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ABSTRACT
Identifying interventions that are optimally tailored to each individual is of significant interest in various fields, in particular preci-
sion medicine. Dynamic treatment regimes (DTRs) employ sequences of decision rules that utilize individual patient information
to recommend treatments. However, the assumption that an individual’s treatment does not impact the outcomes of others, known
as the no interference assumption, is often challenged in practical settings. For example, in infectious disease studies, the vaccine
status of individuals in close proximity can influence the likelihood of infection. Imposing this assumption when it, in fact, does
not hold, may lead to biased results and impact the validity of the resulting DTR optimization. We extend the estimation method
of dynamic weighted ordinary least squares (dWOLS), a doubly robust and easily implemented approach for estimating optimal
DTRs, to incorporate the presence of interference within dyads (i.e., pairs of individuals). We formalize an appropriate outcome
model and describe the estimation of an optimal decision rule in the dyadic-network context. Through comprehensive simulations
and analysis of the Population Assessment of Tobacco and Health (PATH) data, we demonstrate the improved performance of the
proposed joint optimization strategy compared to the current state-of-the-art conditional optimization methods in estimating the
optimal treatment assignments when within-dyad interference exists.

1 | Introduction

Treatment of a chronic disease or condition often involves a
series of decisions for which multiple long-term strategies are
possible. The decision of which regime of treatments to pur-
sue is often made by a medical professional, who chooses an
appropriate treatment regime based on metrics that, histori-
cally, emphasize the illness. Precision medicine is an approach
that aims to improve upon the traditional method of treatment
selection by taking into account additional relevant factors. The
basic idea is that the efficacy of a particular treatment may be
influenced by certain individual-level characteristics of each per-
son, such that the effectiveness of the treatment will vary across
individuals with different values of these characteristics. By
incorporating relevant information into the treatment decision,
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precision medicine enables clinicians to select the most suitable
treatment for each individual with greater precision. The focus
on individual-level characteristics is why precision medicine is
sometimes also known as personalized medicine [1].

The relationship between treatments and individual-level char-
acteristics may be explored through dynamic treatment regimes
(DTRs). A DTR is a sequence of decision rules each of which
considers individual-level information thought to impact the
effectiveness of the treatments under consideration [2]. A central
focus of DTR researchers is devising methodologies for the
estimation of optimal DTRs [3]. What is meant by optimal is
contextual, but a typical approach is to consider it in terms of
the individual’s expected health outcome under the estimated
regime.
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Different methods of estimating optimal DTR have been pro-
posed in the literature [4]. Among these methods, some focus
on modeling the conditionally expected outcome to derive and
optimize DTRs, with Q-learning as a notable example [5, 6].
Q-learning is relatively straightforward to implement, but in its
traditional form, it suffers from a lack of robustness to model
misspecification. An approach that improves on this shortcom-
ing of Q-learning is G-estimation [7]. G-estimation is similar to
Q-learning in many ways (see, e.g., Chakraborty, Murphy, and
Strecher [8]), but provides double robustness against misspecifi-
cation of nuisance models. The robustness of G-estimation, and
the flexibility to accommodate nonlinear modeling strategies,
makes it an attractive method for estimating optimal DTR, but
relatively more complex to implement compared to Q-learning.
Building on the foundations laid by Q-learning and G-estimation,
new methods have been developed to address model misspec-
ification. One such significant advancement is the data-driven
robust Q-learning approach introduced by Ertefaie et al. [9] to
reduce the risks of model misspecification in DTR. Of particular
interest for our purposes is the dynamic weighted ordinary least
squares (dWOLS) approach, another method that integrates a key
strength of G-estimation, that is, robustness to nuisance model
misspecification, and Q-learning, which is simple to implement.
The dWOLS method is adaptable to continuous treatments and
time-to-event outcomes [10–12].

Most of the foregoing methods for estimating optimal DTRs
assume that the treatment of one individual has no impact on
the outcome of any other individual under consideration. This is
the so-called no interference assumption of classical causal infer-
ence, a crucial component of the stable unit treatment value
assumption (SUTVA) [13]. However, no interference assumption
may not hold true in all scenarios. For example, interference
arises in the study of infectious diseases, where the treatment
status (i.e., vaccination) of people around an individual could
impact their likelihood of getting infected [14]. Ignoring interfer-
ence, when it exists, could bias the causal estimates of interest
[15]. Moreover, estimating the effect of the treatment of others
on an individual’s outcome may itself be of intrinsic interest in
some settings [16]. While various studies have addressed inter-
ference in different causal inference contexts [17–21], it remains
underexplored in the context of DTR.

Recently, attempts have been made to extend DTRs to situations
in which the no interference assumption is relaxed. One of the
first works on estimating an optimal treatment regime in the pres-
ence of interference with a regression-based population model
was proposed by Su, Lu, and Song [22]. The authors character-
ize network interference by including neighbors’ covariates and
treatment status in each individual’s outcome model. However,
the model is only for a single-stage treatment decision and does
not assume any interaction between individuals’ treatments. That
leads to an optimal decision rule that ultimately does not depend
on the treatment status of one’s neighbors. A more recent study
considers a DTR framework utilizing dWOLS, in which the treat-
ment status and covariate values of the neighbors of individuals
of interest are gathered into a scalar-valued exposure interfer-
ence term, which is then incorporated at the modeling stage [23].
However, the treatments of the neighbors are considered con-
stant and are not included in the optimization stage; that is, the

optimization employs a conditional optimization approach.
Therefore, the estimation of optimal treatment for an individual
could potentially proceed with the usual dWOLS algorithm.

In this work, we propose a methodology for the estimation of opti-
mal DTRs within a population in which interference among those
being considered for treatment exists. In particular, we consider
the context of a patient population exhibiting a dyadic-network
structure, where each individual in the sample forms a dyad
(i.e., pair) with another individual in the sample. Interference
is then permitted to exist among those patients belonging to the
same dyad, but not between dyads. In a population with such an
interference structure, each individual is influenced by two treat-
ments: their own prescribed treatment and the treatment of their
dyad cohabitant. It follows that each treatment is then associated
with two individuals, and therefore optimal value of the treat-
ment can only be obtained when the resulting ramifications on
both parties are considered. Estimation of the optimal treatment
regime then proceeds through, without loss of generality, max-
imization of a dyad outcome through the dyad-health function,
a contextual measure of the health status of those comprising a
dyad. The model, therefore, accounts for the interference of treat-
ment statuses within the population in estimation, and, to our
knowledge, is the first model to do so in the DTR literature. In
addition, the introduction of the dyad-health function provides
practitioners with the flexibility to accommodate concerns, such
as prioritizing marginalized groups or individuals within dyads
who suffer from more serious health problems.

To demonstrate the importance of the innovations provided by
the proposed model, we focus on nicotine exposure. Studies show
that smoking behaviors tend to cluster within families [24], and
that the effectiveness of smoking cessation interventions for an
individual can be influenced by social factors such as the concor-
dance of smoking tendencies between family members [25–27].
Through a detailed analysis of the Population Assessment of
Tobacco and Health (PATH) data set, we investigate the impact
of adoption of e-cigarettes in households with two tobacco users.
We assess whether the adoption of e-cigarettes by an individ-
ual impacts their nicotine exposure, and whether there exists
an interference effect, that is, when one member of a tobacco
using household adopts e-cigarette use, does it impact the nico-
tine exposure in the other member of the dyad?

The remainder of this work is structured as follows: Section 2
provides the methodological and theoretical background, includ-
ing notation, and sets up the modeling framework for a K-stage
DTR on a dyadic-network population. In Section 3, we discuss the
details of estimating the proposed model, including the treatment
and outcome models, as well as the optimal treatment decisions
for the dyadic-network DTR. Section 4 contains three simula-
tion studies. The first demonstrates that the proposed methodol-
ogy retains the double-robustness property of dWOLS, while the
second compares the performance of the proposed model with
existing methodologies on data sampled from a dyadic-network
population structure. The third simulation explores the impact
of different dyad-health functions on the resulting DTR within
a dyadic-network context. Section 5 contains our analysis of the
PATH data set, and Section 6 concludes the paper with some
discussion.
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2 | Methodology

2.1 | Notation

In the framework of DTR, it is assumed that patients undergo
multiple stages of treatment. This process begins with the initi-
ation of treatment, followed by subsequent treatment decisions,
taking into account the current and past information available for
the patients. A K-stage treatment regime is a sequence of decision
rules that specify how to assign treatments over K time points
based on a patient’s evolving history.

In accordance with the established DTR literature, consider a
sample of 2𝑛 individuals who have completed a 𝐾-stage treat-
ment regime. We assume that interference takes a special form,
specifically of a dyadic network, which is to say, each individual
in the sample forms a dyad (i.e., pair) with another individual
in the sample, with whom they interact. Under this assumption,
interference is restricted to occur only within these dyads. Hence,
the sample may be considered analogously as a sample of 𝑛 inde-
pendent dyads. We index the members of a given dyad using  =
{1, 2}. In general, when the member of interest is member 𝑗 we
use the notation 𝑗∗ to represent the measurements corresponding
to their dyadic partner. For simplicity, we will define quantities
in terms of Member 1 when the quantity is member-specific.
The analogous quantity for Member 2 can be found by simply
replacing all the 1s with 2s in these definitions, and vice versa.

We let  = {1, 2, . . . , 𝐾} index the treatment stages, and we
will let  = {1, 2, . . . , 𝑛} index the sampled dyads (rather than
individuals). Consider an arbitrary dyad 𝑖 at an arbitrary stage
𝑘. We use 

𝑘
to denote the set of treatment options available at

stage 𝑘. Typically, binary treatments are considered, hence 
𝑘

is isomorphic to {0, 1} and we will, without loss of generality,
use this representation going forward. The random variable
Aik =

(
𝐴
𝑖1𝑘, 𝐴𝑖2𝑘

)
denotes the treatment of dyad 𝑖 at stage 𝑘. This

consists of 𝐴ijk, the treatment of the members of a dyad 𝑖 at stage
𝑘, that is, 𝐴

𝑖1𝑘 and 𝐴
𝑖2𝑘.

We assume that a set of covariate measurements are taken on
each individual prior to treatment at stage 𝑘. We denote these
covariates by 𝑋ijk. Additionally, we let 𝑍ik denote the vector of
shared covariates among the dyad members as of stage 𝑘. This
shared vector may contain, for example, household income,
living conditions, geographic location and so on. Although
covariates are assumed to be measured at each stage 𝑘, any mea-
surements preceding treatment at that stage can also be used to
inform the decision. Accordingly, we define hijk to be the history
of measurements relevant for informing the treatment decision of
dyad member 𝑗 at stage 𝑘, through the current stage 𝑘 itself. The
history may consist of current and past stage covariates of either
member of the dyad, previous treatment values of either, the
shared covariates, or functions thereof. We use hik =

(
h
𝑖1𝑘,h𝑖2𝑘

)

to analogously denote history at the dyad level at stage 𝑘.

Following the 𝐾th stage, that is, after the treatment regime has
finished, we assume a measurement is made on each individual
to assess the efficacy of the treatment regime. We refer to this
measurement simply as the outcome, and it is denoted by 𝑌ij for
the outcome associated with member 𝑗. It is assumed throughout

that the outcome is continuous and that, without loss of general-
ity, larger values are preferable, in the sense that this indicates a
more efficacious regime.

Before the outcome is actually observed, we call it a “potential”
outcome because its value depends on the sequence of adminis-
tered treatments and the history. When we talk about a specific
individual’s outcome in this context, we call it “individual-level”
to distinguish it from any group or dyad outcomes. In situations
where interference is present in the form of a dyadic network, the
individual-level potential outcome depends on the full sequence
of dyad treatments, denoted A ≔ A

𝑖,𝑘∈, rather than only the
individual treatments. Sometimes, it will be necessary to make
the dependence of the potential outcome on the treatments and
history explicit, which we do using the notation 𝑌ij

(
A|hijK

)
.

Thus, for a given dyad 𝑖, 𝑌ij
(
a|hijK

)
represents the outcome of

member 𝑗 that would be observed if, over the 𝐾 stages of the
regime, the history is observed to be hijK and the dyadic treat-
ments over the 𝐾 stages follow the sequence a. Note that this
function is defined for all possible dyad treatment sequences in
the space 2

1 ×
2
2 × . . . ×2

𝐾
≕ 2, meaning it accounts for

every potential treatment assignment among the dyad pair, not
just the observed ones.

Let 𝑔 be a bivariate function which takes as its argument a dyad
outcome Y =

(
𝑌1, 𝑌2

)
, and, based on this input, returns a value

summarizing the overall health of the dyad in a contextually rel-
evant manner. We call this 𝑔 the dyad-health function. It follows
from this definition that we may obtain our desired dyad-level
optimal treatment regime by maximizing 𝑔 over2. Specifically,
let 𝑑 = 𝑑

𝑘
(h)

𝑘∈ be the set of 𝐾 decision rules comprising the
dyadic DTR, where 𝑑

𝑘

(
hik

)
determines the prescribed dyad treat-

ment 𝐴ik at stage 𝑘 given the dyad history hik. We call 𝑑 a treat-
ment regime, and in this case more specifically, a 𝐾-stage treat-
ment regime. Let  be some class of 𝐾-stage treatment regimes
of interest. The general goal in the given context would be to find
the 𝐾-stage treatment regime that maximizes the expected dyad
health,

argmax
𝑑∈

𝔼
(
𝑔

{
Y
[
𝑑
𝑘

(
H

𝑘

)
𝑘∈

]})
,

As an example, consider choosing 𝑔 to be the average of the
elements of Y, that is, 𝑔(Y) = 0.5

(
𝑌1 + 𝑌2

)
. By averaging 𝑌1 and

𝑌2, we’re essentially specifying that both individuals’ outcomes
contribute equally to the dyad’s health. Under the proposed
framework, this choice of 𝑔 recovers the oft-used maximization
of the population expected value, with the caveat that it now
accounts for dyad-level interaction (because it technically max-
imizes the average of pairwise averages). Although averaging
is a simple and easily understood choice, it may not always be
a contextually appropriate one, and we will discuss this point
further in the experiment in Section 4.3.

2.2 | Causal Framework

To allow for the estimation of causal effects in the presence of
interference at the dyad level, updates to the typical causal infer-
ence assumptions of positivity, consistency, and no unmeasured
confounders, are required. In this section, we specify the required
changes in turn. Note that each assumption is specified at the

5946 Statistics in Medicine, 2024



dyad level and is assumed to hold for all dyads in the population.
We hence drop the subscript 𝑖 denoting an arbitrary dyad in the
following assumption definitions.

For any stage 𝑘 ∈ , and any observable dyad history h
𝑘
, we

propose a generalization of the consistency assumption to the
dyadic network context as follows: Let 2 be the space of
all sequences of dyad-level treatments over a 𝐾-stage regime
and 

𝑗
=
{
𝑌
𝑗

(
a|hjK

)
|a ∈ 2} be the associated set of poten-

tial outcomes for member 𝑗 ∈  with observed history hjK.
We assume that the observed outcome 𝑌

𝑗
can be specified

as, 𝑌
𝑗
=

∑
a∈2 𝑌𝑗

(
a|hjK

)
𝟏{A = a}, 𝑗 ∈  , where 𝟏{𝐸} denotes

the indicator function of the event 𝐸.

For an analog to the no unmeasured confounders
assumption in the dyadic network context, define  ={(
𝑌
𝑗

(
a|hjK

))
𝑗∈ |a ∈ 

2
}

as the set of dyad-level potential
outcomes, and  as the space of observable histories over a
𝐾-stage treatment regime. We must assume that, conditional
on an observed sequence of histories ∣ h

𝐾
∈ , the observed

sequence of dyad treatments a is assigned independently of the
set of potential outcomes of that dyad. That is,  ⟂⟂ A ∣ h

𝐾
.

To adapt the standard positivity assumption, we need to ensure
that within each level of the shared or unshared covariates, any
possible dyad-level treatments can occur. Specifically, for dyad
treatment a

𝑘
=
(
𝑎1𝑘, 𝑎2𝑘

)
at stage 𝑘, we assume that for all a

𝑘
∈

2
𝑘

and for every observable history h
𝑘

in support of h
𝑘
, the prob-

ability of assigning a
𝑘

is greater than 0. Formally, this is expressed
as: ℙ

(
a
𝑘
|h

𝑘

)
> 0 for all a

𝑘
and all observable histories h

𝑘
.

We can sometimes also impose a symmetry assumption called
exchangeability. If exchangeability holds, the joint distribution of
outcomes and histories for the dyad members is identical. For-
mally, this means

(
𝑌1𝑘,h1𝑘

) 𝑑

=
(
𝑌2𝑘,h2𝑘

)
. Under this assumption,

the dyad members are statistically indistinguishable in terms of
their outcome and history distributions within any given dyad.
This symmetry allows for the analysis and interpretation of
dyad-level interactions without differentiating between specific
members of the dyad.

We first introduce the underlying assumptions for interference
modeling. The causal framework outlined in Section 2.2 facili-
tates the development of causal models that enable the estimation
and optimization of treatment effects within a dyadic-network
population. The most general formulation of our modeling
assumptions is represented succinctly in the leftmost causal dia-
gram in Figure 1. All arrows in Figure 1 represent dependence;
however, colors have been used to distinguish between depen-
dence structures of different contextual or modeling importance.
For example, blue-directed arrows have been used to show the
causal impact of the individual covariates of one member of
the dyad on the treatment or outcome of the other, while green
arrows pertain to treatment interference. Finally, red arrows
have been used to signify association, which can occur between
the treatments or the outcomes of the dyad members due to some
common cause. Dashed lines were used to emphasize that these
common causes are assumed unobserved.

In practice, there are scenarios that can be represented by sim-
pler interference structures. For example, we might assume that
the individual covariates of one member do not have an impact
on the treatment or outcome of the other member, and that the
treatment assignment of dyad members is independent of each
other, given their shared and individual covariates. The middle
graph in Figure 1 illustrates the causal graph representing such
a scenario. Adoption of the simplest causal diagram which ade-
quately reflects the data context can lead to savings at estimation
time. This is discussed in more detail in Section 3.2.

For comparison purposes, we also present the causal model
assumed by Jiang, Wallace, and Thompson [23], which is shown
in the rightmost graph of Figure 1. In their model, they only
explicitly model Member 1 from each dyad, under the assumption
that individual covariates and the treatment of Member 2 might
have a potential causal impact on the outcome of Member 1.
Furthermore, the treatment of Member 1 is regarded as inde-
pendent of the treatment of the other member. In contrast, we
extend their model to encompass both members of a dyad in both
the modeling and optimization stages (as detailed in Section 3),
thereby allowing for the consideration of potential interference

x1 a1 Y1

z

x2 a2 Y2

x1 a1 Y1

z

x2 a2 Y2

x1 a1 Y1

x2 a2

FIGURE 1 | Combined models: This figure integrates three models illustrating varying degrees of interference and independence between members
of a dyad. On the left, Model 1 (General Interference Model) represents a scenario where treatments and covariates of each member can influence both
their own and the other member’s treatment and outcome, with dashed-bidirectional arcs indicating potential unobserved shared causes. The middle,
Model 2 (Restricted Model), simplifies this by assuming no causal impact of a member’s covariates on the other member and conditional independence
of treatments given observed covariates. On the right, Model 3 (Independent Treatment Model) isolates the focus on Member 1, where only the treatment
and covariates of Member 2 influence the outcome of Member 1. Model 3 was used by Jiang, Wallace, and Thompson [23]. Colors are used to differentiate
dependence structures across models.
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from the covariates and treatment of both members on each
other’s outcomes.

2.3 | Modeling a K-Stage DTR in a Dyadic
Network

To formalize the dyadic-network DTR model, we start by con-
sidering the final treatment decision, which is made at stage 𝐾 .
The goal at this stage is to select the treatment that optimizes
the dyad outcome (or some function thereof, see Section 3.3). In
the general case, we assume that the expected outcome for each
dyad member, given all available information at stage 𝐾 , can be
expressed as a two-component parametric model:

𝐸

[
𝑌
𝑗
|hjK, a𝐾

]
= 𝑓jK

(
hjK; 𝛽jK

)
+ 𝛾jK

(
hjK, a𝐾 ; ΘjK

)
, 𝑗 ∈  , (1)

where 𝑓jK represents a so-called treatment-free component for
individual 𝑗 at stage 𝐾 , parameterized by 𝛽jK, and 𝛾jK denotes
a so-called blip component at stage 𝐾 , parameterized by ΘjK.
Equation (1) is a general model specification broadly used in
the DTR literature and here we adapt it to the context of
dyadic-network interference [23]. Note that although the defi-
nitions of the expected values are independent of the dyad out-
comes, this does not exclude the possibility that they are corre-
lated as random variables.

Both components of the model serve a particular purpose, which
can be understood intuitively within the framework of personal-
ized medicine. The treatment-free component, 𝑓jK, can be intu-
itively understood as the part of dyad member 𝑗’s outcome that
would occur regardless of the treatment assigned at the𝐾th stage.
Moreover, 𝑓jK serves as an untreated baseline expected outcome
against which the effects of assigning treatment to the dyad can
be evaluated.

The blip component, 𝛾jK
(
hjK, a𝐾 ; ΘjK

)
, captures the expected

change in outcome due to the treatment assigned at stage 𝐾 .
Interference among the dyad members implies that this blip
model should consider both dyad members’ treatments. From the
model’s perspective, this is equivalent to assuming that individual
𝑗 is exposed to a bivariate treatment, which reflects the treatment
status of both dyad members. It follows that we can interpret
the blip component 𝛾jK

(
hjK, a𝐾 ; ΘjK

)
as the relative change in the

expected outcome of dyad member 𝑗, with respect to the base-
line scenario where no treatment is assigned to either member
of the dyad, due to the dyad receiving treatment a

𝐾
. This sub-

tle but important change is a key feature that distinguishes the
dyadic-network DTR from earlier methodologies. To emphasize
this point, we refer to the blip component in this context as the
dyadic-blip component.

Utilizing the outcome model of Equation (1), our goal is to iden-
tify an optimal DTR. Traditionally, an optimal treatment refers to
that treatment that maximizes𝐸(Y(a)) over all possible treatment
assignments, where this expected value is taken over the dyad
superpopulation distribution. However, because the dyad-level
potential outcome is vector-valued, the concept of maximiza-
tion is ambiguous. To proceed, it is necessary to impose some
constraints.

Constraints can be implemented by introducing a real-valued
function 𝑔 that maps the outcome space onto the real line.
This function 𝑔 allows us to express the optimization problem
in a mathematically well-defined way: we seek the treatment
regime that maximizes 𝑔(Y(a)). The choice of the function 𝑔 is
context-dependent, reflecting the specific goals and priorities of
the intended analysis.

In our context, the function 𝑔 can be understood as defining
a measure of overall dyad health that is of particular interest.
Hence, we refer to 𝑔 as the dyad-health function. By specifying
𝑔, we impose a constraint on the optimization problem, direct-
ing it to focus on the aspects of the dyad outcome that are most
relevant to the health of the dyad. The selection of 𝑔 is therefore
not unique, and different plausible choices may lead to different
optimal treatment regimes. We will discuss these ideas further in
Section 3.3.

Under this framework, the optimal decision rule at stage 𝐾 is
found by solving,

aopt
𝐾
= 𝑑

𝐾

(
h
𝐾

)
= argmax

a∈
𝐾

𝔼
{
𝑔[Y(𝑎)]|h

𝐾

}
, (2)

where optimization takes place over the space 
𝐾

of
vector-valued dyad treatments. Previous methods that assume
interference or interacting pairs, such as Su, Lu, and Song [22]
and Jiang, Wallace, and Thompson [23], do not optimize the
outcome, or treatment, of interfering members. This partial
optimization can lead to only a conditional maximum, rather
than a global one, which risks overlooking the broader impact
on the dyad population. In particular, such approaches may
inadvertently worsen outcomes for the population as a whole.
Our model addresses this limitation by jointly optimizing the
treatments for all dyad members, ensuring that the global maxi-
mum is pursued and that the overall health of the population is
not compromised.

Once the optimal treatment aopt
𝐾

at stage 𝐾 is obtained, the
next step is to evaluate how much the expected dyad outcome
would be improved under this potentially counterfactual treat-
ment assignment. From the assumed model in Equation (1), the
expected outcome for each dyad member under the optimal treat-
ment assignment at the final stage can be expressed as,

�̃�
𝑗
= 𝑦

𝑗
+
[
𝛾jK

(
hjK, a

opt
𝐾

)
− 𝛾jK

(
hjK, a𝐾

)]
, 𝑗 ∈  . (3)

Intuitively, we are correcting for the effect of the observed treat-
ment, which was potentially suboptimal, by subtracting off its
effect while simultaneously adding on the effect of the optimal
treatment. If the optimal treatment and the observed treatment
coincide, the added quantity is identically 0. The bracketed term
in Equation (3) is therefore sometimes referred to as the regret,
since it quantifies, in terms of the individual’s health, how much
we regret treating them suboptimally.

The quantity �̃�
𝑗

is also known as the pseudo-outcome, and is
a crucial component of the model [10]. Indeed, as we will see
in Section 3.2, having finished modeling of the 𝐾th stage and
ascertaining the𝐾th stage decision rule, we then move backward
to stage 𝐾 − 1 and repeat the process: define a model for the
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outcome, fit the parameters, and maximize the dyad-health func-
tion. The difference between fitting at stage𝐾 and stage (𝐾 − 1) is
that the latter needs to account for the fact that more treatments
will be assigned in the future. However, due to the backward
nature of our estimation algorithm, we already know how to
treat optimally at the stage 𝐾 . We can account for this at stage
𝐾 − 1 by fitting the outcome model on the pseudo-outcomes �̃�

𝑗

rather than the observed outcomes 𝑦
𝑗
. This process continues for

each 𝑘 in  until all stages have been addressed, after which we
will have obtained 𝐾 decision rules with which we may inform
treatment decisions of future patients at each stage of the regime.

As an example, suppose one chooses 𝑔(Y) = 1
2

(
𝑌1 + 𝑌2

)
as the

dyad health function. The optimal decision rule at stage 𝐾 given
in Equation (2) can now be expressed as,

aopt
𝐾
= argmax

a∈
𝐾

{1
2
[
𝐸

(
𝑌1|h1𝐾, a

)
+ 𝐸(𝑌2|h2𝐾, a)

]}
.

In this case, the optimal treatment for the dyad is the one
that maximizes the sum of the respective members’ individual
expected outcomes, given the observed history h

𝐾
. To interpret

what this means, first consider the individual-level population
expected outcome, which is given by,

𝔼
[
1⊤Y

]
= 𝔼

[
𝑌1 + 𝑌2

]
.

Using our sample of dyads, we could estimate this as,

̂𝔼
[
𝑌1 + 𝑌2

]
=
∑

𝑖∈

{
𝐸

(
𝑌
𝑖1|h𝑖1𝐾, a𝑖1𝐾

)
+ 𝐸

(
𝑌
𝑖2|h𝑖2𝐾, a𝑖2𝐾

)}
. (4)

The summands in Equation (4) are exactly the terms being opti-
mized by the decision rule corresponding to this choice of 𝑔. It
follows that this choice recovers the traditional objective of max-
imization of the individual-level expected outcome. It should be
clear from the above derivation that it was necessary to consider
the correct interference structure to recover this objective. For
comparison, the model of Jiang, Wallace, and Thompson [23]
would propose the following decision rule:

aopt
𝐾
= argmax

𝑎1∈{0,1}
𝐸

(
𝑌1|h1𝑘, 𝑎1, 𝑎2

)
.

This will in fact not recover the objective, because it considers
only half the population and does not address interference in
its optimization. Indeed, by ignoring the outcome of Member 2
when making the decision about 𝑎1, this approach risks choosing
an optimal treatment assignment 𝑎opt

1 that is suboptimal for Mem-
ber 2. Furthermore, by treating 𝑎2 as another covariate rather
than as part of the individual’s treatment, this approach does not
even maximize the individual-level expected outcome for the half
of the population that it does consider. These shortcomings are
demonstrated in Section 4.2 with a simulation study.

3 | Estimation and Determination of Optimal
Treatment Regime

It is clear that the dyadic-blip component of the model is cru-
cially linked to identification of the optimal treatment regime.
It is therefore imperative that the estimation procedure used to

fit the proposed model offers desirable properties in terms of the
resulting estimates for Θ

𝑘
at each stage 𝑘. One such approach

is the (generalized) dWOLS procedure [10, 11]. Indeed, assum-
ing that we can specify balancing weights that eliminate any
dependence between the history and the treatment at a given
stage, the dWOLS framework will provide consistent estima-
tion of the dyadic-blip parameters. Along with specifying these
weights, implementation of this estimation framework addition-
ally requires modeling of the propensity score of the treatments.
An important property of this procedure is that it is doubly-robust
with respect to nuisance model misspecification—consistent
estimation of the dyadic-blip parameters is still guaranteed if one
of either the propensity score model or the treatment-free model
component is misspecified. This is a desirable property, and moti-
vates our use of this estimation procedure for fitting the proposed
model.

3.1 | Balancing Weights

For each treatment stage, the algorithm fits the specified model
using a weighted data set. The weights need to be specified such
that they remove any dependence between the history and the
observed treatment assignment, that is, they must offset any dif-
ferences in the treatment assignment mechanism that are due to
the value of the measured dyad history.

We denote the 𝑘th stage weights by 𝑤

(
a
𝑘
,h

𝑘

)
to emphasize

that the weights are a function that depends on the history and
observed treatment assignment. To find weights that achieve the
desired effect, it is common to specify that they satisfy a particular
balancing condition. In the seminal dWOLS work [10], a balanc-
ing condition for the case of a binary treatment was presented.
Later, in the development of the generalized dWOLS methodol-
ogy [11], the balancing condition was extended to the case of con-
tinuous and categorical treatments. When dyadic-interference
exists, each individual is exposed to a bivariate treatment. We now
present a theorem detailing a balancing condition for treatments
arising in this form.

Theorem 1. A weighted ordinary least-squares regression
based on the model,

𝐸

[
𝑌
𝑗
|h

𝑗
, a
]
= 𝑓

𝑗

(
h
𝑗
; 𝛽

𝑗

)
+ 𝛾

𝑗

(
h
𝑗
, a; Θ

𝑗

)
,

will give consistent estimates for the dyadic-blip parameters Θ pro-
vided that the weights satisfy,

𝜋(a|h)𝑤(a,h) = 𝜋

(
a′|h

)
𝑤

(
a′,h

)
, (5)

for any a ≠ a′ ∈ 2, where 𝜋(a|h) = ℙ(A = a|h) is the joint
propensity score.

A proof of this theorem is provided in Appendix A.2. Details on
the different types of weights satisfying this balancing condition,
and their estimation methods, are presented in Appendix A.3.
In particular, under the restricted interference model (the mid-
dle graph of Figure 1), we extend the “absolute value weights”,
defined by 𝑤(𝑎, 𝑥) =∣ 𝑎 − 𝐸(𝐴|𝑋 = 𝑥) ∣ introduced by Wallace
and Moodie [10], to the dyadic-network settings. We call
these new weights dyadic-absolute value weights, and they have
the form,
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𝑤ij
(
a,hij

)
=∣ 𝑎ij − 𝐸

(
𝐴ij|hij

)
∣ ⋅ ∣ 𝑎ij∗ − 𝐸

(
𝐴ij∗|hij

)
∣, (6)

where 𝐸

(
𝐴ij|hij

)
is the expected probability that member 𝑗 of

dyad 𝑖 receives treatment, given their observed history hij, for
each 𝑗 ∈  . Intuitively, these weights assign greater importance
to individuals whose own observed treatments or their dyadic
partners’ observed treatments significantly differ from what is
expected according to the treatment model.

3.2 | Estimation of Model Parameters

Having decided on an appropriate weight function, we proceed
with estimation of the model parameters. Estimation takes place
in 𝐾 stages, one for each stage of treatment. The algorithm we
employ, dWOLS [10], proceeds similarly to Q-learning, which
works by sequentially estimating the optimal decision rules for
each stage starting from the final stage 𝐾 , and moving backward
through the stages to the initial stage. The procedure at each stage
is fundamentally the same, so we will outline the details of how
it may be carried out at an arbitrary stage 𝑘, which necessarily
includes how we take this information backward to allow for the
completion of the same steps at stage 𝑘 − 1.

We specify a linear model for the outcome which takes the form,

𝐸

(
𝑌
𝑗
|hjk, a𝑘

)
= h⊤

jk 𝛽jk + h⊤

jk
(
𝑎jk𝜓jk + 𝑎𝑗∗𝑘 𝜂jk + 𝑎jk𝑎𝑗∗𝑘 𝜉jk

)
, 𝑗 ∈  ,

(7)

where we have specified the treatment-free model as
𝑓jk

(
hjk; 𝛽jk

)
= h⊤

jk 𝛽jk, and the dyadic-blip as,

𝛾jk
(
hjk, a𝑘; Θjk

)
= h⊤

jk
(
𝑎jk𝜓jk + 𝑎𝑗∗𝑘 𝜂jk + 𝑎jk𝑎𝑗∗𝑘 𝜉jk

)
. (8)

We have assumed for simplicity of presentation that each com-
ponent of the blip depends on the entire history hjk, although
this is not strictly a requirement. We specify Θjk =

(
𝜓jk, 𝜂jk, 𝜉jk

)

to be the concatenation of all the dyadic-blip component param-
eters. We have also added a tilde on the outcome here to reflect
the fact that, unless we are at stage 𝐾 , we are regressing on the
pseudo-outcome of Equation (3) discussed in Section 2.3.

Under this formulation, the dyadic-blip is decomposed into three
sub-components: the sub-component 𝑎jkh⊤

jk𝜓jk corresponding to
the treatment of member 𝑗, which we call the direct blip; 𝑎

𝑗
∗
𝑘
h⊤

jk 𝜂jk
which corresponds to the treatment of the dyadic partner, which
we call the indirect blip; and 𝑎jk𝑎𝑗∗𝑘h⊤

jk 𝜉jk which corresponds to
the interaction between both treatments, which we call the inter-
action blip. With this form, the components of ΘjK are directly
interpretable in terms of understanding the relationship between
the history and dyad-level treatment as it pertains to the expected
outcome.

With the weights from Section 3.1 we estimate the stage 𝑘 model
parameters using the following weighted generalized estimating
equation:

𝑈
𝑘

(
𝛽
𝑘
,Θ

𝑘

)
=
∑

𝑖∈

∑

𝑗∈
𝑤ijkS

(
hijk, aik

)

⋅
(
𝑌 ij − h⊤

ijk 𝛽𝑘 − h⊤

ijk
(
𝑎ijk𝜓jk + 𝑎ij∗𝑘 𝜂jk + 𝑎ijk𝑎ij∗𝑘 𝜉jk

))
= 𝟎.
(9)

Here, we have used the notation S(⋅, ⋅) to represent the score
vector of the specified outcome model with respect to the
model parameters, which in the case of the model presented in
Equation (7), takes the form,

S
(
hijk, aik

)
=
(
hijk, 𝑎ijkhijk, 𝑎ij∗𝑘hijk, 𝑎ijk𝑎ij∗𝑘hijk

)
.

Since our chosen model is linear, solving this GEE is equivalent
to estimation via weighted ordinary least-squares regression. We
choose to present estimation in the more general GEE frame-
work, however, to demonstrate that alternative outcome models
can be accommodated.

Solving Equation (9), we obtain model parameter estimates,
which we denote by

(
𝛽
𝑘
,Θ

𝑘

)
. Plugging these estimates into the

model of Equation (7) defines our estimated model, and then
plugging the estimated model into Equation (2) defines our opti-
mal decision rule for stage 𝑘. We then evaluate the estimated deci-
sion rule on each dyad in the sample to get the estimated optimal
treatment,

âopt
ik = argmax

a∈
𝑘

𝔼
{
𝑔

(
̂̃
𝑌 ij

̂̃
𝑌 ij∗

)
|hik

}

= argmax
a∈

𝑘

𝔼
{
𝑔

[
h⊤

ijk 𝛽jk + h⊤

ijk
(
𝑎ijk𝜓jk + 𝑎ij∗𝑘 𝜂jk + 𝑎ijk𝑎ij∗𝑘 𝜉jk

)
,

h⊤

ij∗𝑘 𝛽𝑗∗𝑘 + h⊤

ij∗𝑘
(
𝑎ij∗𝑘𝜓𝑗∗𝑘 + 𝑎ij∗𝑘 𝜂𝑗∗𝑘 + 𝑎ijk𝑎ij∗𝑘 𝜉𝑗∗𝑘

)]
|hik

}
.

Having obtained our estimated optimal treatments, we are fin-
ished with stage 𝑘 and ready to move on to estimation at stage
𝑘 − 1. To proceed, the pseudo-outcomes need to be computed.
This can be done according to,

�̃�ijk−1 = �̃�ijk +
[
𝛾
𝑘

(
hijk, â

opt
ijk ; Θ𝑘

)
− 𝛾

𝑘

(
hijk, aijk; Θ𝑘

)]
,

𝑖 ∈ , 𝑗 ∈  , 𝑘 = 2, . . . , 𝐾,

where we let �̃�ijK = 𝑦ij the observed outcome of individual 𝑗 in
dyad 𝑖. Thus, the pseudo-outcome is defined recursively, where,
at each stage, we “add back” the individual level regret to account
for the potentially suboptimal treatment decision that was ini-
tially observed at that stage. Estimation of the next stage, 𝑘 − 1
then begins by formulating the outcome model for these new
pseudo-outcomes. The full estimation algorithm is illustrated in
Algorithm 1. We also prove in Appendix A that the proposed
algorithm inherits the double-robustness property of dWOLS. It is
worth noting that dWOLS assumes that the blip model is correctly
specified and its doubly-robustness property is with respect to
nuisance model (i.e., treatment-free model and treatment model)
misspecification.

3.3 | Optimal Treatment Assignment and the
Dyad-Health Function

In the classic optimal DTR scenario, we seek the regime 𝑑
opt

such that,
𝐸

[
Y
(
𝑑

opt)]
≥ 𝐸[Y(𝑑)],

for all possible regimes 𝑑. For example, in a two-stage regime, the
optimal regime can be found by solving
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ALGORITHM 1 | Dyadic dWOLS estimation procedure.

Require: Data
(
h
𝑖
, a

𝑖
, 𝑌

𝑖

)
𝑖∈, dyad-health function 𝑔, weight function 𝑤, and number of stages 𝐾.

1:for 𝑘 = 𝐾,𝐾 − 1, . . . , 1 do
2: Define the stage 𝑘 treatment model 𝜋

(
a
𝑘
|h

𝑘

)
and the stage 𝑘 outcome model 𝐸

(
𝑌
𝑗
|hjk, a𝑘

)
, 𝑗 ∈  .

3: Fit the treatment model 𝜋
(
a
𝑘
|h

𝑘

)
using the stage 𝑘 data.

4: Use the estimated treatment model of step 3 to compute the GEE weights
{
�̂�ijk

}
𝑖∈,𝑗∈ .

5: Solve the weighted GEE,

𝑈
𝑘

(
𝛽
𝑘
,Θ

𝑘

)
=
∑

𝑖∈

∑
𝑗∈

�̂�ijkS
(
hijk, aik

)
⋅
(
�̃�ij − h⊤

ijk 𝛽𝑘 − h⊤

ijk
(
𝑎ijk𝜓jk + 𝑎ij∗𝑘 𝜂jk + 𝑎ijk𝑎ij∗𝑘 𝜉jk

))
= 𝟎,

to obtain parameter estimates
(
𝛽
𝑘
,Θ

𝑘

)
.

6: Use the estimated model parameters of step 5 to define the optimal stage 𝑘 decision rule
and compute the estimated optimal treatments

âopt
ik = argmax

a∈
𝑘

𝔼
{
𝑔

[
̂̃
𝑌 ij

̂̃
𝑌 ij∗

]
|hik

}
, 𝑖 ∈ .

7: if 𝑘 > 1 then
8: Compute the pseudo-outcome for the next stage:

�̃�ijk−1 = �̃�ijk +
[
𝛾
𝑘

(
hijk, â

opt
ijk ; Θ𝑘

)
− 𝛾

𝑘

(
hijk, aijk; Θ𝑘

)]
.

9: end if
10:end for

11:Return the estimated parameters
(
𝛽
𝑘
,Θ

𝑘

)
𝐾

𝑘=1 and the optimal decision rules
({

âopt
ik

}

𝑖∈

)
𝐾

𝑘=1
.

max
a1∈1

𝐸

[
max
a2∈2

𝐸

[
Y|h2, a2

]
|h1, a1

]

iteratively, starting with the inner most maximization problem
and working outward. This is the approach of Q-learning, which
can be extended to an arbitrary number of stages by further break-
ing down the inner most conditional expected value appropri-
ately; see, for example, the textbook by Tsiatis et al. [4]

As discussed in Section 2.3, we cannot directly apply this
approach when the outcome of interest is vector-valued, since
the maximization of a vector is not well-defined. This motivates
the introduction of the dyad-health function 𝑔 ∶ ℝ2 ↦ ℝ, which
we assume takes the outcome values Y of a particular dyad and
returns a value that is to be interpreted as a measure of the dyad’s
overall health. Without loss of generality, it is assumed that larger
values of 𝑔(Y) are associated with greater dyad health. It follows
that in the case of a dyadic-network population structure, the
associated optimal treatment regime 𝑑

opt can be found accord-
ing to,

max
a1∈1

𝐸

[
max
a2∈2

𝐸[𝑔(Y)|h2, a2]|h1, a1

]
. (10)

At first glance, this might suggest that modeling the random
variable 𝑔(Y) directly is required to estimate the optimal treat-
ment regime. Indeed, nothing in our model setup prohibits the
modeling of 𝑔(Y) rather than Y itself. If 𝑔(Y) can be expressed
in a form amenable to estimation via generalized estimating
equations (GEE), then we can accommodate this approach
within our existing framework. Specifically, the weighted-GEE
methodology outlined in Algorithm 1 provides a flexible tool for

parameter estimation, even when the outcome of interest is a
transformation of the individual health outcomes, such as 𝑔(Y).

However, there are limitations to this approach. One of the
more critical arguments against the modeling of 𝑔(Y) directly is
that the impact of the optimal treatment on the health of each
individual in the dyad often becomes unidentifiable in such
scenarios. For example, consider the choice 𝑔(Y) = 0.5

(
𝑌1 + 𝑌2

)
,

which we can model directly using a parametric linear model,
that is,𝐸[𝑔(Y)|H = h] = h⊤

𝛽. This approach seems very natural,
and in such a case, we may indeed still proceed to find the opti-
mal dyad-level treatment regime 𝑑

opt without issue. However,
we will not be able to say anything about how the optimally
assigned treatment impacts the individual health levels of the
dyad members, as these are not identifiable under the assumed
model. Hence, such an approach moves away from the ethos
of personalized medicine, in which optimal treatment regime
estimation is rooted. Further, such an approach may lead to
ethical concerns, as outright maximization of 𝑔 may lead to an
“optimal” regime in which the health of one dyad member is
sacrificed for a sufficiently large gain in the health of the other
to increase 𝑔(Y). We therefore do not pursue this approach here,
instead proceeding with a model for Y.

By focusing on the modeling of Y we run the risk that the con-
ditional expected value of 𝑔(Y) is difficult to handle in practice.
Indeed, one needs to derive the distribution of 𝑔(Y) from the
distribution of Y to compute the conditional expectations of
Equation (10). Since no distributional assumptions are made on
the error term in the specification of Y, this distribution cannot
be determined in general. One could proceed by addressing
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exactly this issue, that is, by making distributional assumptions
of the errors. This may unnecessarily restrict the scope of the
model, hence we prefer to make some restrictions on the form of
𝑔. We suppose that 𝑔 is such that it is monotonic (non-decreasing)
in both of its arguments. That is, for 𝑐 > 0 we have,

𝑔

(
𝑦1 + 𝑐, 𝑦2 + 𝑐

)
≥ 𝑔

(
𝑦1 + 𝑐, 𝑦2

)
≥ 𝑔

(
𝑦1, 𝑦2

)
, and,

𝑔

(
𝑦1 + 𝑐, 𝑦2 + 𝑐

)
≥ 𝑔

(
𝑦1, 𝑦2 + 𝑐

)
≥ 𝑔

(
𝑦1, 𝑦2

)
.

With this assumption, and the modeling assumption for Y given
in Equation (1), it is straightforward to show that maximization of
the conditional expected value of 𝑔(Y) is equivalent to the maxi-
mization of 𝑔 composed with the conditional expected value of Y.
That is, maxa∈ 𝐸(𝑔(Y) ∣ h, a) = maxa∈ 𝑔(𝐸(Y|h, a)). For any
such choice of 𝑔, we find our optimal decision rule at stage 𝑘 by
maximizing 𝑔

(
𝐸

[
Y|h

𝑘
, a
])

over all possible dyad treatment deci-
sions a.

While the assumption of monotonicity in the dyad-health func-
tion 𝑔 provides a straightforward path to optimizing the treatment
regime, another interesting approach is to impose convexity on
𝑔. In so doing, we align the optimization process with a more
cautious and ethically sound philosophy, particularly within the
framework of personalized medicine.

To understand the implications of choosing a convex 𝑔, recall
Jensen’s inequality, which states that for any convex function 𝑔,

𝑔(𝐸(Y|h, a)) ≤ 𝐸(𝑔(Y) ∣ h, a).

This inequality reveals that the expected value of 𝑔(Y) provides
a lower bound on the true population-level health improvement
under any treatment regime. In other words, by maximizing
𝑔(𝐸[Y|h, a]) with convex 𝑔, we ensure that our model’s predic-
tions are conservative and do not overestimate the actual gains in
dyad or individual health that might be realized under the imple-
mented policy.

From an ethical standpoint, the use of a convex dyad-health
function serves to mitigate the risk of overly optimistic treat-
ment decisions. In personalized medicine, where the goal is to
tailor interventions to maximize individual and group health
outcomes, it is important to avoid scenarios where the model
suggests an inflated potential benefit that may not material-
ize in practice. Convexity in 𝑔 ensures that the policy derived
from our model does not inadvertently favor treatments that
could lead to marginal or even detrimental effects. Practically,
the adoption of a convex 𝑔 simplifies the interpretation of our
model’s predictions. When 𝑔 is convex, the policy derived from
𝑔(𝐸[Y|h, a]) can be interpreted as a reliable lower bound on
the true health benefits that the dyad will experience under the
optimal treatment regime. This aligns well with clinical practices
where conservative estimates are often preferred, especially in
the face of uncertainty.

In summary, while the weighted-GEE approach used in our
model is sufficiently flexible to accommodate the direct mod-
eling of 𝑔(Y) we prefer to model Y instead. This preference
stems from our emphasis on preserving the interpretability of
the treatment regime at the individual level. By focusing on Y,
we maintain the ability to assess treatment effects for each dyad

member, ensuring that the derived policies are both effective
and fair. However, we maintain that modeling 𝑔(Y) is a com-
pletely viable approach and may be appropriate or preferred
in certain scenarios, such as when the dyads being studied
are not comprised of people (e.g., different components of a
machine), or when health is not the primary outcome of interest.
In Section 4.3 we investigate the proposed dyadic-network under
different choices for the dyad-health function, and discuss the
differences in the analysis when modeling 𝑔(Y) vs. modeling Y.

4 | Simulation Study

We illustrate key properties of the dyadic-network DTR approach
through three simulation studies. Specifically, we investigate the
purported double robustness property of the estimated coeffi-
cients, and the ability to obtain an improved optimal treatment
regime with respect to the conditional optimization approach
in the first simulation, for both a single-stage and a two-stage
model. The first simulation demonstrates these results for a
single-stage model, while the second simulation presents the
same results for a two-stage model. We present the results of
the single-stage model simulation in this section. The results of
the two-stage model simulation can be found in Appendix B.2.
In the second simulation, we compare the method of Jiang,
Wallace, and Thompson [23] with our proposed dyadic-network
DTR approach. In the third simulation, we explore the impact
of different dyad-health functions on the resulting DTR within a
dyadic-network context.

4.1 | Simulation I: Double Robustness

First, we illustrate the double robustness property regarding
consistent estimation of the dyadic-blip parameters. We do this
for varying sample sizes, and under different specifications of
the treatment-free, and dyadic-blip model. Second, we compare
the performance of the dyadic-network DTR with existing DTR
methodologies on data exhibiting a dyadic-network interference
structure. This illustrates the necessity of the joint optimization
approach in contexts where interference exists.

Since consistency is an asymptotic property, we choose sample
size as our simulation parameter. We use the sample sizes n= 200,
1000, and 5000 dyads. For each sample size, we generate 1000
data sets, fit the model on the data, and record the observed bias
of the estimated dyadic-blip parameters. For each data set, we
also find optimal treatments according to the conditional opti-
mization approach, so that we can compare those results with the
proposed methodology.

Our baseline model is generated as follows: for each dyad
𝑖 = 1, . . . , 𝑛 and each member 𝑗 = 1, 2, we generate the patient
information,𝑋ij, according to a uniform distribution on the inter-
val [0, 2]. The treatment model is a logit model on the patient
information, 𝑃

(
𝐴ij = 1|𝑋ij = 𝑥ij

)
= expit

{
1 + 𝑥ij

}
. Finally, we

define the dyad outcome model to be 𝑌ij ∣
(
hij, a𝑖

)
= 𝑒

𝑥ij − 𝑥3
ij +

𝑎ij
(
2 + 𝑥ij

)
− 2𝑎ij∗ + 𝑎ij𝑎ij∗

(
1 − 2𝑥ij

)
+ 𝜀ij, where 𝜀ij ∼ 𝑁(0, 1). In

alignment with Equation (7), the outcome model decomposes
into treatment-free model 𝑓jK

(
h
𝑗
; 𝛽

𝑗

)
= 𝑒

𝑥ij − 𝑥3
ij and dyadic-blip

model 𝛾
𝑗

(
h
𝑗
, a; Θ

𝑗

)
= 𝑎ij

(
2 + 𝑥ij

)
− 2𝑎ij∗ + 𝑎ij𝑎ij∗

(
1 − 2𝑥ij

)
,
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with the dyadic-blip parameters as Θ
𝑗
=
(
𝜓0, 𝜓1, 𝜂0, 𝜉0, 𝜉1

)
=

(2, 1,−2, 1,−2) for each member 𝑗 = 1, 2.

To show double robustness, we show that the model obtains
consistent estimators of the dyadic-blip parameters even when
one of the model components is misspecified. Hence, we per-
form four analyses, one for each possible combination of speci-
fying or misspecifying the treatment-free and treatment models.
Analysis 1 denotes the case in which neither component of the
model is correctly specified, Analysis 2 denotes the case in which
only the treatment-free component is misspecified, Analysis 3
denotes the case where only the treatment model is misspecified,
and Analysis 4 denotes the case in which both models are cor-
rectly specified. To misspecify the treatment-free component, we
omit the terms involving nonlinear functions of the patient infor-
mation (𝑒𝑥ij and 𝑥

3
ij). Therefore, the misspecified treatment-free

model will be an intercept model. The treatment model is mis-
specified through the removal of the intercept term, that is,
𝑃

(
𝐴ij = 1|𝑋ij = 𝑥ij

)
= expit

{
𝑥ij
}

.

The results of the simulation are provided in Figure 2. This figure
shows three sets of boxplots, which correspond to our three
chosen sample size settings, for the estimation of the dyadic-blip
parameter𝜓0 with the true value of 2. Each boxplot in one subfig-
ure corresponds to one of the four analysis scenarios. From these
plots, we can see that the model appears to provide doubly-robust

estimation as expected. When at least one of the model compo-
nents is correctly specified, the dyadic-blip parameter estimates
appear to be consistent, which can be surmised from their central
tendency of zero and their shrinking variance as the sample size
increases. The results of parameter estimation for the rest of the
dyadic-blip parameters are provided in Appendix B.

For the second part of this simulation, within the same sim-
ulation setting, we compare the results of the conditional
optimization approach previously proposed by Jiang, Wallace,
and Thompson [23] with our proposed dyadic-network DTR
approach, which utilizes a joint optimization strategy. Under
the conditional optimization, members of a dyad were randomly
labeled as Member 1 and they received the optimal treatment
based on the observed treatment of the other members in the
dyad. In contrast, under the dyadic-network DTR approach, the
treatment of both members of the dyad is jointly optimized in a
way to maximizes the average outcome of the dyad. To compare
the performance of these two optimization approaches, we esti-
mate the optimized expected outcomes for the population assum-
ing both treatment and treatment-free models are correctly spec-
ified (Analysis 4).

There are a couple of important features to discuss in Figure 3.
First, comparing only the boxplots of Member 1, we see that the
conditional approach appears superior in terms of improving
the health of these members. However, the cost of ignoring

FIGURE 2 | Dyadic-blip function parameter estimates for 1000 simulated data sets via our dyadic-dWOLS approach when neither (Analysis 1), one
(Analyses 2 and 3), or both (Analysis 4) treatment and treatment-free outcome models are correct. True value of 𝜓0 = 2.
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FIGURE 3 | Boxplots of the estimated expected outcomes under the Simulation I setting, where both treatment and treatment-free models are cor-
rectly specified (Analysis 4). Each boxplot associated with two different optimization strategies. Left: Results under conditional optimization methods,
previously proposed by Jiang, Wallace, and Thompson [23]. In this approach, Member 1 receives an optimal treatment conditioned on the observed
treatment of the other member of the dyad (Member 2). Right: Results under the dyadic-network DTR approach, where treatments for both mem-
bers of a dyad are optimized jointly (joint optimization). The label “(1)” denotes the expected outcome for those labeled Member 1, “(2)” denotes the
expected outcome for individuals labeled Member 2, and “Population” denotes the expected outcome for the entire population of both members of a
dyad following an optimization strategy.

interference in the population can be seen in the boxplots of the
second members, where these members are seen to be suffer-
ing relative to their dyadic partners who received the optimal
treatment. In contrast, under the dyadic-network DTR approach,
both Members 1 and 2 boxplots seem to be similarly improved.

4.2 | Simulation II: Comparison With
Conditional Approach

In this section, we apply the method of Jiang, Wallace, and
Thompson [23] and the proposed method on simulated data.
We assumed a single-stage DTR and a dyadic-network with
non-exchangeable members in a sample of 1000 dyads. The data
are generated according to a model where the covariates 𝑋

𝑖1 are
drawn from 𝑋

𝑖1 ∼ (1, 1), and 𝑋
𝑖2 from the absolute value of a

normal distribution, 𝑋
𝑖2 ∼∣ (1, 1) ∣. The binary treatments 𝑎1

and 𝑎2 are then generated using a logit model based on the patient
information, 𝑃

(
𝐴ij = 1|𝑋ij = 𝑥ij

)
= expit

{
1 − 4𝑥ij

}
.

The outcome model was defined as 𝑌
𝑖1 ∣

(
h
𝑖1, a𝑖

)
= 10 +

𝑥
𝑖1 + 𝑎𝑖1

(
2 + 𝑥

𝑖1
)
+ 𝑎

𝑖2 − 3𝑎
𝑖1𝑎𝑖2 for 𝑗 = 1 and 𝑌

𝑖2 ∣
(
h
𝑖2, a𝑖

)
=

10 + 2𝑥
𝑖2 + 𝑎𝑖1

(
2 − 5𝑥

𝑖2
)
− 0.5𝑎

𝑖1 − 𝑎𝑖2𝑎𝑖1 for 𝑗 = 2, with
𝜀ij ∼ 𝑁

(
0,0.52) for both members. Hence, the treatment-free

model of Member 1, 𝑓1
(
h
𝑖1; 𝛽𝑖1

)
, is 10 + 𝑥

𝑖1 and their dyadic-blip
model is defined as 𝛾

𝑖1
(
h
𝑖1, a; Θ𝑖1

)
= 𝑎

𝑖1
(
2 + 𝑥

𝑖1
)
+ 𝑎

𝑖2 − 3𝑎
𝑖1𝑎𝑖2.

Therefore, the corresponding dyadic-blip parameters are
Θ1 = (2,1,1,−3). As for Member 2, treatment-free model is
𝑓2
(
h
𝑖2; 𝛽𝑖2

)
= 10 + 𝑥

𝑖2 and the dyadic-blip model is defined as

𝛾
𝑖2
(
h2, a; Θ𝑖2

)
= 𝑎

𝑖2
(
2 − 5𝑥

𝑖2
)
− 0.5𝑎

𝑖1 − 𝑎𝑖2𝑎𝑖1. The dyadic-blip
parameters for Member 2 are then, Θ2 = (2,−5,−0.5,−1). The
dyadic-blip parameters were estimated assuming the correct
specification of both the treatment-free and treatment models.

We consider the dyad health outcome of interest to be the average
of dyad members’ outcomes’, 𝑔(Y) = 0.5

(
𝑌1 + 𝑌2

)
. With this dyad

health function, the goal is to maximize the expected health out-
come of the population, while taking interference within dyads
into account. This specification also allows the dyadic-network
approach, that is, joint optimization, to be directly compared to
the method of Jiang, Wallace, and Thompson [23], which can be
viewed as using 𝑔(Y) = 𝑌1, thereby maximizing the expected out-
come of Member 1 only.

Figure 4 compares the outcomes of a simulated population based
on the conditional optimization proposed by Jiang, Wallace, and
Thompson [23] with our proposed method of joint optimiza-
tion. The top panel contrasts the originally observed outcomes
for the population, outcomes under conditional optimization
treatment where in each dyad, only the member labeled as
Member 1 received their optimal treatment conditioned on
the observed treatment of Member 2, and outcomes under a
joint optimization strategy for the treatments implemented to
optimize the dyadic health outcome (here, the average). Red
lines between box plots indicate a decrease in the outcome for an
individual in comparison to the optimization strategy, whereas
gray lines suggest an improvement. The expected outcome of
the population has increased more significantly as a result of
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FIGURE 4 | Simulation results comparing conditional optimization [23] with the proposed method of joint optimization for a dyadic-health out-
come. Top: Population outcomes. Bottom: Outcomes based on different members of a dyad. The label (1) denotes the outcome for those labeled as
Member 1 and label (2) denotes the outcome for individuals labeled as Member 2. Red lines between box plots indicate a decrease in the outcome for
an individual compared to the optimization strategy, whereas gray lines suggest an improvement. The members of these dyads in this example are not
exchangeable.

joint optimization compared to conditional optimization, with
differences highlighted in the last box.

The bottom panel demonstrates the impact of conditional opti-
mization for Member 1 and joint optimization on the outcomes
for Members 1 and 2 in the population, analyzed separately. The
left plots reveal that the outcome for Member 1 has increased as
a result of both conditional and joint optimization, with a more
pronounced improvement observed in conditional optimization.
However, as demonstrated in the right panel, conditional opti-
mization for Member 1 has a deteriorating effect on the outcome
for Member 2. In contrast, joint optimization results in improve-
ments for both individuals. As a result, the true change in the
population outcome is presented in the middle box of the top
panel. The critical insight here is that reporting the expected out-
come of the population, as shown in conditional optimization (1)
in the bottom panel, instead of reporting it as conditional opti-
mization (population) in the top panel, would be incorrect.

4.3 | Simulation III: Impact of Dyad Health
Function

In this section, we explore the impact of different dyad-health
functions on the resulting DTRs within a dyadic-network context.

Our objectives are twofold: first, to demonstrate how varying a
dyad-health function influences the health outcomes of the dyad
members; second, to illustrate the interpretability benefits of
modeling the individual outcomes directly, rather than through
the dyad-health function 𝑔(Y).

We assumed a single-stage DTR and a dyadic-network with
non-exchangeable members in a sample of 2500 dyads.
The data are generated according to a model where the
covariates 𝑋

𝑖1 and 𝑋
𝑖2 are independently drawn from a

standard normal distribution. The binary treatments 𝑎ij
are generated using logit models based on the covariates
as 𝑃

(
𝐴ij = 1|𝑋ij = 𝑥ij

)
= expit

{
1 − 3𝑥ij

}
for both members.

The outcomes are generated according to 𝑌
𝑖1 ∣

(
h
𝑖1, a𝑖

)
=

20 + 𝑥
𝑖1 + 𝑎𝑖1

(
10 + 2𝑥

𝑖1
)
+ 𝑎

𝑖2
(
−6 + 2𝑥

𝑖1
)
+ 𝑎

𝑖1𝑎𝑖2
(
4 + 𝑥

𝑖1
)
+ 𝜖

𝑖1,
and 𝑌

𝑖2 ∣
(
h
𝑖2, a𝑖

)
= 15 + 𝑥

𝑖2 + 𝑎𝑖2
(
9 + 𝑥

𝑖2
)
+ 𝑎

𝑖1
(
−10 + 0.5𝑥

𝑖2
)
+

𝑎
𝑖1𝑎𝑖2

(
4 + 𝑥

𝑖2
)
+ 𝜖

𝑖2 where 𝜖
𝑖1 and 𝜖

𝑖2 are normally distributed
with mean 0 and standard deviation 0.5.

Different dyad-health functions, 𝑔(Y), were employed. The
selected functions, along with their mathematical formulations,
are presented in Table 1. The Log-Sum-Exp functions, LSE-m
and LSE-M, serve as convex approximations of the minimum
and maximum of a set of outcomes, respectively. In optimiza-
tion stage, LSE-m prioritizes the treatment that maximizes the
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TABLE 1 | Summary of functions 𝑔(Y) and their parameter settings.

Function name Mathematical formula Parameter settings

Log-Sum-Exp: Minimum (LSE-m) − 1
𝜆

log
(
exp

(
−𝜆𝑦1

)
+ exp

(
−𝜆𝑦2

))
𝜆 = 0.1,0.001

Weighted p-Norm (wp-norm)
(
𝜔1|𝑦1|𝑝+𝜔2|𝑦2|𝑝

𝜔1+𝜔2

) 1
𝑝

𝜔1 = 1, 𝜔2 = 1, 𝑝 = 1𝜔1 = 0.1,
𝜔2 = 0.9, 𝑝 = 2𝜔1 = 0.9, 𝜔2 = 0.1, 𝑝 = 2

Log-Sum-Exp: Maximum (LSE-M) 1
𝜆

log
(
exp

(
𝜆𝑦1

)
+ exp

(
𝜆𝑦2

))
𝜆 = 1,0.001

Quadratic Form (Q-form) y⊤By B =

(
0.25 −0.25
− 0.25 0.25

)

B =

(
0.25 0.25
0.25 0.25

)

minimum outcome within the dyad. Conversely, LSE-M pri-
oritizes maximizing the largest outcome within the dyad. The
parameter 𝜆 controls the sharpness of the approximation; larger
values of 𝜆 yield a closer approximation to the true minimum or
maximum, resulting in a stricter policy that more closely mirrors
the extremum of interest.

The weighted p-Norm prioritizes the members of the dyad,
through the use of the weights, 𝜔1 and 𝜔2. Finally, the quadratic
form, that is, Q-form, although similar in appearance to the
weighted p-Norm, distinguishes itself through its inclusion of
interactions between the outcomes 𝑌1 and 𝑌2. The off-diagonal
element 𝑏12 of the symmetric matrix 𝐵 governs the degree, and
the nature, of these interactions. A positive 𝑏12 encourages both
outcomes to be simultaneously high, and therefore favors treat-
ments that increase both 𝑌1 and 𝑌2 simultaneously. In contrast,
a negative 𝑏12 discourages treatments that lead to simultane-
ous improvements in both outcomes, potentially penalizing cases
where both members’ outcomes rise together.

For each dyad-health function listed in Table 1, we selected spe-
cific parameter settings to explore their impact on the resulting
treatment regimes. These settings are detailed in the “Parameter
Settings” column of the table. For instance, the LSE-m function
was tested with 𝜆 = 0.1 and 𝜆 = 0.001, reflecting different degrees
of approximation to the true minimum. Similarly, the weighted
p-Norm function was applied with varying weights 𝜔1 and 𝜔2 to
assess how the prioritization of one dyad member’s health over
the other influences the treatment decisions. The Q-form was
explored with two different interaction matrices B, highlighting
how positive and negative correlations between dyad outcomes
affect the optimized treatment strategies.

Figure 5 illustrates scenarios, assuming 𝑔(Y)s are modeled
directly. It compares the corresponding dyad-health out-
comes before and after receiving optimal treatments based
on dyadic-network DTR optimization approach, joint optimiza-
tion. As shown, the value of the dyad-health function increases
across the sampled dyads under dyadic treatment regime, indi-
cating an overall improvement in dyad-health outcomes as
defined by each function. However, as illustrated in Figure 5,
each dyad-health function imposes a different unit of measure,
and a direct comparison of the impact of the optimal treatment
strategy on the population outcome is not possible. While direct
modeling 𝑔(Y) allows for estimating the effect of the optimal

regime strategy on the dyad-health outcome 𝑔
(
𝑌1, 𝑌2

)
, it does not

provide a direct estimate of its effect on the individuals outcomes
𝑌1 and 𝑌2.

Figure 6 presents the observed individual-level outcomes along-
side their expected outcomes under optimal regime strategy for
each of the chosen dyad-health functions. This detailed view is
made possible by modeling 𝑌1 and 𝑌2 directly, rather than mod-
eling 𝑔

(
𝑌1, 𝑌2

)
. The figure demonstrates how each dyad-health

function results in a distinct distribution of individual outcomes
under the treatment regime dictated by the dyadic-network DTR
strategy, joint optimization.

As expected by the structure of the applied dyad-health func-
tions, most of these optimizations prioritized the outcome of one
member. For example, the weighted p-Norm with a large weight
on one member significantly improves that member’s outcome.
In contrast, the weighted p-Norm with equal weights leads to
a more balanced improvement between the two members. The
LSE-M function favors Member 1, who has a higher potential for
marginal health improvement, while the LSE-m tends to favor
Member 2, who typically has lower overall health. The Q-form
with negative interaction favors Member 1 and generates an
optimal treatment regime resembling those of the LSE-M and
the weighted p-Norm with a large weight on Member 1. Finally,
the Q-form with positive interaction produces a balanced out-
come, and indeed finds an optimal treatment policy identical
to that of the weighted p-Norm with balanced weights. The
boxplots comparing the outcome values of both members for
different dyad-health function optimizations, are provided in
Appendix B.3.

These results highlight the flexibility of modeling the individual
outcomes and optimization of a dyad-health function in defining
what constitutes an “optimal” treatment regime. By allowing
the dyad-health function to specify the criteria for optimality,
the dyadic-network optimization strategy can yield a diverse
range of treatment regimes, each reflecting the unique properties
of the chosen dyad-health function. Moreover, modeling the
individual-level outcome, we can compare the effects of the
fitted regimes and select the dyad-health function that aligns
with desired treatment goals, something that would be more
challenging if we only modeled 𝑔(Y). While we can intuitively
predict the general impact of these dyad-health functions on the
treatment regime, the exact details of their impact on individual
outcomes remain unclear without explicit modeling of 𝑌1 and
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FIGURE 5 | Boxplots of the dyad-health function values across sampled dyads for nine different dyad-health functions, each corresponding to
a distinct set of parameter settings as summarized in Table 1. The observed values are shown before and after fitting the optimal treatment regime
using the dyadic-network DTR. Across all configurations, the fitted treatment regime leads to higher values of the dyad-health function, reflecting an
improvement in dyad health under the corresponding measure.

𝑌2. Our approach allows us to choose a dyad-health function that
not only meets our dyad-level objectives but also aligns with the
individual-level effects we are comfortable with.

5 | Application: Path Study

The addictive properties of tobacco products are well-established,
with nicotine being the primary compound responsible [28, 29].
In light of this, it is of interest to investigate the extent to which
e-cigarette adoption may reduce total nicotine exposure among
pairs of tobacco product users in the United States. To this end,
we will analyze data from the PATH study [30], which provides a
rich source of information on various tobacco-related behaviors
and outcomes. The PATH study is a longitudinal cohort study that
was undertaken with the broad aim of accruing information to aid
in the assessment of longitudinal patterns of tobacco-use behav-
iors in the United States. A nationally representative sample of
households was undertaken using a four-stage, stratified area
probability sample design. Sampling began in 2013, with consent-
ing members of each sampled household forming the “Wave 1”
cohort. From each of the consenting households, a maximum of
two adults and two youths were assessed. Members of the cohort

who chose to remain in the study were then contacted annually
for further data collection, with the results forming subsequent
waves. A replenishment sample was added to the cohort at the
outset of Wave 4 and in total, six waves have been measured. More
details regarding the logistics of this study can be found in the
report of Hyland et al. [30]

Measurements collected consist of answers to a survey regard-
ing tobacco-use behaviors, and biospecimens taken from blood
and urine samples of study participants who provided the addi-
tional requisite consent. The survey can be roughly divided
into three main sections. The first section captures various
socio-demographic characteristics of each participant, including
age, sex, ethnicity, education, employment status, and annual
income. The second section focuses on tobacco use, inquiring
about the types of products used and frequency of use. Finally,
the third section aims to provide context by asking questions
about health status, quality of life, and the perceived social role
of tobacco among the participants’ social circles. Biospecimen
samples were used to measure biomarkers of tobacco exposure,
such as tobacco-specific nitrosamines, and diseases purported to
be associated with tobacco use.
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FIGURE 6 | Boxplots of the outcome values for members across sampled dyads are presented for nine different dyad-health functions, each asso-
ciated with a unique set of parameter settings, as summarized in Table 1. The observed values are depicted both before and after applying the optimal
treatment regime derived from the dyadic-network DTR.

We utilize the data from the PATH study to fit a two-stage dyadic
network DTR. We restrict our focus to households where two
adults were identified as current users of any tobacco product
at Wave 1. A current user is defined as any adult who has ever
used a tobacco product and now uses it with some degree of reg-
ularity [31]. Among these households, we retain for analysis only
those households in which both adult members provided survey
responses and biospecimen samples at Wave 2. These conditions
yield a sample consisting of 516 households, or 1032 individuals.
We randomly assign the labels of Member 1 and Member 2 to each
individual in a household.

Our intended response is nicotine exposure, which we pro-
pose to quantify using total nicotine equivalents. Total nico-
tine equivalents involve the sum of molar concentrations of
nicotine and its various metabolites. Total nicotine equivalents
have been shown to be highly correlated with true nicotine
intake, and robust to metabolic differences among individuals
[32, 33]. The PATH data provides measurements of total coti-
nine and total trans-3-hydroxycotinine, which can be summed
together to give the measure known as TNE-2 [29]. We choose
the log-transformed sum of TNE-2 values at Wave 1 and Wave 2
to be the continuous response for our model. We call this outcome
as log total TNE-2.

Our treatment designation is based on e-cigarette use. To be
more specific, we consider any adult reported as an e-cigarette
user within the year prior to Wave 1 as having received initial
treatment (Stage 1). Similarly, individuals who are recorded as
e-cigarette users between Wave 1 and Wave 2 are considered

to have been treated at Stage 2. With this setup, PATH study
waves correspond to model stages, as defined in Section 2. Con-
sequently, our model is a two-stage DTR. For the purpose of
comparison, we implement both our joint optimal treatment
model and a conditional optimal treatment model as done in
previous literature [23].

At each stage, we fit a dyadic-blip model of the form
𝑎ijk

(
𝜓0𝑘 + 𝜓⊤

𝑘
𝑋ijk

)
+ 𝑎ij∗𝑘

(
𝜂0𝑘 + 𝜂1𝑘𝑋ij∗𝑘

)
+ 𝜉𝑎ijk𝑎ij∗𝑘. For the

tailoring covariates, at Stage 1, 𝑋ijk is comprised of biological
sex (binary), age (continuous), non-Hispanic (binary), reported
heart disease (binary), cigarette smoking status of the individual
(every day, some days, and not a current smoker), and average
cigarettes smoked per day (numeric). If someone is a non-smoker,
their average number of cigarettes is 0 [34]. The covariate 𝑋ij∗𝑘
is the same at both stages and is comprised of dyad cohabitant
𝑗
∗’s cigarette smoking status and average number of cigarettes

per day.

Since there is no meaningful way to assign membership labels
within the path data set, we assign labels within each dyad
randomly. As a result, member exchangeability is satisfied in
this analysis. Accordingly, we fit the outcome and the treatment
model on a stacked data set, combining the member data to fit a
single outcome regression.

In each stage, the weights were estimated under two interference
settings, which we have called M2 under the restricted model
and M3 under the independent treatment model, respectively (see
Appendix A.3). The propensity for receiving treatment in each
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stage exhibits acceptable overlap, and the balance of covariates
has been achieved, as indicated by the standardized mean differ-
ence of weighted covariates being below 0.1, with the exception
of age, which has a standardized mean difference of 0.21.

5.1 | Results

The dyadic-blip model estimates at each stage for each model
are presented in Table 2. Recall that our outcome in this case
is log-transformed sum of TNE-2 for Waves 1 and 2, and hence,
in this setting, lower values correspond to a better health out-
come. From this reference point, it is possible to interpret neg-
ative blip coefficients as relating to those factors that increase
the efficacy of the treatment, while positive coefficients show
the opposite relationship. Also, recall that in joint optimiza-
tion, we optimize the sum of the blips, so cigarette smoking
by either member will appear in the optimization equation in
two capacities. For example, at Stage 1 for Model 2, if both are
someday-cigarette smokers, the terms corresponding to cigarette
smoking in the blip sum given 2∗(0.689) + 2∗(0.313) = 2.004. It
follows that, when both members are everyday cigarette smok-
ers, treatment is more likely to be effective. Additionally, if either
member is of non-Hispanic origin and is a male, the treatment is
more likely to be effective. As an example, suppose Member 1 is a
30-year-old non-Hispanic female with no heart issues, who is not
a current smoker. She is in a dyad with Member 2, a 35-year-old
non-Hispanic male with no heart issues, who is a current “some-
day” smoker averaging 5 cigarettes per day. At Stage 2, recom-
mending e-cigarettes to both members increases the total log sum
of TNE-2. The dyadic-optimal decision rule at Stage 2 for this
dyad is to recommend e-cigarettes only to Member 2.

Figure 7 gives an assortment of boxplots related to the models and
their outcomes under optimal treatment. In particular, the first

boxplot shows the joint total TNE-2 for all couples as observed in
the data set, while the second and third boxplots show the new
outcomes under conditional and dyadic-network DTR modeling,
respectively. From the plot, it is clear that the dyadic-network
model appears to show an improvement in total TNE-2 values
among the sampled households, which can be seen by its notice-
ably lower central tendency, and skewness toward negative val-
ues. The boxplot of the outcomes under the conditional models’
optimal treatment rule also shows a general decrease in total
TNE-2 values across the sample, although its central tendency
and skewness toward negative values are noticeably less.

Specifically, under the conditional approach, which only opti-
mizes treatments based on the first dyad member, the expected
log total TNE-2 values decreased by 0.46 on average across the
optimized members. This also indirectly led to a decrease of 0.20
in the non-optimized members. Overall, the population expected
log total TNE-2 values decreased on average by 0.33 under this
approach, from 3.33 to 3.01. The joint optimization approach of
the dyadic-DTR methodology, on the other hand, results in 0.58
reduction in the mean of log sum of TNE-2 of each member
and the total of 0.58 reduction for the population of dyads. It is
worth noting that these analyses rely on the assumption that lin-
ear dyadic-blip models are correctly specified.

6 | Discussion

The proposed methodology extends the estimation of DTRs
to account for interference when the population arises in the
form of a dyadic network. This is done by modification of the
dWOLS algorithm’s optimization step through introduction of
the dyad-health function. This function takes the outcome val-
ues of a particular dyad’s members, and uses them to pro-
duce a value which, ostensibly, corresponds to dyad health—a

TABLE 2 | Dyadic-blip estimates.

Tailoring covariate

Coefficients (standard error)

Stage 1 Stage 2

M3 M2 M3 M2

𝜓0 E-cigarette1 −0.084 (0.529) 0.367 (0.422) −0.746 (0.546) −0.701 (0.579)
𝜓1 E-cigarette1: Age1 −0.001 (0.011) −0.008 (0.012) 0.007 (0.011) 0.012 (0.011)
𝜓2 E-cigarette1: Sex1 (female) 0.124 (0.271) 0.078 (0.300) 0.293 (0.262) 0.134 (0.271)
𝜓3 E-cigarette1: Non-Hispanic1 −0.010 (0.320) −0.177 (0.432) −0.135 (0.468) 0.027 (0.545)
𝜓4 E-cigarette1: Heart disease1 (no) −0.839 (0.346) −0.684 (0.409) 0.189 (0.349) 0.241 (0.373)
𝜓5 E-cigarette1: Cigarette1 (not a current smoker) 1.715 (0.562) 1.831 (0.611) 1.257 (0.566) 1.023 (0.604)
𝜓6 E-cigarette1: Cigarette1 (some day) 0.689 (0.405) 0.372 (0.464) −0.187 (0.356) −0.368 (0.317)
𝜓7 E-cigarette1: Average cigarette1 per day 0.015 (0.011) 0.011 (0.013) 0.031 (0.020) 0.019 (0.018)
𝜂0 E-cigarette2 −0.498 (0.270) −0.502 (0.246) −0.383 (0.289) −0.316 (0.293)
𝜂1 E-cigarette2: Cigarette2 (not a current smoker) 1.811 (0.544) 1.723 (0.561) 0.550 (0.507) 0.582 (0.509)
𝜂2 E-cigarette2: Cigarette2 (some day) 0.313 (0.362) 0.325 (0.261) 0.150 (0.296) 0.152 (0.291)
𝜂3 E-cigarette2: Average cigarette2 per day 0.013 (0.011) 0.014 (0.011) 0.006 (0.017) 0.005 (0.017)
𝜉0 E-cigarette1: E-cigarette2 0.170 (0.339) 0.152 (0.311) 0.569 (0.339) 0.491 (0.331)

Note: The sample consists of 516 dyads. Weights were estimated under two interference settings, M2 under the restricted model and M3 under the independent treatment
Model 2.3. Standard errors were estimated using 1000 bootstrap samples. Bold indicates statistical significance at the 10% level.
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FIGURE 7 | Boxplots of log total TNE-2 values in the observed data
(Left), under conditional optimization (middle), and under joint opti-
mization (right). In this case, both approaches seem to have generally
decreased population TNE-2 values, with the dyadic-DTR approach per-
forming slightly better.

value we intend to maximize through treatment assignment. The
dyad-health function is specified by the practitioner, and may
take multiple forms. In particular, when the dyad-health function
is the average of the outcome of the individuals of a dyad, the joint
optimization will optimize the population’s expected outcome.
This is in contrast to the conditional optimization methodology
introduced previously in the literature which cannot promise this
result. Additionally, this feature provides the practitioner flexibil-
ity in defining what is meant by optimal as it relates to the out-
come of a treatment decision. This is an important point, because
the typical choice of maximizing the populations expected out-
come can potentially result in undesirable repercussions for cer-
tain population members at the individual level, and may there-
fore be undesirable to implement in practice.

The dyadic-network DTR can be implemented by directly mod-
eling the dyad-health function or by modeling the individuals’
outcomes. In this paper, we advocate for the latter due to the fact
that it provides the detailed information needed to evaluate treat-
ment effects at the individual level.

When modeling the dyad-health outcome directly, the
dyad-health function serves as the primary tool for evaluating a
dyadic-network DTR strategy on the population. This approach
effectively treats the dyads as single units during both the esti-
mation and optimization stages, collapsing individual-level
outcomes into a single scalar value. Consequently, the analysis,
which focuses solely on the dyad-level health outcome, is not
able to provide direct insight into the effects of the treatment
strategy on individuals’ outcomes. This limitation is particu-
larly significant in personalized medicine, where understanding
individual responses to treatment is typically of interest.

Moreover, when considering multiple dyad-health functions,
comparing the impact of different choices becomes challeng-
ing. While directly modeling the dyad-health function can pro-
vide valuable insights, it lacks the granularity needed to fully
understand the effects of a treatment strategy on individual-level
outcomes, and it complicates comparisons across different
dyad-health functions.

The proposed methodology was implemented through a simu-
lation study and an analysis of the data from the PATH study.
Through these examples, we were able to demonstrate how the
models perform. Specifically, under the dWOLS assumption,
when the dyad-health function is chosen to be the average of
the dyad outcomes, the proposed joint optimization approach
consistently identifies an optimal treatment assignment that is at
least as effective as, and potentially better than, the conditional
optimization previously proposed by Jiang, Wallace, and Thomp-
son [23], as it explores the entire dyadic treatment space. Note
that demonstrating this was the sole purpose of the analysis of
the PATH data set—the decision rule estimated therein should
not be understood as a serious policy suggestion. In particular,
the completed analysis has a few simplifying assumptions that
may not hold in practice. For example, it was assumed that dyad
members within the PATH study were exchangeable, but the
existence of a variable that makes the dyad members distin-
guishable should be considered and analysis run accordingly
and compared. The assumption that the behavior of individuals
observed at each wave remained homogeneous, so that they did
not undergo any significant changes throughout the one-year
interval between waves, is also unlikely to be true generally.
While this assumption facilitated our analysis, it is important to
recognize that individual behaviors can be influenced by various
factors that may evolve or fluctuate over time. Therefore, the
generalizability of our findings may be affected, as unaccounted
changes in behavior patterns between waves could potentially
impact the observed results.

Furthermore, while we were able to showcase the application
of the dyadic dWOLS method in a multistage setting using
two waves of data, it is important to note that the inclusion of
additional waves would have provided a more comprehensive
understanding of the dynamic nature of the phenomenon under
investigation. We were unable to incorporate a larger number of
waves into the analysis, due to the limitations imposed by the
sample size, notwithstanding any consideration of missing data
adjustment, which could be a consideration in future work.

Moreover, our analysis relied on the assumption of correct
specification of the linear dyadic-blip model. However, as these
models are prone to misspecification, the correct specifica-
tion of the treatment model becomes crucial to achieve the
double-robustness property. Some methods have been proposed
for model selection in the traditional DTR setting [35, 36]. Explor-
ing the validity and extension of these methods in the presence of
interference represents an interesting avenue for future research.

In terms of potential future work in the area of intersection
between DTRs and interference, our study motivates several
intriguing possibilities. The most natural next step would be to
allow for interference among groups consisting of two or more
individuals. This, along with allowing for groups of various sizes
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within the population would extend the model to much more
realistic scenarios.

While much of the existing literature on causal inference and
interference has primarily focused on binary treatment, explor-
ing interference in the context of continuous treatment could
lead to the development of more effective DTR and interference
methods. This avenue of investigation would allow for the devel-
opment of tailored methods specifically designed for use in con-
tinuous treatment scenarios.

Another potential extension that merits exploration in the inter-
section between DTRs and interference involves cases where
different sources or types of measurement from one outcome
are available. In a more general context, this extension would
also encompass situations where a treatment and its potential
interference have an impact on multiple health outcomes of
an individual. Investigating the effects of interference in such
complex scenarios would undoubtedly be challenging, but the
insights gained would be valuable in developing more effective
intervention strategies that target multiple health outcomes
simultaneously. The development of sophisticated analytical
approaches that can accommodate the interplay between differ-
ent health outcomes and the various factors that influence them
would enable more personalized and tailored treatment plans,
leading to improved patient outcomes and quality of life. One
interesting extension would be to adapt other robust methods,
such as robust Q-learning and G-estimation methods, to account
for interference effects [7, 9].
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Appendix A

Double Robustness

We give a proof for the consistency and double-robustness of dyadic
dWOLS following Wallace and Moodie [10] and Simoneau and Moodie
[12]. The proof is concerned with the dyadic-blip estimators Θ
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(A1)

Here, we have used the notation S(⋅, ⋅) to represent the score vector of the
specified outcome model with respect to the model parameters, which in
the case of the model presented in Equation (A1), takes the form,

S
(
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=
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For simplicity, the proof is detailed for a single-stage DTR. It is straight-
forward to extend the reasoning to more than one stage.

Treatment-Free Model Correctly Specified, Treatment Models
Misspecified

Assuming that the dyadic blip model is correctly speci-
fied, when the treatment-free model is correctly specified,
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When the treatment-free model is correctly specified, then
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the treatment-free model is correctly specified.

Treatment-Free Model Misspecified, Treatment Models
Correctly Specified

Let the treatment model be correctly specified, that is, ℙ(A = a|h). We
show that finding the root of the estimating function 𝑈
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consistent estimators of Θ if the weights satisfy the following balancing
property.

Theorem 2. (Balancing property) A weighted ordinary least-squares
regression based on the model,
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will give consistent estimates for the dyadic-blip parameters Θ provided that
the weights satisfy,
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for any a ≠ a′ ∈ 2, where 𝜋(a|h) = ℙ(A = a|h) is the joint propensity
score. In case of binary treatment, this condition translates to

𝜋(0, 0,h) 𝑤(0, 0,h) = 𝜋(0, 1,h) 𝑤(0, 1,h) = 𝜋(1, 0,h)

𝑤(1, 0,h) = 𝜋(1, 1,h) 𝑤(1, 1,h).

Proof . The estimates of Θ in an ordinary least-squares regression will
be biased unless we at least have 𝐸(h|a) = 𝐸(h) for all a in 2. Hence,
it is sufficient to find weights such that, in the weighted data set, this
condition holds. Specifically, using subscripts to denote the weighted
data, we require weights such that 𝐸

𝑤
(h|a) = 𝐸

𝑤
(h).

A sufficient condition to give us this result is that the conditional dis-
tribution of the dyad history in the weighted data set is equal to the
marginal, 𝑓
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(h). Expressing the left-hand side in terms of the

joint weighted distribution, we find that this condition is equivalent to

𝑝
𝑤
(a|h)

𝑝
𝑤
(a)

𝑓
𝑤
(h) = 𝑓

𝑤
(h).

It follows that we require weights such that,
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Having the numerators and the denominators equal in Equation (A3) is
sufficient for it to hold. Let𝑤(a, 𝑥) denote the weight function. Beginning
with the numerators, the weighting scheming means we can write each
numerator as,

𝑝
𝑤

(
a = a0|h

)
=

𝑝

(
a = a0|h

)
𝑤

(
a0,h

)

∑
u∈2 𝑝(a = u|h)𝑤(u,h)

,

where 𝑎0 ∈ 2. It follows immediately that when Equation (A2) holds,
the numerators will all be equal.

Similarly, for any a0 in2 the denominators we may written as,

𝑝
𝑤

(
a = a0

)
=
∫

𝑝

(
a = a0|h

)
𝑤

(
a0,h

)

∑
u∈2 𝑝(a = u|h)𝑤(u,h)

𝑓 (h)𝑑h

=
∫

𝑝

(
a = a0|h

)
𝑤

(
a0,h

)
𝑘(h)−1dP

ℎ
,

where we have defined 𝑘(h) =
∑

u∈2 𝑝(a = u|h)𝑤(u,h). We can now see
that when Equation (A2) holds, we will also have the numerators being
equal. This concludes the proof.

Interference Models and Weights Estimation

We intend to discuss possible weight specifications satisfying the bal-
ancing conditions, and how they may simplify under different modeling
casual graphs. Commonly, weights are a function of the joint propen-
sity score, 𝑃 (a|h), which is generally unknown and must be estimated
from the data. We have called this model the treatment model. Under
the causal framework explained in Section 2.2, the dyad-level treatment
a can be considered as a categorical treatment which takes one of four
values: (0, 0), (0, 1), (1, 0), or (1, 1), which we collect into the set 𝑆. For
multiple nominal treatments, the generalized propensity scores are fre-
quently modeled by a multinomial logistic regression. In the case of
within-dyad interference, where each individual is exposed to a bivari-
ate binary treatment, we can also implement a bivariate logistic model
to estimate the weights. In another approach we can fit the marginal

distributions 𝑃

(
𝐴
𝑗
|h

𝑗

)
and 𝑃

(
𝐴
𝑗∗|h𝑗

∗

)
, then model the association

between the exposures via a Dale model [37].

The formulation of the dyad treatment as a categorical variable
allows weights previous devised in the literature to be used in this
dyadic-network context. The balancing weights proposed for categori-
cal treatment proposed in Li et al., for example, will satisfy the bal-
ancing property [38]. In their most general form these weights can be
expressed as,

𝑤(𝑎,h) =
1

𝑃 (𝑎|h)
∑

𝑠∈𝑆
1

𝑃 (𝑠|h)

,

which can be interpreted as a Boltzmann distribution over the treatment
space where the energy of each treatment is defined to be the negative log
of the propensity score for that treatment.

Sometimes we estimate 𝜁

(
𝑎
𝑗
|h
)
= 𝑃

(
𝑎
𝑗
|h
)

and 𝜈

(
𝑎
𝑗
∗ |𝑎

𝑗
,h

)
=

𝑃

(
𝑎
𝑗
∗ |𝑎

𝑗
,h

)
to form joint treatment model. Under this the balancing

condition of A3 can be written as,

𝑤(0, 0,h) = 𝜁 (h)𝜈(1,h)𝑤(1, 1,h)
[1 − 𝜁 (h)][1 − 𝜈(0,h)]

,

𝑤(0, 1,h) = 𝜁 (h)𝜈(1,h)𝑤(1, 1,h)
[1 − 𝜁 (h)]𝜈(0,h)

,

𝑤(1, 0,h) = 𝜁 (h)𝜈(1,h)𝑤(1, 1,h)
𝜁 (h)[1 − 𝜈(1,h)]

,

such that 𝑘 = 4𝜁 (h)𝜈(1,h)𝑤(1, 1,h). Additionally, the weights can be
written specifically in terms of this model formulation as,

𝑤(𝑎,h) =

1
𝜁(𝑎𝑗 |h)𝜈(𝑎𝑗∗ |𝑎𝑗 ,h)

∑
𝑠∈𝑆

1
𝜁(𝑠𝑗 |h)𝜈(𝑠𝑗∗ |𝑠𝑗 ,h)

,

As we have already mentioned, under simpler causal graphs than the
most general case, as presented in Figure 1 (Model 3), the formulation
of the treatment model, and hence the weights may be simplified. For
example, under a model specified according to Figure 1 (Model 1), the
treatment of each dyad member is independent of the other condition
on their individual and shared covariates. In such a case, 𝑃

(
𝑎
𝑗
∗ |𝑎

𝑗
,h

)
=

𝑃

(
𝑎
𝑗
∗ |h

)
and therefore 𝜈

(
𝑎
𝑗
∗ |𝑎

𝑗
,h

)
= 𝜈

(
𝑎
𝑗
∗ |h

)
. The balancing condition

in Equation (A3) simplifies in this case to the same condition for each set
of marginal distributions, that is,

𝑝
𝑤

(
𝑎
𝑖
= 𝑎|h

)

𝑝
𝑤

(
𝑎
𝑖
= 𝑎

) = 1, ∀𝑎 ∈ ,

for 𝑖 = 1, 2 indexing the dyad treatments. Therefore,

𝑤(𝑎,h) = 𝑤

(
𝑎1,h

)
𝑤

(
𝑎2,h

)
.

It follows that in such a case, any weights previously satisfying the bal-
ancing condition provided in, for example, Wallace and Moodie [10], can
be used on each member of the dyad individually and multiplied together
to form a dyad weight [10].

Appendix B

Simulation

Single-Stage Regime

In this section, we present additional results regarding the analysis pre-
sented in Section 4.1. These are provided in Figure B1 and Table B1.
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FIGURE B1 | Dyadic-blip function parameter estimates for 1000 simulated data sets via our dyadic-dWOLS approach when neither (Analysis 1),
one (Analyses 2 and 3), or both (Analysis 4) treatment and treatment-free models are correct for single-stage simulation. n is the sample size of dyads.
True value of 𝜓0 = 2 and 𝜓1 = 1.

Two-Stage Regime

Here, we investigate the performance of the proposed model with
two stages of treatment. For each dyad 𝑖 = 1, . . . , 𝑛 and each member
𝑗 = 1, 2 we generate the patient information at Stage 1, 𝑋ij1, according
to a normal distribution with mean of 2 and standard deviation of 1.
Patient information at the second stage, 𝑋ij2, is generated according to a
uniform distribution on the interval [0, 2]. The treatment model at stage
𝑘 is defined as 𝑃

(
𝐴ijk = 1|𝑋ijk = 𝑥ijk

)
= expit

{
−0.25𝑥ijk + sin

(
𝑥ijk

)}
,

for 𝑘 = 1, 2. The outcome model is 𝑌ij ∣
(
hij, a𝑖

)
= 𝜇

(
hij, a𝑖

)
+ 𝜀ij

where 𝜇

(
hij, a𝑖

)
= log

(
𝑥ij1

)
+ log

(
𝑥ij∗1

)
+ sin 𝑥ij2 + log

(
𝑥ij∗2

)
+

∑2
𝑘=1𝛾𝑘,

where the dyadic-blip model at stage 𝑘 is 𝛾
𝑘
= 𝑎ijk

(
−2 + 𝑥ijk

)
+

𝑎ij∗𝑘
(
−1 + 0.5𝑥ijk

)
+ 𝑎ijk𝑎ij∗𝑘

(
1 + 0.5𝑥ijk

)
. Model misspecification for

the treatment model, at each stage, is done by exclusion of the nonlinear
term. The treatment-free model at Stage 2 is misspecified by eliminating
log ∣ 𝑥ij∗2 ∣, and at Stage 1 by excluding log ∣ 𝑥ij∗1 ∣.

Figure B2 shows boxplots of the estimated dyadic-blip parameters for the
first stage, while Figure B3 plots the same for the second-stage estimates
for the specific case of 𝑛 = 1000 dyads. Blue horizontal lines have been
drawn at the true value of each parameter. The Label 1 denotes the case
in which neither component of the model is correctly specified, Label 2
denotes the case in which only the treatment-free component is misspeci-
fied, Label 3 denotes the case where only the treatment model is misspec-
ified, and Label 4 denotes the case in which everything is correctly spec-
ified. Consistent estimates of dyadic-blip parameters are achieved when
at least one of the treatment model or treatment-free model is correctly
specified.

Simulation III: Dyadic-Health Functions

See Figures B3–B6.

5964 Statistics in Medicine, 2024



TABLE B1 | Mean, standard error, bias, and root mean squared error of the blip estimators with sample size n= 1000 dyads across four scenarios
for the single-stage simulation.

Scenario Mean Standard error Bias RMSE

𝜓0 1 2.402 0.021 0.402 0.555
2 2.026 0.012 0.026 0.372
3 2.011 0.011 0.011 0.346
4 2.013 0.011 0.012 0.347

𝜓1 1 0.567 0.010 −0.433 0.541
2 0.967 0.010 −0.032 0.322
3 0.990 0.009 −0.010 0.286
4 0.989 0.007 −0.011 0.291

𝜂0 1 −2.004 0.007 −0.004 0.225
2 −2.005 0.007 −0.005 0.234
3 −1.977 0.007 0.023 0.208
4 −1.996 0.008 0.004 0.214

𝜉0 1 0.988 0.013 0.012 0.403
2 0.988 0.012 0.012 0.392
3 0.993 0.011 0.007 0.353
4 0.989 0.011 0.011 0.361

𝜉1 1 −1.994 0.009 0.006 0.284
2 −1.991 0.009 0.009 0.277
3 −2.001 0.008 −0.001 0.242
4 −1.997 0.008 0.003 0.252

Note: True value of 𝜓0 = 2, 𝜓1 = 1, 𝜂0 =−2, 𝜉0 = 1, and 𝜉1 =−2.

FIGURE B2 | First-stage dyadic-blip parameter estimates for 1000 simulated data sets via the dyadic-dWOLS approach for a two-stage DTR, when
both (Analysis 1), one (Analyses 2 and 3), or neither (Analysis 4) treatment and treatment-free models are misspecified. True value of 𝜓20 =−2, 𝜓12 = 1,
𝛿01 =−1, 𝛿11 =−0.5, 𝛿01 = 1, and 𝛾11 = 0.5.
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FIGURE B3 | Second-stage dyadic-blip parameter estimates for 1000 simulated data sets via the dyadic-dWOLS approach for a two-stage DTR, when
both (Analysis 1), one (Analyses 2 and 3), or neither (Analysis 4) treatment and treatment-free outcome models are misspecified. rue value of 𝜓20 =−2,
𝜓12 = 1, 𝛿01 =−2, 𝛿11 = 0.5, 𝛿01 = 1, and 𝛾11 = 0.5.

FIGURE B4 | Boxplots of the outcome values for both members across sampled dyads are presented for nine different dyad-health functions, each
associated with a unique set of parameter settings, as summarized in Table 1.
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FIGURE B5 | Boxplots of Member 1’s outcomes for nine different dyad-health functions and the observed values.

FIGURE B6 | Boxplots of Member 2’s outcomes for nine different dyad-health functions and the observed values.
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