sources.95 This phenomenon has the potential to instigate an 
inflammatory response. Notably, near-infrared (NIR) light has 
emerged as the predominant choice for phototherapy, owing 
to its ability to deeply penetrate biological tissues. This is often 
achieved through the administration of in situ or naturally 
occurring absorbance agents.96 Photosensitizers possess the 
ability to convert absorbed light energy into heat for photo-
thermal effects, as observed in photothermal therapy (PTT), or 
into reactive oxygen species (ROS) for photochemical effects, 
as observed in photodynamic therapy (PDT).97 Notably, cer-
tain photosensitizers, including porphyrins, indocyanine 
green, methylene blue, and Rose Bengal, have been successfully 
employed in clinical settings for PDT. These photosensitizers 
exhibit robust optical absorption at therapeutic wavelengths, 
high photochemical conversion efficiency, and favorable bio-
compatibility. A combination of phototherapy and immu-
notherapy, particularly using immunostimulants, immune- 
targeting agents, and checkpoint inhibitors, can significantly 
induce antitumor immune responses.98,99

ICD-based cancer vaccine

The cancer vaccine has shown promise as an immunotherapy, 
but it continues to encounter obstacles, particularly in the 
identification of immunogenic neoepitopes on diverse cancer 
cells.39 The initiation of tumor-specific neoantigens through 
the process of ICD presents an opportunity for the develop-
ment of endogenous cancer vaccines.100 A novel approach to 
in situ cancer vaccination involves utilizing the patient’s tumor 
antigens, which are produced by ICD inducers. The dendritic 
cells (DCs) recruited by ICD may also serve as a potential DC 
vaccine.101,102 Various strategies have been expanded upon to 
investigate the potential of neoantigen-based cancer vaccines, 
but a deeper investigation of their mechanisms and immune- 
related adverse events (irAE) need more attentions.103

Progress, obstacle, and future perspective in 
ICD-based nanoimmunotherapy in cancer

The efficacy and safety of traditional ICD inducers alone or 
combinational immunotherapy are constrained by various 
challenges.104 Firstly, the efficacy is hindered by inadequate 

targeting for solid tumors and an unfavorable tumor micro-
environment for immunotherapeutics. Secondly, off-target 
adverse effects increase the likelihood of systemic toxicities 
and rates of immune-related adverse events (irAEs). To 
address these challenges, nanotechnology has emerged as 
an enhanced delivery technology for cancer immunother-
apy utilizing ICD.14,105 The utilization of nanotechnology 
has the potential to enhance the concentration of immu-
notherapeutics within tumors, facilitating more precise tar-
geting of desired tumor and immune cells, while also 
mitigating off-target adverse effects. Additionally, nano-
technology offers a distinctive approach to elicit enduring 
antitumor immune responses through sustained ICD med-
iation and concurrently remodeling the tolerogenic tumor 
immune microenvironment.106,107

ICD-based nanoimmunotherapy in cancer

Recent investigations have assessed the efficacy of novel inor-
ganic and polymeric nanoparticles, including AuNPs, Metal- 
organic frameworks (MOFs), and micelles, as inducers of 
ICD.108 Nanotechnology presents a viable approach for indu-
cing ICD and facilitating the targeted administration of ICD 
inducers, thereby enhancing the efficacy of conventional ther-
apeutic strategies like chemotherapy, phototherapy, and 
radiotherapy.

In terms of chemotherapy, certain chemotherapeutic drugs 
that induce ICD have been incorporated into a nano-drug co- 
delivery system (NDCDS), which combines cytotoxicity and 
immunostimulatory properties.109 For instance, a prodrug of 
Cisplatin(IV) was conjugated to N-(2-hydroxypropyl) metha-
crylamide (HPMA) copolymer (P-Cis) and coadministered with 
digoxin (Dig), which induces potent immunogenic cell death, 
leading to dendritic cell maturation and activation of CD8+ 
T cell responses.110 Poly(lactic-co-glycolic acid) nanoparticles 
(PLGA NPs) loaded with paclitaxel (PTX) and a Toll-like recep-
tor 4 (TLR-4) agonist (SP-LPS) demonstrated enhanced in vivo 
antitumor activity and a higher proportion of activated immune 
cells in the TME than the Taxol-treated group.111

In terms of phototherapy, several inorganic nano-agents, 
including AuNPs, CuS NPs, GO, MoS2 nanosheets, and car-
bon nanotubes, possess inherent NIR light absorption 
capabilities.112,113 These nano-agents have been designed to 
deliver thermal energy and immunoadjuvants. For instance, 
Mao et al. conducted a study on near-infrared (NIR)-driven 
immunostimulants, where they combined upconversion nano-
particles with aggregation-induced emission luminogens 
(AIEgens).114 This combination resulted in the generation of 
high-dose reactive oxygen species (ROS) when exposed to 
high-power NIR irradiation, leading to enhanced immuno-
genic cell death and antigen release.

In terms of radiotherapy, the utilization of high-Z-element 
nanoparticles in radiotherapy has demonstrated the potential 
to improve the radiotherapeutic indices of localized tumors by 
minimizing radiation doses and adverse effects on healthy 
tissues. Additionally, these nanoparticles can stimulate the 
tumor microenvironment (TME) to elicit systemic antitumor 
immune responses, thereby augmenting abscopal effects.115,116 

On the one hand, The utilization of inorganic nanoparticles 
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(NPs) as radiosensitizers has been shown to enhance the 
absorption of ionizing radiation, including X-rays, photons, 
and gamma rays. On the other hand, Nanotechnology also 
offers the potential for nanovectorized ionizing radiation, 
which could effectively enhance the anti-tumor immune 
response associated with ICD following internal radiation.117 

This approach can be tailored and designed to achieve pre-
dictable outcomes. For instance, Zhang et al. successfully 
designed a multifunctional nanoparticle (PIC) by employing 
a scalable and straightforward complexation method involving 
poly-l-lysine (PLL), CpG oligodeoxynucleotide (CpG), and 
iron oxide nanoparticles (ION). This nanoparticle formulation 
resulted in the activation of tumor-specific immunity and 
improved abscopal effects.118

Recently, Several intelligent nanoparticle-based platforms 
have been developed to induce potent ICD through various 
mechanisms of action, thereby enhancing antitumor 
immunity.119,120 For instance, nanoparticles capable of co- 
delivering ICD-inducing therapeutic drugs (such as OxP, 
DOX, and PTX) and photosensitizers (such as indocyanine 
green (ICG), Ce6, and pheophorbide A) have been designed 
to achieve a synergistic effect. Concurrently, the modulation of 
the immunosuppressive tumor immune microenvironment 
(TIME) through the use of agents such as indoleamine 
2,3-dioxygenase 1 (IDO1) inhibitors and anti-PD-L1 antibo-
dies provides additional advantages by mitigating the immu-
nosuppressive state and augmenting the effectiveness of cancer 
immunotherapy.121–123

Obstacles and future perspective of nanoimmunotherapy

In a similar vein, the effectiveness of nanoimmunotherapy is 
impeded by unfavorable tumor microenvironments character-
ized by limited tumor penetration due to elevated interstitial 
fluid pressure (IFP), dense extracellular matrix (ECM), transi-
ent tumor retention, and inadequate tumor cell uptake. To 
address these challenges, extensive endeavors have been under-
taken to overcome these biological barriers. Primarily, the 
physiochemical attributes of nanomedicines play a significant 
role in tumor penetration, encompassing surface area, hydro-
dynamic diameter, shape, and surface zeta-potential.124 

Moreover, the utilization of tumor-targeting RGD family pep-
tides has demonstrated the ability to enhance the penetration 
of nanoparticles (NPs) into tumors. For instance, liposomes 
modified with nRGD and loaded with DOX exhibited superior 
tumoricidal effects in comparison to standard PEGylated lipo-
somal DOX.125 Additionally, the degradation of the extracel-
lular matrix (ECM) has also been achieved as a strategy. For 
instance, Cheng et al. developed PEG-PLGA NPs with surface- 
conjugated recombinant human hyaluronidase PH 20 
(rHuPH20) to enhance tumor penetration. These NPs exhib-
ited improved tumor penetration and more effective perfusion 
when compared to the physical mixture of free rHuPH20 and 
PLGA-PEG NPs, after loading with DOX.126

In summary, various nanoparticles, both established and 
newly discovered, have been assessed as carriers or modalities 
for inducing ICD, thereby enhancing the effectiveness of cancer 
immunotherapy while minimizing adverse effects on the entire 
system.127,128 Nevertheless, further investigation is required to 

determine the precise effects of each combined approach.129 It 
is worth noting that only a limited number of stimuli have been 
proven to genuinely induce ICD. Furthermore, the animal 
models used in current studies may not accurately represent 
real-world scenarios in human subjects. Consequently, numer-
ous challenges must be thoroughly addressed prior to the wide-
spread implementation of these approaches.

Conclusions

The initiation of adaptive immune responses that specifically 
target antigens found in tumors can be stimulated through the 
induction of immunological RCD in cancer cells. These cancer 
cells acquire antigenicity or adjuvanticity through stress- 
responsive pathways. However, there exist various mechan-
isms by which both the cancer cells themselves and the TME 
can hinder the initiation or execution of ICD. Therefore, the 
use of ICD sensitizers or enhancers becomes necessary in 
certain ICD-related immunotherapies to achieve optimal 
effectiveness. Apart from traditional strategies for ICD induc-
tion, the field of ICD-based nanoimmunotherapy is gaining 
increasing attention due to its unique characteristics.
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