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Abstract: Background: Although optical coherence tomography (OCT) is useful in determining outer
retinal architecture, it may be suboptimal when monitoring subtle changes in retinitis pigmentosa
(RP) patients. The aim of this study is to investigate precise microperimetric parameters for disease
severity identification in RP patients. Methods: A cross-sectional and retrospective study. Thirty-nine
eyes of 39 RP patients were included. Associations between logMAR visual acuity (VA), spectral-
domain OCT, fundus autofluorescence imaging (FAF), and various microperimetric measures were
evaluated. Microperimetric test locations were grouped into “foveal”, parafoveal “inner ring”, and
perifoveal “outer ring”. Independent variables were analyzed based on logistic regression, then
assessed using area under the receiver operating characteristic curve (AUROC). Results: Among all
microperimetric measures, linear regression analysis indicated that mean retinal sensitivity and deep
scotoma count at the parafoveal inner ring were the principal parameters associated with decreased
VA. The AUROC was highest for deep scotoma count at the inner ring at a value of 0.829, with
the cut-off point at 3.5. A visual function index was then established according to the number of
parafoveal deep scotoma points, in order of mild (0 points), moderate (1–3 points), and severe (4 or
more points). Our microperimetric visual function index also correlated significantly to logMAR VA
and previously established FAF patterns. Conclusions: Our study discovered deep scotoma count
at the parafoveal inner ring to be a key microperimetric parameter in evaluating vision loss in RP
patients. Those with four or more deep scotoma points at the parafoveal inner ring are more likely to
have functional low vision.

Keywords: retinitis pigmentosa; microperimetry; visual function; fundus autofluorescence

1. Introduction

Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) typically
presenting with reduced night vision and progressive peripheral visual field loss [1]. It is
characterized by the gradual loss of photoreceptor integrity in the outer retina, beginning
with the loss of rod photoreceptors, then advancing to cone photoreceptor involvement
in the late stages [2]. Due to the diversity of RP, genetic testing has also become an
important strategy to complement clinical findings and clarify diagnosis [3]. As a result,
morphological and functional evaluations of retinal changes can be beneficial in assessing
the disease course and remaining retinal function in RP patients.
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Optical coherence tomography (OCT) is a typical method in retinal disease analysis,
and several studies have reported the use of OCT to follow ellipsoid zone (EZ) changes in RP
patients [4–6]. However, there is difficulty in evaluating transverse structural OCT changes
and their correlation to visual acuity (VA), especially in advanced stages once EZ integrity
is lost [4]. Meanwhile, fundus autofluorescence (FAF) imaging provides information not
evident through conventional fundus photos by enabling lipofuscin visualization at the
level of the retinal pigment epithelium (RPE) cell monolayer [7,8]. FAF is a convenient,
fast, and noninvasive imaging procedure, and its potential as a prognostic marker has been
shown to identify distinctive distributions in retinal dystrophies [8,9].

IRD patients have variable losses of best-corrected visual acuity (BCVA), which can
range from 20/20 to 20/400 or worse [9]. In patients with RP, the central vision is usually
preserved, meaning their VA remains unaffected, in early-to-moderate disease stages.
Vision begins to deteriorate once the retinal degeneration encroaches centrally, resulting in
severe sight impairment [1,10]. In addition to changes in the retina, the optic nerve head
(ONH) may become waxy and pallor in advanced stages, but its relationship to VA remains
to be determined [11]. Although a significant difference was observed in the VA of patients
with and without pale ONH appearance, no significant correlation was seen in the VA of
RP patients with or without retinal nerve fiber layer (RNFL) thinning [11,12]. Functionally,
VA is the gold standard reference method for assessing visual performance. However, VA
may not reflect extra-foveal focal macular dysfunction and the functional impact of RP on
the patient’s eyes and quality of life [13]. Therefore, exploring additional measures beyond
VA may help detect subtle visual function changes in those with visual loss.

Many standard clinical visual function measurements are currently available, includ-
ing visual field assessments and visual electrophysiology [14]. While visual field testing is
better at identifying patterns of visual loss, it is time consuming, requires specially trained
personnel, and is often complicated by unstable fixation in retinal dystrophy patients [15].
Though full-field electroretinography provides an overall retinal function evaluation, it is often
insensitive to subtle changes in retinal sensitivity [16]. The identification of appropriate tools
that can comprehensively assess visual function in RP patients is of paramount importance.

Microperimetry has been utilized to test visual function in various RP research stud-
ies [17–19]. Microperimetry-3 (MP-3, Nidek Co., Aichi, Japan) is a fundus-controlled
perimetry, and provides a spatial assessment of retinal function across the macula by pre-
senting visual sensitivity test points on a fundus image via eye tracking [20–22]. It has
greater precision and resolution than standard perimetry and can also be correlated with
structural evaluation modalities [23]. By reducing the bias of the MP-3 examination through
an improved motion tracking system and a fully automatic measurement procedure, no
clinically relevant learning effect of the MP-3 was found in test–retest reproducibility, even
in patients with impaired retinal function [24]. On the contrary, significant learning effects
have been shown for conventional perimetry and MP-1 microperimetry, the former version
of MP-3 [25,26]. Research on IRD has proven MP-3 as a reliable approach for analyzing
macular structure–function correlation, along with OCT [21,27–29].

The MP-3 offers a broad range of examination parameters. However, there are no
studies on which microperimetric parameter has the most prognostic value in RP patients
to allow for practical use of this tool in clinical practice. In this study, our main goal is to
explore the functional association between VA and different retinal functional parameters
evaluated with MP-3, supported by anatomical changes on OCT and FAF. Our aim is
to establish a more precise and straightforward microperimetric variable for functional
evaluation in RP patients.

2. Materials and Methods
2.1. Patients and Study Design

This cross-sectional study was conducted at Kaohsiung Chang Gung Memorial Hos-
pital between 1 October 2022 and 30 September 2023. The study was approved by the
Committee of Medical Ethics and Human Experiments of CGMH, Taiwan (IRB approval
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no. 202200772A3), and all research procedures have been carried out in accordance with
the Declaration of Helsinki and the ARVO statement for experiments involving humans.
All individuals gave their informed consent.

Diagnosis of RP was based on nyctalopia, pigmentary retinal changes, visual field con-
striction, full-field scotopic electroretinography, and whole exome sequencing (WES), where
available. Exclusion criteria were patients with media opacities that interfered with image
acquisition, high myopia (>6 diopters), glaucomatous optic neuropathy, and presence of
macular edema related to neovascular age-related macular degeneration, diabetic macular
edema or retinal vein occlusion. Ophthalmological examination included assessment of
Snellen VA (logMAR VA), fundus photography, spectral-domain OCT (SD-OCT), FAF, and
MP-3. The right eye of each patient was selected for analysis, and classified into two groups,
the fair VA and poor VA group. We categorized subjects into the poor VA group based
on the World Health Organization’s (WHO) criterion of moderate visual impairment or
worse, often known as low vision. This was defined as individuals presenting with a VA of
LogMAR 0.5 and above [30].

2.2. Fundus Autofluorescence and Spectral-Domain Optical Coherence Tomography

FAF and fundus photography was obtained using an Optos (Optos Inc., Malborough,
MA, USA). FAF images were classified into large ring (≥3◦ radius), small ring (<3◦ radius),
patch, and central hypoautofluorescence (atrophy), and measurements of structures on
FAF were carried out as previously established [31]. Macular SD-OCT was obtained
with Heidelberg Spectralis® HRA + OCT (Heidelberg Engineering, Heidelberg, Germany)
to determine the central macular thickness (CMT) and the presence or absence of EZ
disruption involving the fovea. The CMT was assessed by the imaging protocol provided
by the device. Two trained retinal specialists (Y.T.H. and Y.J.C.) reviewed the FAF and OCT
scans independently masked to other clinical data, and these were evaluated by a third
retinal specialist (J.J.L.) in case of disagreement.

2.3. Fundus-Controlled Microperimetry

The MP-3 microperimeter was used to perform testing after pupil dilation with topical
1% tropicamide and 0.5% mydriacyl. Sensitivity was tested in 33 macular test locations
in the central 10◦ of retina using stimuli of the size of the Goldmann III target with a
length of 200 milliseconds and a 4-2 strategy on a white monochromatic background. All
tests were carried out in nearly dark (mesopic) light conditions. Each test was performed
monocularly, with the contralateral eye patched. All participants underwent a training
examination before the official microperimetry testing. Test reliability was assessed based
on a metric consisting of the sum of false-positives and false-negatives divided by the sum
of all catch study presentations; tests with a threshold of >20% were discarded and repeated,
where possible [32,33]. The central 5 points were within 1.7◦ of the anatomical fovea and
were referred to as “foveal”; the 8 perifoveal points were 3.5◦ to 4.7◦ from the center of
the anatomical fovea and were referred to as the “inner ring”; and the remaining testing
locations 5.6◦ to 10.1◦ from the fovea were referred to as the “outer ring.” The schematic
representation of the three zones mentioned above are shown in Figure 1.

The retinal sensitivity at each location was determined by altering the light intensity
iteratively until the dimmest visible stimulus was discovered. The sensitivity for each test
location was established on a range of 0 dB to 34 dB. Test locations with 0 dB, meaning
that only the brightest stimulus was recognized or no stimulus was registered at all, were
classified as “deep scotoma”, whereas those with more than 0 dB but less than 12 dB were
classified as “relative scotoma”. “Normal” test locations are those with sensitivity levels
of 12 dB or above [21]. Using the NAVIS-EX software version 1.11.1.1, the average retinal
sensitivity of the 33 stimuli (10◦ of retina) was determined.
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Figure 1. Schematic representation of 3 zones including the fovea, parafoveal inner ring, and par-
afoveal outer ring (dotted lines) on microperimetry. (a) The right eye of a 55-year-old female with 
mean sensitivity of 23.0 dB and best-corrected visual acuity (BCVA) of 20/30. (b) The right eye of a 
65-year-old male with BCVA of 20/40 and mean retinal sensitivity of 15.5 dB. (c) The right eye of a 
72-year-old woman with BCVA of 20/70 and mean retinal sensitivity of 1.6 dB. 
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Figure 1. Schematic representation of 3 zones including the fovea, parafoveal inner ring, and
parafoveal outer ring (dotted lines) on microperimetry. (a) The right eye of a 55-year-old female with
mean sensitivity of 23.0 dB and best-corrected visual acuity (BCVA) of 20/30. (b) The right eye of a
65-year-old male with BCVA of 20/40 and mean retinal sensitivity of 15.5 dB. (c) The right eye of a
72-year-old woman with BCVA of 20/70 and mean retinal sensitivity of 1.6 dB.

2.4. Statistical Analyses

In descriptive analyses, categorical data were expressed as numbers and percentages,
while quantitative variables were displayed as means ± standard deviations. The indepen-
dent sample t-test was utilized to compare continuous variables, while the Fisher’s exact or
Pearson’s chi-squared (χ2) tests were used to assess categorical data, as appropriate. Odds
ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression
analyses in which the VA group was the dependent variable. Significant predictors from
the logistic regression analysis were considered independent variables in the multiple
logistic regression analysis using a stepwise forward selection method. Receiver-operating
characteristic (ROC) curves were generated by categorizing RP patients into two groups of
fair and poor VA. The areas under the ROC curves (AUCs) were determined and compared
with the AUC under the reference line. To establish the cut-off points of the scores, an
ROC curve analyses estimated with the Youden Index was utilized. The result was deemed
significant when the p value was less than 0.05. Statistical analyses were performed in SPSS
version 22.0 for Windows (IBM, Armonk, NY, USA) and GraphPad Prism version 10.1.2
(GraphPad software Inc., San Diego, CA, USA).

3. Results
3.1. Patient Characteristics

A total of 39 eyes from 39 RP patients were included in this study. Twenty-one subjects
underwent WES, and EYS (24%) was identified as the most frequent disease-causing
variant (Figure S1). The mean age was 48.03 ± 15.52 years, and the mean logMAR VA was
0.79 ± 0.70. The mean logMAR VA among patients in the fair VA group was 0.28 ± 0.04,
and 1.38 ± 0.15 in the poor VA group. No differences in age or gender between those with
fair vs. poor VA were found (Table 1). Representative cases of RP patients as imaged by
fundus photographs, FAF, MP-3, and OCT are displayed in Figure 2.

Table 1. Clinical characteristics of retinitis pigmentosa patients with fair and poor visual acuity.

Fair VA (n = 21) Poor VA (n = 18) p Value

Age 44.57 ± 16.13 52.06 ± 14.16 0.135

Male gender, no. (%) 10 (47.6) 7 (38.9) 0.584

Optical coherence tomography
Central macular thickness (µm) 240.19 ± 46.09 190.28 ± 48.95 0.002

Choroidal thickness (µm) 286.60 ± 83.65 256.06 ± 111.23 0.624
Loss of EZ integrity, no. (%) 5 (23.8) 14 (77.8) 0.001



Diagnostics 2024, 14, 2691 5 of 11

Table 1. Cont.

Fair VA (n = 21) Poor VA (n = 18) p Value

Fundus autofluorescence pattern, no. (%) 0.024
Large ring 11 (52.4) 3 (16.7)
Small ring 7 (33.3) 6 (33.3)

Patchy atrophy 3 (14.3) 9 (50)

Microperimetry
Mean retinal sensitivity (dB) 14.98 ± 7.75 6.45 ± 7.24 0.001

Fixation points within 2◦ diameter circle (%) 68.29 ± 26.88 36.72 ± 31.96 0.002
Fixation points within 4◦ diameter circle (%) 87.43 ± 15.49 65.00 ± 27.45 0.005
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3.2. Correlations of Structural Evaluations on OCT and FAF with VA 
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tion of eyes with EZ disruption involving the fovea (Table 1), which is consistent with 
previous studies [4,5], further verifying our categorization method using the WHO defi-
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Figure 2. Representative cases of different fundus autofluorescence patterns in RP patients in this
study. Fundus photographs, optical coherence tomography (OCT), and autofluorescence combined
with microperimetry are shown. (a) Large ring: a 65-year-old male presenting with VA of 20/40 in
the right eye. (b) Small ring: a 54-year-old female with VA of 20/100 in the right eye. (c) Patchy
atrophy: a 45-year-old male presenting with VA of 20/200 in his right eye.

3.2. Correlations of Structural Evaluations on OCT and FAF with VA

In eyes with poor VA, OCT revealed significantly thinner CMT and higher proportion
of eyes with EZ disruption involving the fovea (Table 1), which is consistent with previous
studies [4,5], further verifying our categorization method using the WHO definition [30].
Choroidal thickness was not significantly different between the two groups. The three main
FAF patterns [31] were recognized with significant differences in distribution between the
two VA groups. A large hyperautofluorescent ring was seen in 11/21 (52.4%) in the fair VA
group, while foveal hypoautofluorescence patches and atrophy were seen in 9/18 (50%) in
the group with poor VA (Table 1).

3.3. Measures of Macular Sensitivity and Their Association with VA

Tables 1 and 2 summarize the association of overall microperimetric testing between
the two VA groups. The poor VA group had significantly lower mean retinal sensitivity
(p = 0.001) and worse fixation stability at circular regions within 2◦ and 4◦ diameters
(p = 0.002 and p = 0.005, respectively) (Table 1). The number of deep scotoma points and
normal test locations was significantly different between the fair VA and poor VA group.
A higher number of deep scotoma points in the fovea, inner ring, and outer ring was
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found in the poor VA group, while the number of normal test points was lower in all three
locations (Table 2).

Table 2. Location-specific microperimetric variables.

Fair VA (n = 21) Poor VA (n = 18) p Value

Foveal center
Deep scotoma points (no.) 0.62 ± 1.24 2.78 ± 2.32 0.002

Relative scotoma points (no.) 1.24 ± 1.51 1.06 ± 1.43 0.703
Normal points (no.) 3.14 ± 1.93 0.89 ± 1.49 <0.001

Inner ring
Deep scotoma points (no.) 1.67 ± 2.35 5.22 ± 2.92 <0.001

Relative scotoma points (no.) 2.10 ± 2.26 1.44 ± 1.89 0.340
Normal points (no.) 4.24 ± 3.27 0.89 ± 1.75 <0.001

Outer ring
Deep scotoma points (no.) 9.71 ± 7.04 15.50 ± 5.95 0.009

Relative scotoma points (no.) 5.14 ± 5.56 2.94 ± 4.90 0.202
Normal points (no.) 5.14 ± 6.51 0.72 ± 1.18 0.006

The associations of microperimetric parameters with logMAR VA in both univariate
and multivariate linear regression are shown in Table 3. In the multivariate analysis
integrating microperimetric parameters, lower mean retinal sensitivity (β = −0.406; p = 0.01)
and a higher number of deep scotoma points (β = 0.354; p = 0.023) were associated with
decreased logMAR VA (Table 3).

Table 3. Univariate and multivariate linear regression analysis of microperimetry parameters with
logMAR VA.

Univariate Analysis Multivariate Linear Regression

Standardized β p Value Standardized β p Value

Mean retinal sensitivity (dB) −0.602 <0.001 −0.406 0.01
Fixation points within 2◦ diameter circle (%) −0.534 <0.001
Fixation points within 4◦ diameter circle (%) −0.578 <0.001

Deep scotoma points at fovea (no.) 0.591 <0.001
Deep scotoma points at inner ring (no.) 0.580 <0.001 0.354 0.023
Deep scotoma points at outer ring (no.) 0.314 0.051

On multivariate logistic regression analysis accounting for significant variables, the
number of deep scotoma points at the inner ring was the only feature that was significantly
associated with fair or poor VA based on a stepwise forward selection method (standard
error: 0.141, odds ratio [95% confidence interval]: 1.561 [1.185–2.057], FDR-corrected
p value = 0.002). The ROC curves of representative microperimetric variables, including the
number of inner ring deep scotoma points, fixation stability within 2◦ diameter circle, and
mean retinal sensitivity, were drawn. The AUCs were 0.829, 0.231, and 0.208, respectively
(Figure 3). The cut-off point for number of deep scotoma points at the inner ring was 3.5.

3.4. Establishing a Microperimetric Visual Function Index

We established a microperimetric functional index according to the number of deep
scotoma points at the parafoveal inner ring. Patients with no deep scotoma points at the
inner ring were considered relatively normal at the parafoveal area, and thus classified as
mild. The moderate (1–3 deep scotoma points at the inner ring) and severe (4 or more deep
scotoma points at the inner ring) classifications were defined based on the cut-off point from
our ROC curve. Our microperimetric visual function impairment index also significantly
correlated to logMAR VA and previously established FAF patterns (Figure 4a,b).
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Figure 4. Significant correlations between MP-3 severity grading with (a) logMAR VA (p = 0.01) and
(b) FAF patterns (p = 0.016). MP-3 severity grading is classified as mild (zero deep scotoma points
at the inner ring, n = 12), moderate (less than 4 deep scotoma points at the inner ring, n = 10), and
severe (4 or more deep scotoma points at the inner ring, n = 17). * p < 0.05.

4. Discussion

Since there are many standard visual function measurements currently available
and all with broad ranges of examination parameters, it is important to identify practical
measures that are clinically meaningful and can reflect disease status efficiently and in a
straightforward manner. To the best of our knowledge, this study is the first to evaluate
and compare the various functional factors of microperimetry altogether in RP patients.
Our work has established a specific microperimetry variable—the number of deep scotoma
points at the parafoveal inner ring—to be a key visual loss parameter in patients with RP.
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MP-3 enables a more comprehensive evaluation of visual performance not only in the
fovea but across the macula, making MP-3 able to reflect daily living activities and quality of
life meaningfully [34–36]. Microperimetry has also been established as a potential outcome
measure for gene therapy clinical trials [21,27]. The eye tracker ensures that macular
pathology and functional impairments in the MP-3 are precisely correlated [21]. A previous
study reported retinal sensitivity to better reflect the magnitude of structural damage
observed with OCT in RP [28], while another study mentioned deep scotoma counts to be
more significantly associated to autofluorescence signal changes when compared to mean
retinal sensitivity [37]. Thus, the precise selection of microperimetric indices is essential.
In our results, only mean retinal sensitivity and the number of deep scotoma points at
the inner ring demonstrated significant associations in both univariate and multivariate
analyses (Table 3). When compared to earlier investigations [3,4], structural correlations
with OCT and FAF revealed consistent trends among those with visual loss, confirming
the feasibility of our VA grouping strategy using the WHO criterion [30]. Upon comparing
RP patients with fair and poor VA, our analysis showed that only the number of deep
scotoma points in the inner parafoveal ring remained significant after regression analysis.
This is compatible with a previous cohort study that reported counting the number of deep
scotoma points as an indicator of functional impairment extent [37]. Our study further
indicates the specificity of the macular region—the parafoveal inner ring—in determining
whether the patient has functional low vision.

In our study, ROC curves were analyzed to detect the specificity and sensitivity of
various commonly used microperimetric parameters. When assessed individually, the
number of deep scotoma points at the parafoveal inner ring had the largest area under
curve (AUC = 0.829) compared to fixation stability at 2 degrees and mean retinal sensitivity
(AUC = 0.231 and 0.208, respectively) (Figure 3). We found the cutoff value of the number
of deep scotoma points at the inner ring to be 3.5, and with a sensitivity and specificity of
72 and 81%, respectively. Therefore, RP patients with four or more deep scotoma points
at the inner ring on microperimetry is an indicator of having poor VA. In other words,
we postulate that once the patient’s MP-3 testing starts nearing four deep scotoma points
at the inner ring, we should be cautious of an impending symptomatic decline of visual
performance, as this may be a critical minimum before central visual loss happens. Further
longitudinal studies may be needed to confirm this finding.

Subsequently, we set up a microperimetric functional index based on the number of
deep scotoma points at the parafoveal inner ring. An advantage of deep scotoma count
is that it can be translated into an area of autofluorescence, and the area covered by each
point is around 0.42 mm2. Therefore, besides corresponding our microperimetric visual
function index to logMAR VA, we also correlated topographic changes in FAF to our visual
function index, to provide better structure–function verifications. Our microperimetric
visual function index showed a significant increase in logMAR VA from the mild to severe
groups, with also a significant rise in distribution from large to small FAF rings to patchy
atrophy patterns (Figure 4a,b). A hyperautofluorescence ring indicates an early stage of
disease with fairly preserved central vision and photopic function, whereas a central patch
and atrophy indicate advanced disease with moderate to severe loss of vision [31]. Previous
studies reported that a decrease in VA was associated with a ring constriction smaller than
3◦ in radius [31,38], which closely approaches our microperimetric parafoveal inner ring
area. From an anatomical perspective, when transitioning from the parafovea to the fovea
region, rods decrease from being the predominant type of receptor cells, while cone cell
bodies increase from a single layer to a tightly packed multilayer [39]. These findings may
be explained by the deterioration of visual function once the retinal structure destruction
touches the parafoveal ring, as this is the most central area that rods are predominant [40–42].

MP-3 is not without its restrictions. MP-3 testing is dependent on the subject’s physical
and mental ability to cooperate, which may be challenging in patients with unstable fixation,
in young children, and in those with insufficient clear optical media to allow the system to
accurately track the fundus position relative to the stimuli being presented [43]. We have
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specifically excluded patients with the above limitations in our study. Moreover, we did not
discern details of RP patients’ ONH because of the small number of patients in each group,
and how RNFL thickness and ONH pallor influence VA still remains undetermined [11,12].
Further limitations of this research include the cross-sectional nature of the study. A
longer observational period may be helpful in examining this indicator in IRD patients.
Furthermore, because our study participants only consisted of Asian ethnicities and the
patient number was relatively limited, further validation of our parameters in other ethnic
groups with larger participant numbers may be required.

5. Conclusions

Identifying precise microperimetry parameters may provide complementary visual
function measures in assessing central visual impairment severity in RP. Based on our
findings, we established a microperimetric functional index according to the number of
deep scotoma points at the parafoveal inner ring, which may represent a useful method to
detect visual loss in RP patients. Four or more deep scotoma points at the parafoveal inner
ring may be indicative of functional low vision. This study demonstrates the importance of
microperimetry as an inevitable visual function assessment and may serve as a promising
tool to monitor disease progression in future IRD studies.
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