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• A new dataset transformation method has been presented using wPCA and FastICA. 
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a b s t r a c t 

In the common classification practices, feature selection is an important aspect that highly impacts 

the computation efficacy of the model, while implementing complex computer vision tasks. The 

metaheuristic optimization algorithms gain popularity to obtain optimal feature subset. However, 

the feature selection using metaheuristics suffers from two common stability problems, namely 

premature convergence and slow convergence rate. Therefore, to handle the stability problems, 

this paper presents a fused dataset transformation approach by joining weighted Principal Com- 

ponent Analysis and Fast Independent Component Analysis Techniques. The presented method 

solves the stability issues by first transforming the original dataset, thereafter newly proposed vari- 

ant of Henry Gas Solubility Optimization is employed for obtaining a new feature’s subset. The 

proposed method has been compared with other metaheuristic approaches across seven bench- 

mark datasets and observed that it selects better features set which improves the accuracy and 

computational complexity of the model. 
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Introduction 

In recent few years, the prevalence of images and videos on various social media platforms and sensors have surged which resulted

in an exponential increase in the production of high-dimensional data. Unfortunately, this rapid growth in data dimensionality has 

also led to an increase in irrelevant, redundant, and noisy features. As a result of high dimensionality, low-quality features can become

more prevalent and this can propagate to fast growth in the time-space complexities in the image processing techniques. This can

negatively impact the performance of machine learning approaches in image classification tasks [ 1 ]. Therefore, feature selection 

techniques are generally playing a vital role in avoiding unnecessary and irrelevant features, and selecting relevant and compact

feature subsets from high dimensional feature sets which can boost the performance in different computer vision tasks [ 2 ]. 

Generally, finding specific features set through a brute force approach can be highly resource-intensive and time-consuming. 

With k features, there can be as many as 2𝑘 possible feature combinations, making it impractical to compare and evaluate all these

subsets [ 3 ]. Therefore, this paper aims to find a concise feature’s subset from the high dimensional feature’s set using an appropriate

assessment criterion. This reduction of features can improve the accuracy and computational expenses of the classification systems 

[ 4 ] and also enhance interpretability in the considered models [ 5 ]. In the literature, the feature selection (FS) methods are majorly

classified into three classes, namely filter methods (FMs), wrapper methods (WMs), and embedded methods (EMs). The FMs refer 

to the techniques that are evaluated the relevance of individual features by their statistical characteristics or other non-parametric

measures [ 6 ]. Hence, the correlation coefficient (CRC), mutual information (MI), variance thresholding, or chi-squared test (CST)

are usually employed for the score-based feature evaluation [ 4 ]. The statistical scores are then sorted to find the top (k) features

and the top (k) features are considered relevant features for further analysis. These methods exhibited less time-space complexity

as compared to WMs and EMs feature selection approaches [ 7 ]. Therefore, FMs can be utilized as pre-processing methods to reduce

computational expenses [ 5 ]. 

The WMs evaluate the predictive power of the feature’s subset using a learning-based approach. These methods find the optimal

feature’s subset by using a recursive feature addition or elimination methodology that maximizes the performance of the algorithm

in classification task [ 8 ]. Moreover, WMs are more sensitive to the choice of these learning approaches and the quality of the training

data. However, for the multidimensional large datasets, these methods require high computing expenses for the performance evalua- 

tion of the classification methods [ 9 ]. Embedded methods for the feature selection are employed in some specific techniques, namely

gradient boosting and decision tree (DT). The selection process of features embedded within the used approaches and carried out

simultaneously with the model training process. EMs can be computationally inexpensive as compared to WMs [ 10 ]. As none of the

feature selection methods within these categories alone appear to guarantee optimal outcomes in terms of predictive performance, 

robustness, and stability, hence the researchers have investigated the efficacy of hybrid approaches that incorporate a combination 

of diverse selectors. Zhou et al. [ 11 ] reported a hybrid FS (HFS) approach for the image classification, where a relief algorithm is

applied at the initial stage for the elimination of irrelevant feature set and employed a wrapper-based feature section method named

SVM-RFE for computing the quality of each feature vector. Further, Aguilera et al. [ 12 ] described another HFS approach by using

two FMs, namely Chi2 and Anova along with two EMs, namely Random Forest and Extra-tree in the binary classification models. 

Recently, WMs-based feature selection methods have used various deep learning techniques, both implicitly and explicitly, to 

automate feature selection in image classification tasks [ 30 , 32 ]. Vivekanandan et al. [ 28 ] introduced a WMs-based feature selection

method employing a modified differential evolution (DE) algorithm and fuzzy Analytic Hierarchy Process (AHP) in conjunction with 

a feed-forward neural network to predict heart disease. Canayaz et al. [ 30 ] proposed the integration of deep learning models such as

AlexNet, VGG19, GoogleNet, and ResNet, along with metaheuristic methods to automatically select features in COVID-19 datasets. 

Do ğan et al. [ 14 ] employed CNN-based models, specifically MobileNetv1, MobileNetv2, and NASNetMobile, for feature extraction,

combined with linear support vector classification (SVC) to perform feature selection in vehicle classification tasks. However, these 

approaches were computationally demanding, necessitating substantial computational resources for training [ 13 ]. A brief description 

of various feature selection methods has been depicted in Table 1 . 

Generally, any feature selection method aimed to grow the classifier efficacy and remove the unimportant or unrelated features,

which also required a trade-off between these two objectives. To eliminate redundant features, enhance the classifier’s performance, 

and reduce computational time, optimization algorithms are often useful in solving classification problems [ 3 , 18 ]. Many metaheuristic

optimization algorithms, namely particle swarm optimization (PSO) [ 23 ], grasshopper optimization algorithm (GOA) [ 24 ], grey 

wolf optimization (GWO) [ 25 ], artificial bee colony (ABC) [ 3 ], scatter search (SC) [ 26 ], binomial cuckoo search (BCS) [ 17 ], tabu

search (TS)[30], Non-dominated sorting (NDS) [ 33 ], henry gas solubility optimization (HGSO) [ 27 ], differential evolution (DE) [ 28 ],

biogeography-based optimization (BBO) [ 3 ], and salp swarm algorithm (SSA) [ 29 ] have been employed for the optimization issues in

the FS approaches and applied in various computer vision applications. Rostami et al. [ 3 ] proposed a combination of two metaheuristic

algorithms, namely BBO and ABC along with an SVM classifier for the selection of optimal features. Canayaz et al. [ 30 ] combined

binary PSO and binary GWO for the selection of optimal features and obtained the best efficacy among the considered method with

the SVM classifier. 

In the existing literature, binary-encoded metaheuristic algorithms have been designed specifically for binary problems. Several 

researchers have used binary-encoded versions of various metaheuristic algorithms to simultaneously achieve the multi objectives in 

different applications. Moreover, the binary encoded algorithms have been utilized to achieve single objectives and multi-objectives in 

different computer vision applications. These algorithms include binary GWO [ 34 ], binary PSO [ 23 ], chaotic binary coded GSA [ 35 ],

improved binary PSO [ 36 ], binary-embedded GSA [ 37 ], binary GOA [ 24 ]}, and binary quantum-inspired GSA [ 38 ]. Furthermore,

Pandey et al. [ 17 ] introduced binary encoded BCS for solving binary objective problems in feature selection approaches. This method

aims to enhance the efficacy of classification by utilizing binary encoding. Similarly, Shekhawat et al. [ 29 ] presented binary encoded
2 
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Table 1 

Description of state-of-the-art methods used for feature selection in the literature. 

S.No. Methods Algorithm and Tools Datasets Results Authors 

1 HFS (FMs) reliefF-SVM-RFE Caltech-256 Accuracy: 96.14 % Run time:1715s Zhou et al. [ 11 ] 

2 HFS (FMs) Chi2 and Anova, RF and 

Extra-tree RF, LR, KNN, and 

SVM. 

HER2 image Recall: 93.9 %, Specificity: 86.6 %, 

Accuracy: 90.3 %, Precision: 87.5 %, 

F1-score 90.6 %. 

Aguilera et al. [ 12 ] 

3 WMs PCA and SGbSA (GbSA-PCA) UCI (Iris and E. coli) Run time: 81.38 s and 653.83 s for 

respective datasets 

Hosseini et al. [ 49 ] 

4 WMs wPCA based MRbTA and 

SVM 

Wisconsin diagnostic breast cancer, 

wine, 

Leukemia microarray 

Accuracy: 92.27 %, 93.79 %, 90.29 % 

for respective datasets 

Kim et al. [ 50 ] 

5 HFS IPCA, Gaussian and Super 

Gaussian 

Liver Toxicity, Prostate cancer, Yeast 

metabolomic 

Average of correctly identified 

non-zero loadings: 86.7 %, 87.7 %, 

80.80 % 

Yao et al. [ 50 ] 

6 HFS IPC, ICA, na ı ve Bayes and 

SVM 

Wisconsin Breast Cancer, Wine, Crabs Accuracy: 96.85 %, 98.90 %, 99.50 % 

for respective datasets 

Reza et al. [ 51 ] 

7 HFS (FMs) ReliefF, Chi square, and 

Symmetrical techniques, GA, 

SVM 

Microstructural images: Annealing 

twin, Brass/bronze, Ductile cast iron, 

gray cast iron, Malleable cast iron, 

Nickel-based superalloy, White cast 

iron 

Overall Accuracy: 90.1 % Khan et al. [ 19 ] 

8 EMs Tree-based genetic program 

(GP-FER) 

DISFA, DISFA + , CK + , MUG Average accuracy: 94.2 % Ghazouani et al. 

[ 21 ] 

9 WMs HHBBO and SVM RADARSAT 2 (NLCD 2006) Overall accuracy: 96.01 %, Average 

accuracy: 93.37 % 

Rostami et al. [ 3 ] 

10 WMs bPSO and bGWO, SVM, 

AlexNet, Vgg19, GoogleNet 

and ResNet. 

COVID-19, normal, pneumonia X-ray 

images 

Overall accuracy: 99.38 % Canayaz et al. [ 30 ] 

11 WMs ACO, GA and TS, Fuzzy 

Rough set (ACTFRO) and 

GATFRO) 

SRBCT, DLBCL, Breast, Leukemia, 

Swarm behaviour 

Accuracy: 90.48 %, 97.41 %,83.33 %, 

94.74 %, 86.68 % for respective 

datasets 

Meenachi et al. [ 31 ] 

12 WMs GA and PSO with bagging, 

SVM and DT 

NASA Metrics Data (MDP) Accuracy: 84.4 %, 87.2 % respective 

methods 

Wahono et al. [ 32 ] 

13 WMs GWO, Adaptive PSO and 

MLP, SVM, DT, KNN, NBC, 

RFC, LR. 

UCI Machine Learning Repository Accuracy: 96 % and 97 % respective 

methods 

Le et al. [ 25 ] 

14 WMs Rough set and Scatter search, 

LR, DT and NN 

Australian dataset, UCI Repository Accuracy: 90.5 %, 83.4 % and 87.9 % Wang et al. [ 26 ] 

15 HFS (FMs) Chi-Square, PCC, MI, NDS 

and GA 

IDS dataset Accuracy (99.48 %) Dey et al. [ 33 ] 

16 WMs Modified DE, fuzzy approach 

and CNNs 

University of California, Irvine (UCI) Accuracy 83 % Vivekanandan et al. 

[ 28 ] 

17 WMs Binary encoded SSA based on 

PCA-fastICA 

11 datasets from UCI Overall accuracy: 94.73 % Shekhawat et al. 

[ 29 ] 

18 WMs MAF and CNN, HGSO 

algorithm, RF, SVM 

ISIC 2017 and HAM10000 datasets Overall accuracy: 92.22 % and 

99.34 % respectively 

Obayya et al. [ 39 ] 

19 WMs MobileNetv1, MobileNetv2, 

NASNetMobile, linear SVC, 

SVM 

Real traffic scenes Accuracy:87.4 % Do ğan et al. [ 14 ] 

20 WMs Binary BCS based on 

PCA-fastICA 

11 datasets from UCI Highest accuracy: 95.2 % Pandey et al. [ 17 ] 

 

 

 

 

 

 

 

 

 

 

SSA for designing a feature selection approach. The objective of this method is to identify non-redundant subsets of features, thereby

improving the efficacy of classification methods while reducing the size of the feature sets. Recently, Neggaz et al. [ 41 ] proposed

a binary HGSO algorithm-based approach in dimensionality reduction and selection of the most significant features and thereby 

improving classification accuracy. Since the current position update mechanism in the binary HGSO algorithm is linearly related to

the previous position of the solutions, this relationship may encourage a lack of intensification of the HGSO algorithm, resulting in

slow convergence precision [ 40 ]. 

Although metaheuristic-based FS methods have made progress in solving binary objective and multi-objective problems, there are 

still some challenges in the feature selection process. A study by Akinola et al. [ 44 ] reported scalability and stability problems when

these algorithms were applied to higher-dimensional datasets. These methods do not consistently yield the same optimal feature subset

after each run [ 44 ]. To mitigate these problems, researchers have employed various data transformation methods (DTMs) within the

FS approach. Principal component analysis (PCA [ 23 ], linear discriminant analysis (LDA) [ 46 ], independent component analysis

(ICA) [ 47 ] and fast independent component analysis [ 48 ] are popular DTMs mentioned in the literature to eliminate irrelevant and

redundant features in FS methods. The PCA and LDA are statistical-based transformation technique that identifies all the interrelated 

features and reduces the size of the original feature’s subset. Hosseini et al. [ 49 ] proposed an optimization approach for feature

selection that combines the Spiral Galaxy-Based Search Algorithm (SGbSA) with PCA. The SGbSA algorithm efficiently explores the 
3 



N.K. Yadav and M. Saraswat MethodsX 12 (2024) 102770 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

search space and identifies relevant features, while PCA is employed for dimensionality reduction, validating the effectiveness of 

the SGbSA algorithm. Kim et al. [ 52 ] addressed the interpretability problem arising from PCA. Hence, they proposed a variant of

PCA named weighted PCA (wPCA) in combination with the moving range-based thresholding (MRBT) meta-heuristic algorithm. The 

MRBT algorithm is used for optimal feature selection, and wPCA assigns weights to original features to enhance interpretability.

However, Chattopadhyay et al. [ 47 ] reported that PCA identifies linear correlations between data points but may not effectively

capture higher-order correlations, and the features identified by PCA are not necessarily independent. In contrast, ICA identifies 

mutually uncorrelated variables and can be a more versatile technique for data analysis. 

Yao et al. [ 50 ] noted that a single DTM does not effectively rectify the challenges of reducing high dimensionality in unsupervised

methods. To overcome this limitation, they proposed Independent PCA, which combines the strengths of both PCA and ICA to reduce

dimensionality while identifying independent and uncorrelated components within the dataset. This approach shows promise in 

addressing the challenges of high dimensionality in unsupervised learning methods. Further, Reza et al. [ 51 ] introduced a hybrid

FS (HFS) approach, using DTMs namely IPCA and ICA for classification problems. This HFS approach identified significant optimal

feature sets that improved classification accuracy. However, the existing DTMs were ineffectively minimizing the correlation and 

top-order dependency simultaneously. 

To overcome the various above-mentioned limitation of existing DTMs, this work introduces the new HFS approach wPCA-FastICA 

based DTMs that combines two DTMs, namely wPCA and FastICA before the FS process. Furthermore, this paper introduces an

enhanced binary exponential HGSO (EHGSO) algorithm to avoid early premature convergence and encourage population diversity in 

the standard HGSO. Finally, to overcome the challenges in the feature selection for the high dimensional datasets, the HFS approach

named wPCA-FastICA based bEHGSO-FS is employed to discover the best feature’s subset in the different benchmark datasets. The

work has been analyzed and compared with state-of-the-art techniques. 

In the rest of the paper, Section 2 to Section 5 are structured as follows : Section 2 gives a description of the standard HGSO

method. The newly proposed method is detailed in Section 3, while Section 4 depicts experimental results and outcomes. Finally,

Section 5 presents the conclusion and the future scope. 

Standard HGSO method 

The standard HGSO algorithm mimics Henry’s law of gases [ 27 ]. The algorithm majority stated the impact of temperature and

pressure on the solubility of gases. It uses the gas particle’s population to generate the optimal solution [ 41 ]. The various steps of the

standard algorithm are presented below. 

Initialization of candidate solution and constants: In this step, HGSO population gas particles is randomly initialized using Eq. (1) . 

Y0 
i = Ylb + rand ( 0 , 1 ) ×

(
Yub − Ylb 

)
(1) 

In this equation, Y0 
i denotes the initial position of the ith gas particle, while Ylb and Yub denote the low and high limits of the

search area respectively. The term rand (0,1) generates random numbers. 

Moreover, initial partial pressure P0 i ,j of 𝑖𝑡ℎ gas particles in jth group, Henry’s constant 𝐻0 
𝑗 
and constants C0 

j of 𝑗𝑡ℎ group are defined 

by Eq. (2) . 

H0 
j = k1 × rand ( 0 , 1 ) ; Pi , 0j = k2 × rand ( 0 , 1 ) 

C0 
j = k3 × rand ( 0 , 1 ) ; 

ℎ𝑒𝑟𝑒 k1 = 5E − 02 , k1 = 100 , k3 = E − 02 
(2) 

Grouping of gas particles 

The grouping process categorizes the population of gas particles based on their gas type. Within each group, all gas particles have

a similar 𝐻𝑗 value. 

Evaluation process 

This step is carried out by fitness function to identify the most appropriate gas within each group (j) which achieves the highest

equilibrium. A ranking mechanism is also utilized to determine the best agent. 

Upgrading henry’s constant 

The Henry’s constant for the iteration, denoted as (𝑘 + 1 ) th iteration, denoted as H𝑘 +1 
j is calculated based on the Henry con- 

stant Hk 
j from the kth iteration, using Eq. (3) . 

Hk+1 
j = Hk 

j × exp 
(
−Cj ×

(
1 ∕T( k) −

1 ∕Tθ
))

T( k) = exp 
(
−k ∕khigh 

) (3) 

Here, Tθ equals to 298 . 15𝐹̇ , T represents the temperature, while khigh indicates the highest number of iterations. 
4 
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Improving solubility 

The formula for updating the solubility of each gas particle is presented in Eq. (4) . 

Sk i ,j = 𝐾 × H 

𝑘 +1 
j × Pk i ,j (4) 

Here, the variables Sk i ,j and Pk i ,j are solubility and partial pressure respectively of the ith gas particle in the jth group at the kth 

iteration. Additionally, the variable K represents a fixed value in the formula for updating solubility. 

Upgrading location 

The updated location gas particle (i) in the jth group of the population is denoted as L𝑘 +1 
i , j and is computed using the following

formula, as shown in Eq. (5) . 

Lk+1 
i , j = Lk 

i , j + F × rand ( 0 , 1 ) × γ ×
(
Lk 
j ,best − Lk 

i , j 

)
+ F × rand ( 0 , 1 ) × α ×

(
Sk i ,j × Lk 

best − Lk 
i , j 

)
(5) 

γ = β × exp 

( 

−
Fk best + ε 

Fk i , j + 𝜖

) 

ε = 0 . 05 

Here, flagging parameter F is utilized to monitor the search movements of the search particle. The location of the best local search

particle in group (j) at iteration (k) is denoted by Lk 
j ,best and Lk 

best represents the location of the global best particle at repetition ( 𝑘 ) .
The 𝛾 represents the strength of a search particle with respect to gas groups, and 𝛼 represents the degree of influence that other search

particles have on the 𝑖𝑡ℎ search particle. The fitness value of search particle (i) 𝑖 n group (j) is shown by Fk i , j and Fk best represents the

fitness function in the whole population. 

Avoiding local optimum 

The formula in Eq. (6) is used to prevent the local optima situation. 

Mwr = M ×
[
rand ( 0 , 1 ) ×

[(
Cl 
2 − Ch 

2 
)
+ Cl 

2 
]]

Cl 
2 = 0 . 1 , C 

h 
2 = 0 . 2 (6) 

Here, Mwr represents the worst search particles and M is the population of particles. The worst-performing search particle location

is reinitialized by using Eq. (1) . The complete procedure of HGSO may be referred in Neggaz et al. [ 41 ]. 

Proposed methodology 

This paper presents a new bEGHSO and wPCA-FastICA-based bEGHSO feature selection (bEGHSO-FS) method. The complete 

approach is depicted in Fig. 1 . As shown in the figure, the initial set of features passes through wPCA-FastICA-based DTM. The

transformed feature’s subset is given to bEHGSO for the selection of the optimal subset of features. The various phases used in the

proposed method, namely wPCA-FastICA based DTM, bEHGSO, and new FS method are described in the below sections. 
Fig. 1. Flow chart of the proposed feature selection method using Binary Exponential HGSO and wPCA-FastICA Data transformation method. 

5 
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Weighted PCA and fastica based dataset transformation method 

The weighted PCA (wPCA) is a widely used statistical method for analyzing datasets and reducing their dimensionality [ 52 ]. The

primary aim of wPCA is to capture the maximum amount of variance in the dataset by identifying a group of linear non-correlated

features named principal components (PCs) [ 49 ]. This is achieved using an orthogonal transformation approach that converts the

correlated feature’s subset into a reduced uncorrelated feature’s subset. The number of PCs in wPCA is always less than features in

the original standardized dataset [ 46 ]. 

Mathematical equations of wPCA on the considered 𝑛 number of d-dimensional features 𝑋 = {𝑥1 , 𝑥2 , 𝑥3 ……… .𝑥𝐷 } is described 

in the following steps [ 16 ]. 

Standardization 

This step involves scaling the original data to ensure the normalization of variables which helps to avoid biased outcomes. To

transform the d-dimensional features X into a standardized format, compute the mean of X using Eq. (7) . 

X̂ = 1 
n 

n ∑
𝑖 =1 

Xi (7) 

Compute covariance 

The covariance matrix is a square matrix that provides correlation (co-variances) and dependencies among the features in the 

dataset. Its diagonal elements contain the variances of the individual feature, while the off-diagonal elements represent the correlation

between each pair of feature sets. This step finds the covariance matrix of features using Eq. (8) . 

𝐂𝐱 =
1 ∑𝒏 

𝐢 =1 𝐰𝐢 

𝐧 ∑
𝐢 =1 

(
𝐗𝐢 − X̂ 

)
𝒊 

𝑻 
𝑾 𝒊 

(
𝐗𝐢 − X̂ 

)
(8) 

here, T denotes transpose of a matrix and 𝑾 𝒊 is a diagonal matrix of weights. 

Decomposition 

In this step, the covariance matrix is spectrally decomposed to calculate the eigenvalues λ1 , λ2 , λ3 …λD and eigen vectors 

v1 , v2 , v3 …vD . To obtain lower d-dimensional features, sort the eigenvalues and eigenvectors such that 𝜆𝑖 +1 > 𝜆𝑖 and v𝑖 +1 > vi . 
In this step, the lower dimensional features 𝑌 = 𝑦1 , 𝑦2 , 𝑦3 . … 𝑦𝑑 , consisting of principal components (PCs), is computed. The 

transformed lower d-dimensional features are obtained using Eq. (9) . 

𝐘 = 𝒗 
𝑻 

1 
(
𝒙 1 − x̂ 

)
, 𝒗 𝑻 2 

(
𝒙 2 − x̂ 

)
, 𝒗 𝑻 3 

(
𝒙 3 − x̂ 

)
… .𝒗 𝑻 

𝒅 

(
𝒙 𝐝 − x̂ 

)
(9) 

here, 𝒗 𝑻 1 is transpose matrix 𝐯1 and 𝐱̂ is mean of 𝒙 𝒊 . 

The weighted PCs are obtained by sorting all PCs according to their assigned weights and adding top k PCs, where the value of

the k is decided on the basis of the contribution of the corresponding feature. This allows for a more interpretable representation of

the features [ 52 ]. 

Independent components generation 

The weighted PCs are utilized in the generation of independent components by using FastICA. FastICA is a fast convergence

method for converting a diversified signal into diversified non-Gaussian signals [ 20 ]. The algorithm employs the standard kurtosis

approach to generate components that are unrelated to each other from the source signal [ 22 ]. The weighted PCs features 𝑌 =
{y1 , y2 , y3 … .y𝑑 } are considered as the observed signal and can represent a combination of an actual and mutually independent 

source of signal 𝐺 = {g1 , g2 , g3 … .gd } as shown in Eq. (10) . 

𝑌 =
E
{|G|4 } − 2E2 {|G|2 }E{|G|4 }2 

E2 
{|G|2 } (10) 

where, 𝐸{ . } denotes expectation. 

The optimum value of 𝑥 that yields the optimal solution for function Y is determined through the application of stochastic gradient

in the kurtosis method. The transformed value of the source signal (x+ ) is calculated using Eq. (11) . 

x+ = 𝑥 − 1 E 
{
G( xG ) 3 

}
(11) 
3 
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Proposed binary exponential HGSO 

Once the dataset has transformed, an efficient metaheuristic method can be utilized to extract the suitable features from the trans-

formed datasets. Therefore, in this section, an improved variant of HGSO called Binary Exponential Henry Gas Solubility Optimization

(bEHGSO) is presented for selecting the optimal feature subset by incorporating two modifications into the standard HGSO. In the

modified approach, HGSO initialized a population of M search particles where each search particle represents a feature’s subset to

be evaluated in the FS approach. The effectiveness of this step is crucial for achieving convergence and improving the quality of the

desired solution [ 41 ]. The continuous values of the initial solution 𝑌 0 
𝑖 

are converted into binary values represented as 𝑌 𝑛𝑒𝑤 
𝑖 

before

evaluating the fitness of every search particle. The following formula in Eq. (12) is used to compute value of 𝑌 𝑏𝑖 
𝑖 
. 

Y𝑛𝑒𝑤 
i =

{ 

1 Y0 
i > 0 . 5 

0 Y 

0 
i ≤ 0 . 5 

(12) 

In the standard HGSO algorithm, the position upgrade of search particles is linearly related to its previous position, which lacks

nonlinearity in the position update equation. This results in slow intensification in the search space and premature convergence [ 42 ].

Hence, the position upgrade of search particles is crucial in computing the global best solution. Therefore, as the second modification

step of HGSO, an exponential function [ 15 ] is incorporated into Eq. [ 13 ] to increase nonlinearity in the position update of each search

particle, thus reducing premature convergence using fast intensification [ 43 ]. 

Lk+1 
i , j = δ × L k i , j + F × rand ( 0 , 1 ) × γ ×

(
Lk 
j ,best − Lk 

i , j 

)
+ F × rand ( 0 , 1 ) × α ×

(
Sk i ,j × Lk 

best − Lk 
i , j 

)
δ = 

( 

exp 
( 

− k 
khigh 

) 

× rand ( 1 , 0 ) × λ
) 

λ = 1 , 2 , 3 … (13) 

here, 𝛿 is an exponential function, k is the iteration constant, 𝑘ℎ𝑖𝑔ℎ is the highest number of iterations, and 𝜆 is the controlling

parameter to adjust the speed of the convergence behavior. 

The new bEHGSO-FS methodology 

The proposed bEHGSO-FS approach relies on the WMs methodology which requires a classifier to validate the effectiveness of

selected features. Therefore, the new bEHGSO method integrates a K-nearest neighbor (KNN) classifier to ensure the quality of

the selected features. In the initial step, the wPCA-FastICA-based DTM is utilized to transform the extracted input features. In the

subsequent step, the bEHGSO methodology leverages these transformed feature sets, dynamically navigating the search space to 

maximize feature assessment in conjunction with the KNN classifier. The overall working of proposed method is described below. 

1. Initialize the population, consisting of N solutions. Represent each solution as a d-dimensional feature vector, obtained after 

applying the wPCA-FastICA method. Therefore, the ith solution, denoted as 𝑥𝑖 in the population, can be expressed as shown in 

Eq. (14) . 

𝑥𝑖 =
{
𝑥𝑖 1 , 𝑥𝑖 2 , 𝑥𝑖 3 ……… .𝑥𝑖𝑑 

}
(14) 

2. Convert each solution into binary values using Eq. (12) . 

3. Compute the fitness value 𝐹 𝑖𝑡𝑖 for each solution (𝑥𝑖 ) by considering the features whose (𝑥𝑖𝑗 ) value is one. To achieve this, bEHGSO

utilizes a weighted multi-objective function outlined in Eq. (15) . 

𝐹 𝑖𝑡𝑖 = 𝐴 +𝑤𝑖 

( 

1 −
𝑛𝑖 

𝑛𝑡 

) 

(15) 

where, 𝑛𝑖 is the number of selected solutions, 𝑛𝑡 denotes total number of solutions, 𝑤𝑖 𝜖[0 , 1 ] and A is the accuracy denoted by

using Eq. (16) . 

𝐴 =
TP + TN 

TP + TN + FP + FN 
(16) 

where, TP , TN , FP and FN denote true-positive, true-negative, false-positive, and false-negative values respectively. 

4. After computing the fitness value for each solution, bEHGSO updates Henry’s constant, upgrades solubility and updates the location

for each solution. 

5. Identify the weak performing solutions and re-initialize the worst performing solutions. 

6. Repeat steps 2 through 6 until the termination condition is met. 

7. After meeting the termination criteria, the bEHGSO algorithm returns the solutions with the best fitness value. These fittest

solutions represent the optimal set of features determined by the bEHGSO algorithm. Subsequently, these features are utilized by

the KNN classifier. 

Experimental results 

The performance of the proposed method has been analyzed in two phases. In the first phase, the proposed variant of HGSO

(EHGSO) has been tested on the twenty-six established benchmark problems [ 27 ]. In the second phase, the efficiency of the wPCA-

FastICA-based bEHGSO-FS method has been evaluated using seven standard datasets of the UCI repository [ 45 ]. All simulations
7 
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have been conducted using MATLAB 2018 on a machine of 1.80 GHz Intel Core i5 processor to ensure fairness in comparison. The

subsequent sections provide results and performance discussion of the proposed EHGSO and a novel wPCA-FastICA-based bEHGSO-FS 

method. 

Performance evaluation of EHGSO 

The performance of EHGSO is compared with five existing meta-heuristic methods, namely GSA [ 37 ], GWO [ 25 ], HGSO [ 27 ],

SSA [ 29 ], and BCS [ 17 ] against 26 benchmark problems. The optimal values for all considered benchmark problems are presented

in Table 2 . These methods are randomized in nature hence, all the benchmark problems in Table 2 are executed 30 times to reduce

this effect. Each method was implemented with a population of value 45 and the highest number of iterations were set at 1000. The

parameter configuration for considered algorithms is presented in Table 3 . Table 4 display the comparative performance using the

metrics, namely average fitness value and standard deviation for both the considered and proposed metaheuristic algorithms. 

From Table 4 , it is evident that the minimum average fitness value for the set of unimodal problems (4, 5, 8, 15, 16) is zero.

Only the EHGSO algorithm was able to attain this minimum average fitness value of zero for all the unimodal problems in the set.

Moreover, HGSO, BCS, and SSA could also achieve the minimum average fitness value of zero for the set of problems (4, 15), (4), and

(4, 16) respectively. Consequently, EHGSO proves to be the best method among all the considered algorithms for unimodal problems.
Table 2 

Multimodal, Unimodal, and Fixed Dimensional Multimodal (FDMM) Benchmark Problems [ 27 ]. 

S. No. Category Problem Dim Limit Fmin 

1 Multimodal Ackley 30 [− 35,35] 0 

2 Multimodal Alpine 30 [− 10, 10] 0 

3 Multimodal Brown 30 [− 10, 10] 0 

4 Unimodal Schwefel 2.21 30 [− 100,100] 0 

5 Unimodal Schwefel 2.22 30 [− 100,100] 0 

6 FDMM Ackley 2 2 [− 32,32] − 200 

7 FDMM Cross-in-Tray 2 [− 10,10] − 2.06 

8 Unimodal Schwefel 2.20 30 [− 100,100] 0 

9 Multimodal Mishra 1 30 [0,1] 2 

10 Multimodal Mishra 2 30 [0,1] 2 

11 FDMM Hartman 6 [0,1] − 3.32 

12 FDMM Matyas 2 [− 10,10] 0 

13 FDMM Trecanni 2 [− 5,5] 0 

14 Multimodal Cigar 30 [− 100,100] 0 

15 Unimodal Schwefel 2.23 30 [− 10,10] 0 

16 Unimodal Sum Squares 30 [− 10,10] 0 

17 Multimodal Xin-She Yang 3 30 [− 20,20] 0 

18 Multimodal Quartic 30 [− 1.28,1.28] 0 

19 FDMM Periodic 2 [− 10,10] 0.9 

20 Multimodal Schwefel 2.25 30 [0,10] 0 

21 FDMM Rump 2 [− 500,500] 0 

22 FDMM Egg Crate 2 [− 5,5] 0 

23 FDMM ScCrossLegTable 2 [− 10,10] − 1 
24 Multimodal Xin-She Yang 2 30 [− 2pi, 2pi] 0 

25 Multimodal Griewank 30 [− 10, 10] 0 

26 Multimodal Zakharov 30 [− 5,10] 0 

Table 3 

Parameter configuration for each considered algorithm. 

PA EHGSO HGSO SSA GSA BCS GWO 

M 45 45 45 45 45 45 

khigh 1000 1000 1000 1000 1000 1000 

G0 100 

AC 20 

SD [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] 

Pa [0.05,0.5] 

𝛼 1 1 1 0.99 

𝛽 1 1 1 0.01 

SC [0.01,0.5] 

GS 7 7 7 7 7 7 

C1 [0,1] [0,1] [0,1] 

C2 [0,1] [0,1] [0,1] 

R 30 30 30 30 30 30 

PA, M, khigh , G0 , AC, SD, P0 , SC, GS, and R stand for Parameters, Population Size, Maximum Iterations, Gravitational constant, Acceleration Coeffi- 

cient, Probability, Step scaling coefficient, Group Size and Runs respectively, C1 and C2 are controlling parameters respectively. 

8 
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Table 4 

Comparison of the proposed method with existing methods based on statistical results obtained for the benchmark problems. Bold values represent 

the best result. 

Prob. GSA GWO SSA BCS HGSO EHGSO 

AFV STD AFV STD AFV STD AFV STD AFV STD AFV STD 

1 6.7E-135 7.3E-130 1.23E + 02 2.31E + 02 2.3E-144 6.5E-139 9.2E-135 2.1E-112 4.9E-147 0.00E + 00 0.00E + 00 0.00E + 00 

2 2.38E + 00 7.88E + 13 1.35E + 00 8.80E + 16 6.77E-01 8.74E + 13 7.44E-06 6.74E + 15 1.46E + 00 0.00E + 00 0.00E + 00 0.00E + 00 

3 1.42E-08 2.52E-09 2.64E-22 5.73E-23 8.8E-249 0.00E + 00 2.6E-210 0.00E + 00 1.2E-146 2.2E-147 0.00E + 00 0.00E + 00 

4 3.62E-08 4.50E-09 8.60E-53 1.54E-53 2.6E-256 0.00E + 00 2.1E-226 0.00E + 00 6.2E-185 0.00E + 00 0.00E + 00 0.00E + 00 

5 8.72E-87 2.27E-87 4.6E-287 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 

6 − 2.4E + 02 4.33E + 07 − 2.2E + 02 6.75E + 06 − 2.0E + 02 6.59E + 05 − 2.0E + 02 6.74E + 06 − 2.0E + 02 5.44E + 07 − 2.0E + 02 5.64E + 06 

7 − 2.6E + 00 6.74E-10 − 2.1E + 00 5.68E + 06 − 2.5E + 00 5.64E + 06 − 2.3E + 00 6.74E + 08 − 3.9E + 00 5.67E + 09 − 2.0E + 00 6.44E + 05 

8 3.92E-09 5.65E-10 4.00E-52 1.15E-52 3.5E-261 0.00E + 00 1.3E-233 0.00E + 00 4.1E-289 0.00E + 00 0.00E + 00 0.00E + 00 

9 2.45E + 00 1.24E + 04 2.13E + 00 2.13E + 05 3.54E + 00 9.84E + 04 2.32E + 00 4.33E + 03 2.57E + 00 3.45E + 06 1.91E + 00 2.34E + 06 

10 4.46E + 00 5.68E + 10 2.52E + 00 4.55E + 04 4.34E + 00 6.79E + 08 3.54E + 00 5.13E + 09 2.46E + 00 4.35E + 07 1.89E + 00 4.52E + 07 

11 − 3.8E + 00 1.28E-03 − 3.4E + 00 7.89E-03 − 3.6E + 00 2.36E-03 − 3.4E + 00 4.16E-02 − 3.3E + 00 4.26E-02 − 3.3E + 00 4.56E-02 

12 − 2.9E + 67 7.52E + 31 − 9.0E + 49 9.76E + 33 − 8.4E + 42 4.01E + 44 − 3.7E + 48 3.13E + 48 − 8.9E + 49 4.33E + 44 − 7.9E + 42 4.33E + 44 

13 9.38E + 22 1.87E + 28 9.02E + 42 1.49E + 34 9.01E + 42 5.66E + 48 5.23E + 42 3.66E + 46 7.01E + 42 1.35E + 21 9.00E + 47 4.39E + 44 

14 9.61E-02 1.65E-02 2.50E-03 5.84E-04 5.68E-04 4.82E-05 3.45E-04 7.82E-05 2.68E-02 7.01E-05 2.00E-06 4.50E-05 

15 2.13E-40 5.69E-67 7.84E-27 9.76E-63 2.14E-50 1.22E-40 2.84E-09 1.88E-53 2.44E-32 3.99E-67 0.00E + 00 0.00E + 00 

16 7.2E-112 1.8E-113 1.0E-107 5.6E-108 3.3E-111 2.5E-126 1.3E-110 1.2E-124 3.0E-117 2.1E-124 0.00E + 00 0.00E + 00 

17 3.8E-114 3.5E-116 3.5E-156 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 

18 1.1E-132 6.7E-148 5.2E-32 1.25E-52 7.6E-175 0.00E + 00 0.00E + 00 0.00E + 00 1.4E-211 6.44E-45 6.4E-209 0.00E + 00 

19 9.59E + 01 1.45E-15 9.8E-01 3.13E-15 9.67E-01 4.98E-15 9.56E-01 6.45E-15 9.00E-01 3.23E-15 9.00E-01 4.88E-16 

20 4.97E-08 1.87E-01 2.8E + 00 1.35E-02 0.00E + 00 3.27E-13 2.34E + 01 4.57E-02 6.74E-03 1.01E-07 0.00E + 00 0.00E + 00 

21 3.21E-08 9.03E-16 8.91E-07 1.67E-06 2.71E-05 8.53E-06 6.26E-04 8.73E-05 1.5E-281 0.00E + 00 0.00E + 00 0.00E + 00 

22 5.73E-05 3.22E-03 1.76E-04 4.07E-03 9.96E-02 1.12E-07 7.76E-07 1.72E-04 1.79E-10 4.07E-05 0.00E + 00 0.00E + 00 

23 − 6.8E-01 4.54E-02 − 5.7E-01 4.09E-02 − 7.89E-01 2.39E-02 − 5.64E-01 3.43E-02 − 9.9E-02 5.67E-05 − 9.9E-02 8.90E-04 

24 4.25E-05 0.00E + 00 2.68E-04 0.00E + 00 8.70E-04 0.00E + 00 2.35E-06 0.00E + 00 9.01E-03 0.00E + 00 0.00E + 00 0.00E + 00 

25 − 2.1E + 00 3.91E-22 

− 1.52E + 00 

1.17E-06 − 1.9E + 00 1.22E-07 − 1.3E + 00 8.13E-05 − 1.6E + 00 3.42E-07 − 1.0E + 00 1.24E-07 

26 3.20E-03 1.26E-06 2.67E-05 5.17E-17 1.24E-05 4.44E-16 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 

In the results, Problem denoted by (prob.), the average fitness value (AFV), and the corresponding standard deviation (STD) for each method. 

 

 

 

 

 

 

 

 

 

For all the multimodal set of problems (1, 2, 3, 9, 10, 14, 17, 18, 20, 24, 25, 26) the EHGSO algorithm attains the best average fitness

value except for problem (18). Moreover, HGSO, BCS, and SSA achieve the best average fitness value for the set of problems (26),

(18), and (20) respectively. Regarding the fixed-dimensional multimodal set of problems (6, 7, 11, 12, 13, 19, 21, 22, 23), EHGSO

once again demonstrates the best average fitness value for all BMPs. For these problems, HGSO, BCS, and SSA also achieve the best

average fitness value for the set of problems (6, 19, 23), (6) and (6) respectively. The proposed EHGSO achieves the highest average

fitness value in the major benchmark problems of different modularity. Therefore, depicted average fitness value of the EHGSO on

different benchmark problems validates its superior balance between exploration and exploitation. Consequently, these experiments 

affirm that EHGSO exhibits better search performance with a higher precision value. 

Performance evaluation of wPCA-FastICA based bEHGSO-FS method 

The effectiveness of the wPCA-FastICA-based bEHGSO-FS method was evaluated on various classification benchmark datasets 

[ 45 ]. Table 5 provides details about these classification datasets, including quantity features, classes, and instances. For measuring

the classification accuracy of the proposed feature selection method, a KNN classifier ( K = 5) has been utilized in this study. Five

binary encoded metaheuristic methods, namely bGSA [ 42 ], bGWO [ 34 ], bHGSO [ 41 ], bSSA [ 29 ], and bBCS [ 17 ] were considered for

the feature selection. Therefore, the proposed bEHGSO-FS method using DTMs and without using DTMs are evaluated against bGSA- 
Table 5 

Description of considered UCI classification datasets [ 45 ]. 

S. No. Applied Dataset Features Classes Instances 

D1 Mushroom 22 2 8124 

D2 Molecular-Biology 58 2 106 

D3 Soybean (L) 35 19 307 

D4 Chess (KRKPA7) 36 2 3196 

D5 BC-DS 9 2 286 

D6 Statlog-IS 19 7 2310 

D7 Lgraphy 18 4 148 

In the table BC-DS, IS, Lgraphy, and KRKPA7 are standing for Breast cancer dataset, Image segmentation, Lymphography and King-Rook vs. King- 

Pawn respectively. 

9 
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Fig. 2. Bar chart (a) represents the average number of selected features (AVSFs) using considered metaheuristic methods without using DTMs (b) 

represents AVSFs using wPCA-FastICA and considered metaheuristic methods. 

Table 6 

The comparative analysis of the accuracy value of original datasets and metaheuristic-based methods. 

Without FS Methods in the original Datasets 

Dataset bGSA O bHGSO bBCS bSSA bEHGSO 

Mushroom 86.42 83.7 90.62 89.96 87.6 90.89 

Mol-Bio 92.34 92.3 93.56 94.78 94.6 95.89 

Soybean 90.22 90.3 91.23 91.15 91.1 92.4 

KRKPA7 74.28 73.4 78.13 77.97 78.1 78.31 

BC-DS 94.11 93.2 93.44 94.85 95.4 96.98 

Statlog-IS 89.98 88.3 90.56 89.45 89.6 91.68 

Lymphography 95.78 94.7 96.98 95.69 96.3 97.29 

Average 89.02 88 90.65 90.55 90.4 91.92 

With metaheuristic-based FS Methods in the original Datasets 

Dataset bGSA bGWO bHGSO bBCS bSSA bEHGSO 

Mushroom 85.42 83.67 89.62 88.96 87.56 91.95 

Mol-Bio 95.86 95.80 96.06 96.28 96.14 96.40 

Soybean 91.34 91.50 93.43 93.36 92.31 93.79 

KRKPA7 76.98 75.40 81.09 81.76 82.56 82.88 

BC-DS 95.71 94.89 94.74 94.55 95.98 98.09 

Statlog-IS 92.10 91.45 93.56 92.67 93.45 93.68 

Lymphography 96.89 96.79 97.21 96.23 96.65 98.39 

Average 90.61 89.93 92.24 91.97 92.09 93.60 

Bold values represent the best result. 

 

 

 

 

 

 

 

 

FS, bGWO-FS, bHGSO-FS, bSSA-FS, and bBCS-FS for the comparative analysis. Each method was executed 30 times to mitigate the

impact of the random behaviour of metaheuristic methods. Various metrics were considered to assess performance, namely average 

number of selected features, accuracy value, and average computational time. 

The bar chart in Fig. 2 illustrates the average number of selected features for all the methods on each dataset. Fig. 2 (a) displays

the average number of selected features which are selected by the considered metaheuristic-based FS methods and bEHGSO based FS

method without applying the DTMs. Fig. 2 (b) shows the average number of selected features for the transformed datasets using the

wPCA-FastICA based metaheuristic methods. It is evident from the bar chart that the bEHGSO-FS method consistently achieves the 

minimum average number of selected features among all the considered FS methods for both the original and transformed datasets.

This confirms the bEHGSO-FS based meta-heuristic method performs the best in terms of average number of selected features. 

Furthermore, the Box plot graphs analysis was done to establish consistency and stability study of the approaches under consid-

eration. Box plot graphs were generated for both the initial datasets and the PCA-FastICA transformed datasets. Figs. 3 and 4 display

the box plot analysis of four classification datasets, namely Mushroom, chess King-Rook vs. King-Pawn (KRKPA7), Breast cancer (BC),

and Lymphography for the original dataset and PCA-FastICA transformed dataset respectively. These figures show that the proposed 

bEHGSO-FS method exhibits minimal variation in the transformed dataset using wPCA-FastICA, which emphasizes its superiority in 

minimizing average number of selected features as validated through experimental analysis. 

To see effect of considered wPCA and FastICA based transformation methods, Tables 6–9 are presented. Table 6 shows the 

accuracy value produced by the considered metaheuristic methods and proposed bEHGSO method. Table 7 exhibits accuracy 
10 
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Fig. 3. Box Plot Graph analysis for the average number of selected features using the considered metaheuristic methods and bEHGSO in the original 

datasets. 

Fig. 4. Box Plot Graph analysis for average number of selected features using wPCA-FastICA based considered metaheuristic FS methods. 
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Table 7 

The comparative analysis of the accuracy value for the wPCA-based metaheuristic and FastICA-based metaheuristic methods. 

Using wPCA based Metaheuristic FS methods 

Dataset bGSA bGWO bHGSO BC-DS bSSA bEHGSO 

Mushroom 91.34 90.45 96.64 94.03 92.61 97.90 

Mol-Bio 95.96 96.01 96.23 96.36 96.14 96.79 

Soybean 92.34 91.89 93.89 93.56 94.75 94.01 

KRKPA7 77.99 76.21 81.56 82.76 82.99 83.34 

BC-DS 95.90 95.34 95.04 95.98 95.08 98.69 

Statlog-IS 92.38 91.90 93.89 92.90 93.64 94.18 

Lymphography 97.39 96.97 97.29 96.78 96.98 98.69 

Average 91.90 91.25 93.51 93.20 93.17 94.80 

Using FastICA based Metaheuristic FS methods 

Dataset bGSA bGWO bHGSO BC-DS bSSA bEHGSO 

Mushroom 91.98 90.70 96.81 94.23 95.11 98.11 

Mol-Bio 96.12 96.13 96.43 96.88 96.24 96.78 

Soybean 92.87 92.39 93.98 93.78 92.89 94.45 

KRKPA7 78.28 76.34 81.67 82.88 83.11 83.56 

BC-DS 96.22 95.67 96.14 96.12 95.13 98.72 

Statlog-IS 92.56 92.15 93.99 93.12 93.78 94.56 

Lymphography 97.54 97.15 97.34 96.83 96.99 98.70 

Average 92.22 91.50 93.77 93.41 93.32 94.98 

Bold values represent the best result. 

Table 8 

The comparative analysis of the accuracy value for the wPCA-FastICA based metaheuristic methods. 

Using wPCA-FastICA based Metaheuristic FS methods 

Dataset bGSA bGWO bHGSO bBCS bSSA bEHGSO 

Mushroom 92.56 90.89 96.90 94.45 95.23 98.67 

Mol-Bio 96.65 96.34 96.78 97.65 96.98 98.45 

Soybean 94.12 93.78 95.32 95.34 93.12 97.98 

KRKPA7 78.91 76.49 83.67 82.93 83.23 84.12 

BC-DS 96.78 95.90 98.93 97.45 97.34 99.40 

Statlog-IS 93.76 93.54 95.32 94.45 94.98 96.76 

Lymphography 97.78 97.56 97.56 96.90 97.19 99.36 

Average 92.94 92.07 94.93 94.17 94.01 96.39 

Bold values represent the best result. 

Table 9 

The Overall average accuracy values of different considered methods. 

Overall Average Accuracy value for all considered methods 

Methods bGSA bGWO bHGSO bBCS bSSA bEHGSO 

Without FS 89.02 87.99 90.65 90.55 90.38 91.92 

With Metaheuristic FS 90.61 89.93 92.24 91.97 92.09 93.45 

wPCA based 

Metaheuristic FS 

91.90 91.25 93.51 93.20 93.17 94.80 

FastICA based 

Metaheuristic FS 

92.22 91.50 93.77 93.41 93.32 94.98 

wPCA-FastICA based 

Metaheuristic FS 

92.94 92.07 94.93 94.17 94.01 96.39 

Bold values represent the best result. 

 

 

 

 

 

 

value on transformed datasets using wPCA, while Table 8 displays accuracy value for transformed dataset using FastICA. Finally,

Table 9 summarizes the accuracy results for the metaheuristic approaches based on wPCA-FastICA DTMs. From Table 6 , it is evident

that the bEHGSO-based FS method outperforms all other considered metaheuristic methods without the use of any DTMs. Further- 

more, as observed in Tables 7 and Table 8 , the bEHGSO-based DTMs exhibit superior performance compared to other considered

metaheuristic methods after applying DTMs. 

Moreover, to ensure the consistency and stability of the accuracy value metric analysis for the methodologies under consideration

in the initial dataset and the wPCA-FastICA-based transformed datasets, box plot graphs were constructed. Fig. 5 displays the box

plot analysis for the original datasets and the wPCA-FastICA-based transformed datasets are shown in Fig. 6 . These figures reveal
12 
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Fig. 5. Box plot graph analysis of accuracy using metaheuristic methods in the original datasets. 

Fig. 6. Box plot graph analysis of accuracy using wPCA-FastICA based metaheuristic methods in the transformed datasets. 
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Fig. 7. Bar chart (a) represents average computational time on the original datasets (b) represents average computational time using wPCA-FastICA 

based considered metaheuristic FS methods in the transformed datasets. 

 

 

 

 

 

 

 

 

that the proposed bEHGSO-FS method exhibits minimal variation in the wPCA-FastICA-based transformed datasets, emphasizing its 

superiority in maximizing classification accuracy value as validated through experimental analysis. 

For the comparative analysis of average computational time the bar chart has bee shown in the Fig. 7 . Fig. 7 (a) illustrates the

average computational time for the original classification datasets, while Fig. 7 (b) shows the average computational time after apply-

ing PCA-FastICAs-based metaheuristic methods. From the figures, it is evident that the average computational time for the bEHGSO 

method is minimum for both the original datasets and the PCA-FastICAs-based transformed datasets, indicating that the bEHGSO-FS 

method has the lowest average computational time among all the considered methods. 

Conclusion 

In this study, a new binary exponential Henry gas solubility optimization approach was developed for choosing the best feature sets

from large dimensional datasets. Three modularity levels were used to evaluate the performance of the bEHGSO on 26 benchmark

problems. The bEHGSO employed wPCA and FastICA as data transformation methods to identify the best feature set. The aim of

the feature selection technique was to reduce the presence of irrelevant, correlated, and higher-order dependent features while 

selecting pertinent, non-redundant data. To accomplish this, the method first used a hybrid data transformation technique called 

wPCA-FastICA to modify the dataset. The best features were then chosen using the bEHGSO-FS methodology. The performance of the

wPCA-FastICA-based bEHGSO-FS approach was evaluated on seven common benchmark classification datasets. The evaluation was 

based on three parameters, namely average number of selected features, accuracy value, and average computational time. Comparing 

the wPCA-FastICA-based bEHGSO-FS approach to current metaheuristic feature selection methods indicated that it achieves the 

greatest classification average accuracy (96.39) along with the fewest feature subsets of all the methods studied. Both statistical and

empirical evaluations indicated that the proposed wPCA-FastICA-based bEHGSO-FS approach outperforms the existing methods. 

Future research endeavours might explore leveraging deep learning techniques to enhance the performance metrics of the proposed 

method through meticulous adjustment of the controlling parameters. Furthermore, the suggested technique may be expanded to 

accommodate multi-objective fitness functions, enabling testing in real-time applications. 
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