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Simple Summary: Managing livestock, especially on large-scale farms, is becoming more difficult
due to a shortage of labor and an aging farming population. Traditionally, farmers monitor animals
manually, which can result in missing important behaviors that impact the health and survival of pigs.
This study introduces a new system that uses artificial intelligence to detect critical pig behaviors
like crushing and lying down in real time. By improving the capabilities of existing AI models
(YOLOv7 and YOLOv9), the system can more accurately monitor pig behavior, helping farmers
prevent accidents and ensure better animal welfare. This technology will make it easier to manage
livestock more efficiently, improving the quality of life of both animals and farmers.

Abstract: Effective livestock management has become essential owing to an aging workforce and
the growth of large-scale farming operations in the agricultural industry. Conventional monitoring
methods, primarily reliant on manual observation, are increasingly reaching their limits, necessitating
the development of innovative automated solutions. This study developed a system, termed mixed-
ELAN, for real-time sow and piglet behavior detection using an extended ELAN architecture with
diverse kernel sizes. The standard convolution operations within the ELAN framework were replaced
with MixConv using diverse kernel sizes to enhance feature learning capabilities. To ensure high
reliability, a performance evaluation of all techniques was conducted using a k-fold cross-validation
(k = 3). The proposed architecture was applied to YOLOv7 and YOLOv9, yielding improvements of
1.5% and 2%, with mean average precision scores of 0.805 and 0.796, respectively, compared with
the original models. Both models demonstrated significant performance improvements in detecting
behaviors critical for piglet growth and survival, such as crushing and lying down, highlighting the
effectiveness of the proposed architecture. These advances highlight the potential of AI and computer
vision in agriculture, as well as the system’s benefits for improving animal welfare and farm manage-
ment efficiency. The proposed architecture enhances the real-time monitoring and understanding of
livestock behavior, establishing improved benchmarks for smart farming technologies and enabling
further innovation in livestock management.

Keywords: deep learning; smart farming technologies; YOLOv7 and YOLOv9; mixed-ELAN;
precision agriculture
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1. Introduction

The livestock industry is critical for sustainable food production worldwide. It faces
the challenge of not only increasing production, but also ensuring that production is
conducted in an ethically responsible manner. Pork, in particular, has seen an increase in
food preferences and consumption worldwide. Global pork production increased from
approximately 78 million tons in 1994 to 120 million tons in 2022, making it a significant
part of the global food supply [1]. However, global livestock statistics show that there are
several risk factors for continuous food supply.

First, there has been a demographic shift in livestock farms. The aging rate of livestock
farm owners (aged over 65 years) in Korea reached 43.6% in 2019, an increase of 18.4% from
2005. Despite the labor shortage and the aging trend, large-scale farms with more than
10,000 animals have seen an annual growth rate of 7.9%. This makes livestock management
increasingly difficult [2]. The annual number of large-scale pig farms in South Korea is
shown in Figure 1. This situation is not limited to South Korea. In the EU, for example, the
aging rate (age over 65 years) in the livestock industry is 41.3%, and in the United States, the
average age of farm owners is 57.5 years. This trend limits the smooth transfer of knowledge
and skills to younger generations, which could be detrimental to the sustainability and
growth of the livestock industry [3–5].
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Second, there are limitations in conventional livestock monitoring systems that rely on
human resources. When relying on a farmer’s manual observations for farm management,
accurately monitoring the nutritional status and activity levels of sows and piglets becomes
challenging. For instance, sows nearing farrowing often stand for extended periods, and
piglets stressed by cold may show increased overlapping behavior. Additionally, pigs
exhibit diverse behaviors based on environmental conditions: Under normal circumstances,
they engage in daily behaviors such as eating, drinking, and excreting. Sows display
maternal behaviors like nesting and nursing. However, when pigs experience discomfort or
illness, they may exhibit abnormal behaviors, including lethargy, aggression, and tail biting.
Detecting these behavior changes promptly is essential, as they are often early indicators
of health issues. Such variations in behavior can occur at any time of day, and manual
observation alone cannot guarantee continuous, accurate detection. Therefore, developing
automated monitoring systems powered by AI is crucial to supplement or replace human
labor, ensuring precise and timely livestock management [6–8].

Therefore, smart farms that integrate internet of things (IoT) and artificial intelli-
gence (AI) into livestock farming are being actively researched [9–12]. The advantage
of smart farming is the ability to monitor livestock without time or location constraints.
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Studies on the use of AI in the management and monitoring of livestock have shown
promising results.

Seo et al. (2020) performed image preprocessing using contrast-limited adaptive
histogram equalization (CLAHE), sharpening, and Gaussian filters to detect pigs in images
with occlusions. In addition, they proposed an ensemble method that uses the detection
box information from two YOLOv4 (You Only Look Once) models in the post-processing
stage to improve detection accuracy. This method improves the detection performance
by verifying the generated detection boxes through a two-step process. This technique
increased the detection accuracy from 79.93% with the standard YOLOv4 to 94.33% [13].

Lai et al. (2023) proposed an improved version of YOLOv5, termed IO-YOLOv5
(illumination–occlusion YOLOv5), for the improved detection of pigs in images with strong
occlusions. They introduced a simple attention receptive field block (SARFB) module to
expand the receptive field of the model and assign higher weights to important features.
In addition, they replaced the conventional spatial pyramid pooling (SPP) module with
the ghost spatial pyramid pooling fast cross stage partial connections (GSPPFC) module,
which sequentially inputs the input feature map into three 5 × 5 convolution kernels,
followed by fusion with the goal of extracting more information with less computational
effort. IO-YOLOv5 achieved a 2.2% higher mean average precision (mAP) than the baseline
YOLOv5, resulting in a performance increase of 90.8% [14].

Huang et al. (2022) improved the feature extraction network of DarkNet-53 with
YOLOv3. They proposed a high-effect YOLO (HE-YOLO) by combining channel attention
mechanisms with space attention mechanisms for the detection of pig behaviors such as
standing, sitting, prone, and sidling. HE-YOLO showed a performance improvement of
5.61% over YOLOv3, solving the problem of lower mAP in complex breeding environments
exhibited by the existing models [15].

Tu et al. (2022) used YOLOX-S and YOLOv5 to improve the identification of pig
behaviors, such as lying, eating, and standing, based on video data. They further improved
their approach by incorporating a deep simple online and real-time tracking (DeepSORT)
algorithm to track identified pigs. This integrated approach substantially improved the
multi-object tracking accuracy (MOTA) by 1.8%, reaching 98.6%. This demonstrates the
effectiveness of combining object detection and tracking algorithms to achieve better
behavior recognition and tracking performance [16].

Gan et al. (2022) conducted a study that focused on detecting the specific behavior
of piglets, rather than sows, known as nursing behavior. Instead of training based on a
predefined anchor box size, they used an anchor-free deep learning network that identified
the object of the centroid and then determined the size and shape of the object to generate
anchor boxes accordingly. The predicted anchor boxes were used to compare the inter-
section over union (IoU) between sows and piglets to detect nursing behavior based on
the degree of overlap. The extracted motion features were used to classify the behavior
into suckling and non-suckling using a support vector machine (SVM) classifier. Using a
dataset of 1 min video clips, their model achieved a 93.6% F1-score, 92.1% recall, and 95.2%
precision for detecting nursing behavior [17].

Compared with related studies, the main contributions of this study are as follows:
First, the objective was to detect the behavior of both sows and piglets. While most related
studies focus solely on the detection of the individual behavior of piglets or sows, this
study conducted mutual behavior detection, including crushing and feeding. Second, the
detection performance was improved using multiple kernel sizes. In this study, a mixed
ELAN (efficient layer aggregation network) using four different kernel sizes was proposed
to facilitate effective feature learning and improve the performance of behavior recognition
networks. The proposed behavior recognition network is expected to contribute to animal
welfare and livestock management automation. Furthermore, it could serve as a basis for
increasing livestock production to meet the growing global demand for food.



Animals 2024, 14, 3375 4 of 13

2. Materials and Methods
2.1. Dataset

This study used 1920 × 1080-resolution video data, continuously recorded at
59.89 fps at all hours from 20 August to 18 September 2023 at ProFarm Corporation,
an agricultural company in South Korea. The dataset consisted of videos of 50 sows
captured using 25 cameras (Fix XA-501). The sows used in this study were two-way
crossbreeds of Landrace and Yorkshire, while the piglets were three-way crossbreeds,
produced by inseminating these sows with Duroc semen. Each video contained scenes
showing the interactions between two sows and various piglet behaviors. The be-
haviors included four types of sow behaviors (standing, sitting, lying down, lying
sideways) and three types of piglet behaviors (feeding, starvation, and crushing).
These 5–30 s long videos were extracted frame by frame for training the YOLO network.
During this process, the consecutive frames hardly differed in their data characteristics.
To create data with diverse features, the frame was extracted at 3 s intervals. This
resulted in 2860 images of 50 sows. The data were verified and labeled by livestock
experts and divided into training, validation, and test sets in a ratio of 3:1:1 based on
sow IDs. Thus, the training set included data collected from 30 sows, whereas the vali-
dation and test sets included data collected from 10 sows each. Performance evaluation
was conducted using k-fold cross-validation (k = 3), enhancing the robustness of the
assessment by mitigating potential overfitting and allowing a more comprehensive
evaluation across varied data partitions. This approach ensures that each subset of the
dataset contributes to both training and validation, thus strengthening the generaliz-
ability of the model’s performance metrics. Table 1 lists the number of labels for each
behavior, and Figure 2 shows example images of piglet behaviors, including crushing,
feeding, and starvation.

Table 1. Number of behavior labels in the dataset.

Class
Number of Labels

Train Validation Test

Sow 3110 1037 1417
Standing 486 106 330

Sitting 271 100 154
Lying down 358 120 141

Lying sideways 1995 711 792
Piglet 3827 1193 1406

Feeding 2942 1060 1035
Starvation 477 107 239
Crushing 408 26 132

All 6937 2230 2823
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2.2. Real-Time Object Detection Model (YOLOv7 and YOLOv9)

Crushing accidents occur in a short period of time, underscoring the need for an algo-
rithm that can promptly identify behaviors in real time. Furthermore, real-time operation
is crucial for accurate behavior detection even after the crushing accident has been ruled
out. Object detection algorithms have mainly dealt with the YOLO line of models with
fast operation speeds. In addition, models such as detection transformer (DETR) have
recently been explored to apply transformer architectures to computer vision. Although
transformer-based object detection models have a relatively higher detection accuracy
than YOLO models, improvements in real-time processing are still needed. Considering
the individual characteristics of the model architectures and the necessity for real-time
processing, YOLO models were considered suitable. For this study, YOLOv7 and YOLOv9
were used, which are based on the ELAN architecture, and their current state-of-the-art
(SOTA) performance was demonstrated.

YOLOv7 improves learning capabilities using expand, shuffle, and merge cardinality
operations based on an ELAN architecture that allows layers to learn diverse features
through a gradient path [18]. It also applies bag-of-freebies (BoF) techniques to improve
performance without increasing the inference cost. Examples of BoF include the proposal
of a re-parameterized convolution, RepConvN, and the addition of an auxiliary head to
improve performance enhancement through assistant loss.

Wang et al. (2024) highlighted that modern deep learning training methods, such as
convolution, transformers, and mamba, overlook losses of information, as the input data
are processed through numerous layers [19]. This results in an objective function that does
not produce reliable gradients. To solve this problem, YOLOv9 introduced programmable
gradient information (PGI) and a generalized efficient layer aggregation network (GELAN).
PGI consists of a main branch, an auxiliary reversible branch, and multi-level auxiliary
information, which enables the retention of important features even in deep layers without
additional costs. The GELAN architecture, which combines ELAN with a cross stage partial
network (CSPNet), is an effective layer to improve the complexity, accuracy, and inference
speed of the deep learning model. This architecture enables more efficient training than the
simple stacking of convolutional layers.

2.3. Proposed Layer Block: Mixed-ELAN

Convolutional neural network (CNN) models, including YOLOv7 and YOLOv9, pri-
marily use a kernel size of 3 × 3 for convolution operations. The 3 × 3 convolutions can
effectively extract features with fewer parameters and allow the insertion of activation
functions between convolutions, increasing the nonlinearity of the model. This theory has
been applied since the introduction of visual geometry group (VGG) networks [20].

However, several recent studies have reconsidered the concept of optimal kernel
size [21–24]. One of these studies by Liu Z. et al. (2022) argued the limitations of using
only one kernel size and proposed an architecture, termed MixConv, that uses both large
and small kernel sizes to extract high- and low-resolution features. In general, the parallel
application of multiple kernel sizes significantly increases computational complexity. To
solve this problem, MixConv uses a group convolution, where the feature map is divided
into several groups and different kernel sizes are applied to each group. Figure 3 shows
the MixConv architecture, which was calculated using Equations (1) and (2). Equation
(1) represents the process of dividing the feature map channels into g groups, and then
performing a convolution for each group. X is the input tensor, Y is the output tensor, k
is the kernel size of the tth group, m is the channel multiplier, c is the size of the input
channel, and W is the weight of the feature map. The final output tensor is obtained by
concatenating the tensors using Equation (2).

Ŷt
x,y,z = ∑− kt

2 ≤i≤ kt
2 ,− kt

2 ≤j≤ kt
2

X̂t
x+i,y+j,z/m·Ŵ

t
i,j,z, ∀z = 1, . . . , m·ct (1)

Yx,y,z = Concat
(

Ŷ1
x,y,z1

, . . . , Ŷg
x,y,zg

)
(2)
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2.4. Evaluation Metrics

To evaluate the performance of the proposed architecture, a commonly used metric
for detection models was used, namely, mean average precision (mAP). AP measures the
area under the precision–recall curve and reflects the trade-off between precision and recall
when the IoU threshold varies. The average AP across all classes is referred to as mAP.
Precision refers to the proportion of detected objects that match the ground truth objects,
whereas recall refers to the proportion of ground truth objects that the model successfully
detects. In this study, an IoU of 0.5 was used as the evaluation criterion.

In addition to mAP, precision and recall were also utilized to further evaluate the
model’s detection performance. Precision quantifies the ratio of correctly identified objects
to the total objects detected by the model, providing insight into the accuracy of positive
predictions. Recall, on the other hand, indicates the proportion of actual objects in the
dataset that the model correctly identifies, thereby measuring the model’s ability to detect
relevant instances. Together, these metrics offer a comprehensive assessment of the model’s
accuracy and sensitivity in detecting pig behaviors under various conditions.

3. Results and Discussion
3.1. Experimental Setup

The model training was conducted on an NVIDIA TITAN Xp GPU with 12 GB memory,
running PyTorch version 2.0.1. For training both YOLOv7 and YOLOv9, we utilized the
hyperparameters provided in the ‘hyp.scratch.p5.yaml’ configuration available on GitHub.
All training sessions were set to run for 30 epochs, employing the SGD optimizer with
a learning rate of 0.01. Additionally, all YOLO models used in the experiments were
initialized from pre-trained weights.

3.2. Results of YOLOv7 with Mixed-ELAN

Table 2 lists the performance of the original YOLOv7 and YOLOv7 models with mixed-
ELAN using k-fold cross-validation (k = 3). The mAP values were above 0.900 for three
sow behaviors (standing, sitting, and lying sideways) and relatively low (0.604) for the
lying down position. Among the piglet behaviors, the highest mAP (0.764) corresponded
to feeding, which has distinct morphological features, followed by crushing (0.645) and
starvation (0.629). Because the bounding boxes for piglet behaviors are comparatively
smaller than those for sow behaviors, the model must learn to perceive and identify small
changes. Consequently, the accuracy in identifying piglet behaviors tends to be lower than
that for sow behaviors.

Table 2. Test results of YOLOv7 and the proposed architecture.

Class
YOLOv7 Mixed-ELAN

Precision Recall mAP Precision Recall mAP

Sow
Standing 0.947 0.942 0.987 0.961 0.909 0.976

Sitting 0.732 0.972 0.945 0.762 0.925 0.917
Lying down 0.542 0.742 0.604 0.491 0.778 0.667

Lying sideways 0.894 0.915 0.961 0.910 0.876 0.972
Piglet

Feeding 0.762 0.664 0.764 0.735 0.747 0.782
Starvation 0.687 0.622 0.629 0.674 0.595 0.622
Crushing 0.637 0.660 0.645 0.694 0.677 0.698

All 0.743 0.788 0.790 0.747 0.787 0.805

YOLOv7 with mixed-ELAN showed an improvement of 5.3% in crushing detection
and a 6.3% improvement in lying down detection compared with the YOLOv7 model.
Additionally, for crushing detection, precision increased by 5.7% and recall by 1.7%. In
pig farming, crushing is the most important behavior to detect as it is linked to piglet
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survival [25]. In addition, prolonged lying down behaviors of sows can lead to longer
fasting times for piglets, which negatively impacts their growth. From this perspective,
the improvement in performance with the proposed architecture is extremely beneficial.
The detection performance improved by 1.5% across all classes. The confusion matrix of
YOLOv7 with the application of Mixed-ELAN is presented in Figure 6.
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The position of the mixed convolution layer can significantly affect the performance
of the object detection model. Therefore, an ablation study was performed to compare the
performance depending on the position of the mixed convolution layer within the ELAN
architecture. Table 3 lists the results of applying a mixed convolution layer to each layer.
Although layers 1, 2, and 3 showed an improvement in performance for some behaviors,
the overall mAP decreased owing to a decrease in other behaviors. In layer 1, the detection
performance improved by 12.2% for the lying down position, and decreased for all other
behaviors; consequently, the overall performance did not improve. By contrast, layer 4
showed improved performance for the behaviors “lying sideways” and “lying down”,
and achieved the highest detection performance for piglet behaviors such as “feeding”,
“starvation”, and “crushing”. In particular, for the most important behavior, namely, lying
down, the performance improved by 6.3%, and by 5.3% in the case of crushing. The baseline
YOLOv7 model demonstrates an inference speed of 48.31 fps, whereas the proposed mixed-
ELAN model, incorporating mixed convolution at the fourth layer, achieves an inference
speed of 46.95 fps. These results indicate that the proposed model is capable of the real-time
detection of pig behaviors.
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Table 3. Ablation study for the optimal position of MixConv in ELAN.

mAP
Class Original Layer1 Layer2 Layer3 Layer4

Sow
Standing 0.987 0.989 0.972 0.978 0.976

Sitting 0.945 0.904 0.932 0.906 0.917
Lying down 0.604 0.726 0.720 0.668 0.667

Lying sideways 0.961 0.964 0.980 0.973 0.972
Piglet

Feeding 0.764 0.753 0.762 0.757 0.782
Starvation 0.629 0.590 0.518 0.609 0.622
Crushing 0.645 0.602 0.635 0.597 0.698

All 0.790 0.790 0.788 0.784 0.805

3.3. Results of YOLOv9 with Mixed-ELAN

Table 4 lists the performance comparison between the original YOLOv9 model and
YOLOv9 with mixed-ELAN, while Figure 7 presents the confusion matrix of YOLOv9
with mixed-ELAN. To verify whether the application of mixed convolution has a positive
effect on YOLOv7 and YOLOv9, YOLOv9 was trained and evaluated using the results from
an ablation study, where mixed convolution was applied to the fourth layer, which was
found to yield the best performance. The original YOLOv9 model showed a mAP value of
0.772 for the detection of seven sow and piglet behaviors. Similar to the YOLOv7 results
(Table 2), the detection performance for sow behaviors was generally higher than that
for piglet behaviors. Among the piglet behaviors, feeding had the highest mAP of 0.772,
followed by crushing (0.553) and starvation (0.482). The implementation of mixed-ELAN
in YOLOv9 improved the mAP values by approximately 2%. The mAP value improved
by 7% to 0.623 for the crushing behavior, and by 7% to 0.554 for the starvation behavior.
For crushing detection, the model demonstrated the greatest improvement in precision,
with an increase of 10.6%. For the lying down behavior in sows, mixed-ELAN resulted in
a 3% improvement in mAP to 0.762, which is similar to the improvement observed with
YOLOv7 (Table 2). Similarly, the inference speed of the original YOLOv9 model is 20.08 fps,
while the YOLOv9 variant with mixed-ELAN applied achieves 17.30 fps, demonstrating
a trend consistent with YOLOv7. This suggests that integrating mixed-ELAN does not
significantly compromise the inference speed of the original model.

Table 4. Test results of YOLOv9 and the proposed architecture.

Class
YOLOv9 Mixed-ELAN

Precision Recall mAP Precision Recall mAP

Sow
Standing 0.934 0.946 0.979 0.926 0.907 0.962

Sitting 0.699 0.957 0.909 0.760 0.954 0.941
Lying down 0.601 0.831 0.735 0.644 0.747 0.762

Lying sideways 0.888 0.952 0.969 0.906 0.958 0.965
Piglet

Feeding 0.726 0.729 0.772 0.738 0.701 0.765
Starvation 0.608 0.476 0.482 0.648 0.493 0.554
Crushing 0.507 0.650 0.553 0.613 0.626 0.623

All 0.709 0.792 0.772 0.748 0.770 0.796
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3.4. Discussion

In this study, a mixed convolution was introduced into the ELAN architecture for the
improved detection of sow and piglet behaviors. First, an ablation study was conducted
for four different positions of the mixed convolution layer within the ELAN architecture
to determine the optimal position for the mixed convolution. The results showed that an
ELAN architecture with modifications in the last convolution block achieved the high-
est mAP, which is attributed to the high-dimensional feature information of the deep
convolution layers. As the convolution operations progress, the deep learning model
generates features that contain multidimensional information extracted by different layers.
Performing a mixed convolution on these feature maps with kernels of different sizes
helps the model to accurately recognize objects of different sizes and shapes. Moreover,
as the modified layer is closer to the final output layer, it effectively extracts features that
significantly affect detection. While previous studies have focused on detecting specific
behaviors of either piglets or sows individually, such as in [26,27], which addresses specific
piglet behaviors, and [28–30], which are dedicated solely to sow behavior detection, our
study expands this scope by simultaneously detecting critical behaviors of both piglets and
sows. This comprehensive approach allows for a more accurate and nuanced understand-
ing of their interconnected behaviors, thus enhancing the robustness of animal welfare
monitoring systems.

The application of mixed-ELAN in both YOLOv7 and YOLOv9 consistently improved
the identification of crushing behavior. This indicates that the proposed architecture
contributes to the model’s ability to recognize objects through its multikernel operations by
comprehensively considering both the object and surrounding environmental information.
The proposed architecture improved the detection and identification of crushing and lying
down behaviors in piglets and sows, respectively. Figure 8 compares the detection results
of YOLOv7 with mixed-ELAN and the original ELAN architecture for crushing behavior
in piglets.
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While the proposed system demonstrates significant improvements in behavior detec-
tion, the practical adoption of AI technologies in livestock farming may face challenges due
to initial implementation costs. Many farmers, especially those managing small-to-medium-
sized farms, may perceive these systems as an additional financial burden. However, the
long-term benefits, including enhanced animal welfare, improved operational efficiency,
and reduced labor costs, can outweigh these initial investments. To address these concerns,
scalable and modular solutions tailored to the specific needs of farms should be developed.
Furthermore, government subsidies or cooperative funding models could play a crucial
role in promoting the adoption of AI-driven systems in precision livestock farming.

Furthermore, operational limitations, particularly the system’s reliance on staff for
real-time interventions, have been identified, and are addressed as follows: While the
system excels in detecting critical behaviors such as piglet crushing, its utility is restricted
to time periods when personnel are present. This limitation could be addressed through
the integration of automated response mechanisms, such as robotic interventions or real-
time alert systems, enabling timely actions even during non-working hours. Additionally,
predictive algorithms that analyze historical data could help anticipate high-risk periods,
optimizing resource allocation and further enhancing the system’s practicality.

4. Conclusions

The objective of this study was to develop a real-time monitoring system to identify
sow and piglet behaviors. The YOLOv7 and YOLOv9 models were used to recognize
four behaviors of sows and three of piglets. In addition, a modified ELAN architecture,
termed mixed-ELAN, was proposed to improve the detection and recognition performance.
Mixed-ELAN effectively detects objects of different sizes through convolution operations
using kernels of various sizes to extract feature maps. The YOLOv7-based mixed-ELAN
achieved a mAP of 0.805 for the seven behaviors, with notable improvements of 6% and 5%
in the detection accuracy of lying down and crushing behaviors, respectively. Applying the
mixed-ELAN architecture to YOLOv9 improved the mAP values by 2%, and specifically by
7% and 3% for crushing and lying down behaviors, respectively.

Future studies will consider additional methods to improve the accuracy of pig be-
havior detection. Techniques such as the Convolutional Block Attention Module (CBAM)
and Squeeze-and-Excitation Block (SE Block) enhance feature refinement by analyzing the
importance of channel and spatial information without substantially increasing compu-
tational complexity [31]. Additionally, improving the Feature Pyramid Network (FPN)
architecture may better support the detection of piglet behaviors, as FPN leverages multi-
scale feature maps to enhance small-object detection. Incorporating these methods into
YOLOv7, YOLOv9, and DEtection TRansformers (DETR) could optimize the balance be-
tween accuracy and inference speed for more effective behavior recognition in pigs.
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