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Simple Summary: Although conventional frozen section biopsy is a valuable tool, it can be time-
consuming, expensive, and its interpretation largely depends on the expertise of the pathologist. This
review discusses a new technology called stimulated Raman histology (SRH), which creates detailed
images of tissue rapidly and without the need for specialized dyes. SRH offers high precision and
clarity, making it particularly useful in surgical settings. When paired with artificial intelligence, this
method can improve accuracy and reduce the workload for pathologists. Through this narrative
review, we aim to demonstrate how SRH has transformed rapid tissue analysis, potentially leading
to improved clinical decisions and outcomes for patients.

Abstract: Frozen section biopsy, introduced in the early 1900s, still remains the gold standard method-
ology for rapid histologic evaluations. Although a valuable tool, it is labor-, time-, and cost-intensive.
Other challenges include visual and diagnostic variability, which may complicate interpretation and
potentially compromise the quality of clinical decisions. Raman spectroscopy, with its high specificity
and non-invasive nature, can be an effective tool for dependable and quick histopathology. The most
promising modality in this context is stimulated Raman histology (SRH), a label-free, non-linear
optical process which generates conventional H&E-like images in short time frames. SRH overcomes
limitations of conventional Raman scattering by leveraging the qualities of stimulated Raman scat-
tering (SRS), wherein the energy gets transferred from a high-power pump beam to a probe beam,
resulting in high-energy, high-intensity scattering. SRH’s high resolution and non-requirement of
preprocessing steps make it particularly suitable when it comes to intrasurgical histology. Combin-
ing SRH with artificial intelligence (AI) can lead to greater precision and less reliance on manual
interpretation, potentially easing the burden of the overburdened global histopathology workforce.
We review the recent applications and advances in SRH and how it is tapping into AI to evolve as a
revolutionary tool for rapid histologic analysis.

Keywords: stimulated Raman histology; AI-assisted pathology; label-free histology; intraoperative
histology; surgical margins; cancer diagnosis

1. Introduction

Histopathology, a diagnostic methodology that evolved into a medical discipline by
early 1900s [1,2] is still used worldwide as the gold standard methodology for diagnosis,
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drawing critical insights into the nature and extent of various diseases [3]. In a general
sense, the methodology can be explained as the study of changes within tissue that are
associated with a disorder or disease. The procedure usually follows a series of critically
and precisely drafted steps, of which the major ones are fixation, sectioning, staining and
microscopic examination [4,5]. Histopathology offers several advantages, such as being
economic, delivering overview about disease pathogenesis, and facilitating early disease
detection. Despite these advantages, the modality is hindered by certain limitations, such
as diagnostic variability due to manual assessments, its laborious nature, excessive time
consumption, a global shortfall of expert pathologists, and limitations in terms of spatial
resolution, information about underlying molecular mechanisms, and scarce quantifiability
of features [6–8]. With the exponential rise in the incidence of life-threatening diseases
such as cancer globally [9], existing methodologies often fall short of contemporary de-
mands. This creates an urgent need for a methodology that is reliable, fast and capable of
self-analysis. Such advancements could accelerate diagnoses, ultimately aiding millions
worldwide by facilitating early and precise disease detection. Vibrational spectroscopy is
an extremely promising alternative in this regard.

Vibrational spectroscopy: The principles of quantum mechanics perceive atoms and
molecules to be possessing characteristic inherent energy that is constantly manifested
as tiny intrinsic vibrations, the frequency of which is decided by the specific type and
local niche around the chemical bonds involved. These molecular vibrations are highly
specific to the characteristics of the molecules, the analysis of which can yield highly
specific molecular information about the sample, which forms the foundational concept
behind all vibrational spectroscopic modalities. Typically, a vibrational spectroscopic
modality like Raman spectroscopy or infrared spectroscopy measures specific molecular
vibrations in the form of a characteristic spectrum [10]. Such a resultant spectrum from
a tissue, when recorded and analyzed properly, can yield valuable information about a
disease state. While infrared spectroscopy (IR) can provide valuable information about
molecular structure and composition, its utility in biological tissue analysis is limited
due to many factors, the preliminary one being intense bands corresponding to water,
that obscure disease-related biomolecular signatures. Additional challenges include its
limitations in effectively representing highly complex systems such as biological tissues
and its dependence on extensive sample preparation, suboptimal molecular specificity, and
spatial resolution [11–15]. Consequently, Raman spectroscopy is often the preferred choice
due to its greater practicality and diagnostic potential.

Raman spectroscopy, and later microscopy, has evolved through various developmen-
tal stages since its inception in 1928 by Sir C.V. Raman and K.S Krishnan [16]. It has now
long been established as a dependable analytic methodology in mainstream research. The
modality is also laden with some limitations, such as its weak signal intensity and inability
to characterize large areas in viable time limits, preventing its efficient translation into clini-
cal applications [17–19]. On the other hand, it offers specific advantages, such as label-free
analysis, being unaffected in the presence of water, minimal sample preparation require-
ments, high spectral resolution, and its capability to record complex analytes. [20–22]. Ra-
man spectroscopy can be broadly classified into linear (spontaneous) [23,24] and non-linear
Raman spectroscopy [25,26], with unique principles and applications. While spontaneous
Raman scattering is largely about inelastic scattering of photons, non-linear Raman scatter-
ing occurs when multiple photons interact with a sample, at times also producing other
non-linear effects, such as second-harmonic generation (SHG) [27,28] or third-harmonic
generation (THG) [29,30], which often can be recorded and combined to attain enhanced
molecular and morphologic information about the analyte [31,32]. Indeed, spontaneous
Raman spectroscopy has been utilized extensively for biomedical applications, from label-
free imaging of single cells and tissues [33–36] to disease diagnosis and prognosis [37–40];
however, it is slow and suffers from low sensitivity. On the other hand, non-linear Raman
scattering delivers the advantages of enhanced signal intensity, minimal photo damage
to the tissue analyte, high sensitivity to specific molecular vibrations, swift analysis, sub-
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micron spatial resolutions, and deep tissue analysis [41–43]. These features deem it an
extremely efficient diagnostic modality. Two prominent versions of non-linear Raman
scattering are coherent anti-Stokes Raman scattering (CARS) and SRS. SRS output spectra
are more quantifiable as they have a non-resonant background and are simpler to interpret,
possessing a higher sensitivity to trace molecules. They are therefore generally preferred
over CARS as a diagnostic modality [44].

To trace the development of the SRS, the advent of the laser in 1960 catapulted ad-
vancements in non-linear optics, leading to discoveries such as second and third harmonic
generation and SRS. In 1962, researchers identified SRS when a ruby laser with a nitroben-
zene Kerr shutter produced unexpected emission lines corresponding to Raman-active
vibrations. This discovery, along with subsequent theoretical frameworks, led to the clarifi-
cation that the SRS phenomenon can shift the interacting laser frequencies through Raman
transitions. Unlike fluorescence, SRS does not involve energy storage in excited electronic
states. Inspired by the similarity to stimulated emission in laser cavities, this phenomenon
was termed ‘stimulated Raman scattering’.

In SRS, the excitation laser beam at frequency ωp generates frequency-reduced ra-
diation, known as Stokes radiation ωs, through spontaneous Raman scattering. Some
of the Stokes radiation beam re-enters the medium while traveling through the cavity,
thus stimulating the creation of more Stokes photons and finally producing a coherent
beam at the frequency ωs. When both these beams coincide at the specimen, at a resultant
frequency equal to the difference between their frequencies, and this matches the molecular
vibrational frequency, Raman scattering materialises through stimulated excitation. As a
result, the Stokes intensity increases by an amount matching the loss from the fundamental
laser beam. Usually, the SRL signal is transformed to pixel intensity via electronics and
software, and the sample is spatially scanned with spatiotemporally overlapping beams to
image a sample surface [45–47].

SRS progressed further through developments in the field of laser sources and light-
sensing technologies. The advent of femtosecond and later picosecond laser pulses, led to
first time-resolved studies on molecular vibration. Researchers recognized that the Raman
free induction decay observed in the time domain was directly linked to the Raman line
width in the spectral domain, and selective excitation of inhomogeneously broadened
bands offered new insights into the mechanisms contributing to line width. In the early
2000s, a new development in SRS led to the use of femtosecond SRS and picosecond
lasers as a contrast mechanism in microscopy. In 2008, researchers successfully applied
SRS microscopy to bio-image using a pair of picosecond lasers combined with Stokes
pulses, unveiling the scope of rapid, high-resolution, label-free, microscopic imaging of
unprocessed tissue specimens [45]. Leveraging further technological advancements in the
sector, such as fiber-laser technology, the first commercial clinical SRH device, the NIO
Laser imaging system, was introduced by Invenio imaging (Invenio Imaging, Inc., Santa
Clara, CA, USA), hereafter referred to as ‘NIO system’ in this article. Another notable
technology advancement in the device is the incorporation of improved noise cancellation
electronics, such as balanced detection-based noise cancellation, which addressed the high
noise level usually associated with the fiber-laser technology [48].

Lee et al. have elaborately discussed the advances in the application of SRS in
histopathology in the context of intraoperative settings, analysing new updates in in-
strumentation and computer-aided diagnosis [49]. Their work further extends into utilizing
other non-linear modalities that can be exploited to attain additional diagnostic contrast,
leading to enhanced histopathology. Li et al. reviewed SRS microscopic techniques and
applications in biosciences [50]. Their work in general reviewed applications of SRS mi-
croscopy in cell metabolism, neuroscience, tumor diagnosis, drug tracking, etc., combined
with various bio-orthogonal Raman tags. Despite the current body of literature, there is
especially little reference available on the latest trends in AI-led developments in the field of
SRS imaging and on how their combination jointly contributes to superior performance in
attaining histopathology results that cater to the requirements of the contemporary global
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health sector. Therefore, this review covers significant advancements in artificial intelli-
gence (AI)-assisted stimulated Raman histology (SRH) over the past five years, specifically
focusing on diagnostic purposes.

2. SRH as a Diagnostic Imaging Modality

SRS histology is a rapid, non-destructive, label-free molecular imaging modality that
delivers sub-micron-level spatially resolved histologic images. The image contrast corre-
sponds to the molecular vibrational properties of chemical bonds and the concentration
of macromolecules (lipids, proteins, and nucleic acids) of the tissue/cell sample [51–53].
Unlike spontaneous Raman spectroscopy, SRS is a non-linear optical process, where two
spatiotemporally overlapped pulsed lasers synchronously illuminate the sample to coher-
ently excite the selected molecular vibration. The pump beam serves as one laser and the
other is a stokes beam, with the frequency difference between the two carefully set to match
the vibrational frequency of the chemical bond of interest. The Stokes Raman transitions of
the analyte impart a net attenuation of the pump line and a net gain in the stokes line, which
can be explained by coupled wave equations where the beams are coupled parametrically
by the polarization response of the analyte [54–57]. By attaining a quantum stimulation of
photons transferred via the Stokes beam, in addition to the weak basal scattering imparted
from the other laser beam, the overall scattering gets enhanced drastically. In the context
of SRS microscopy, the spatiotemporally overlapped lasers are confined to a tight focus
point, generating an enhancement of up to 108 times and thus yielding remarkably high
sensitivity at ultra-high speed [58].

The potential of SRS for molecular imaging, beyond spectroscopy, was first demon-
strated in 2007 on polystyrene beads. This was aided by an instrumentation panel compris-
ing a femtosecond amplifier laser source and photodiode array [59]. Yet, clinical translation
remained a challenge due to the technological requirements being highly demanding and
the lack of optics/hardware options that were available at that point in time. For example,
the basis of SRS microscopic methodology consisted of the two laser pulsed trains that
needed to temporally overlap by less than the pulse duration (<100 fs) and within a spatial
range smaller than the focal spot size (<100 nm). It demanded advanced solid-state lasers
equipped with continuous water cooling, all of which posed stiff challenges in its clinical
translation. In 2008, Freudiger et al. [45] developed a microscopic system for SRS-based
three-dimensional multiphoton vibrational imaging, which reported higher sensitivity
achieved by means of high-frequency (megahertz) phase-sensitive detection. The study
showcased a range of biomedical applications, like discerning distributions of omega-3
fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based
on intrinsic lipid contrast, and monitoring drug delivery across the epidermis. Saar et al.
enabled in vivo SRS imaging by using a microscopy arrangement that markedly enhanced
the collection of backscattered signals and increased imaging speed by three orders of
magnitude, achieving video-rate capabilities [60]. This work was a breakthrough that
allowed the potential of SRS-mediated quick label-free in vivo imaging to be established.
Furthermore, Ozeki et al. demonstrated that tissues can be imaged using SRS at the rate of
30 frames/second with frame-by-frame wavelength tunability [61]. The biggest relevance
of the work is the multicolor profiling of different constituents, whereby spectral images
were analyzed using independent component analysis, which could detect even minute
variations in spectral features and impart colors based on them. Ji et al. showcased that
SRS could reveal human brain tumor infiltration in unprocessed surgical specimens from
22 neurosurgical patients, attaining near-perfect agreement with H&E light microscopy
(k = 0.86) [62]. To facilitate the use of SRS data in brain tumor surgeries without requiring
expert interpretation, the team developed a classifier that attained 97.5% sensitivity and
98.5% specificity in detecting tumor infiltration. Lu et al. also demonstrated the capabil-
ities of SRS using a microscopic system to deliver pathology-like information based on
molecular contrasts and high-level sensitivity [63].
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It was in 2017 that Orringer et al. established the utility of SRS microscopy for intra-
operative histology by capitalising on the recent developments in fiber laser technology,
marking the beginning of a new era for Raman spectroscopy in clinical aspects that even-
tually led to the development of the first clinical SRS microscope [48]. Basically, the NIO
imaging system processes freshly excised surgical tissues through three steps: (a) image
acquisition (approximately 2 min) (b) image processing (approximately 10 s) and (c) image
diagnosis (approximately 20 s). The system generates H&E-like SRH images by mapping
the major Raman shifts (corresponding to CH2 and CH3) from each specimen within 2.5 min
for a sample area of 1 mm2. The NIO system can function as an effective, streamlined
substitute to conventional histologic methods that can save transferring specimens out
of the operating theatre to the pathologic facility for processes like sectioning, mounting,
staining and pathologic evaluation. The methodology can also help preserve key tissue
architectural features for analysis, which may otherwise get lost during the pre-processing
steps of conventional frozen sections. The imaging process of the methodology is followed
by heatmapping in a manner to match with the H&E images. The feature that SRH imaging
is actually a high spatial resolution profile of molecules of interest (molecular fingerprint-
ing) is an advantage when assessing complex structures such as biological tissues with
high dependability.

Speaking of limitations, as in any other optical modality, tissue penetration depth is
a concern in SRH too, restricting its applications on thicker tissues. This may necessitate
careful and precise management of tissue surfaces to be profiled. Furthermore, the high-
intensity laser lights used in the methodology can lead to phototoxic effects, affecting the
Raman signal output over time owing to photobleaching, as well as some extent of alteration
in analyte physiology, like that of cells, which should also be addressed during the analysis.
Additionally, for better practicality, the imaging is mainly based on the contrast between
Raman peaks corresponding to lipids and proteins. In rare cases, this can lead to suboptimal
profiling of the analyte surface, especially in the context of broader organ applications. This
issue is being addressed by engaging the AI methodology that considers even the minutest
differences in peaks, such as intensity, spatial patterns, and peak ratio analysis. However,
beyond all these limitations, it offers strong advantages that render it an effective solution
for an automated, standardized method for intraoperative histopathology.

As illustrated in Figure 1, the SRH process begins by obtaining the tissue specimen
during surgery and placing it on slides for imaging. Two spatiotemporally synchronized
laser beams—the Stokes line and pump line lasers—illuminate the sample. These lasers are
tuned to specific frequencies corresponding to molecular vibrations of interest, typically
focusing on lipid and protein Raman peaks. The pump laser excites the sample’s molecules
to a higher energy state, while the Stokes laser induces specific molecular vibrations. The
energy disparity between the pump and Stokes photons enhances specific Raman peaks.

The scattered photons are collected, mapped, and processed to create molecular images
of the tissue slices. AI algorithms further analyze this image, with outputs heat-mapped to
aid pathologists and healthcare workers in interpretation and identification.
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pathologic features which are heat mapped, as in (f), for easy processing by pathologists. 
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histologic methods. Histology of skull base tumors is complicated by their multiple histo-
logic subtypes and higher rates of positive margins when compared with other anatomical 
sites [64,65]. Shin et al. used a fast simultaneous two-channel STS imaging technique in 
combination with a new pseudo-H&E recoloring methodology [66]. Their modularized 
assessment style extends beyond accuracy in diagnosing cancer by analyzing the degree 
of agreement between neuropathologists’ confidence in SRH images, H&E-stained frozen 
and formalin-fixed, paraffin-embedded (FFPE) tissue sections. The results reveal that SRH 
is effective for establishing a diagnosis using fresh tissue in most cases, with 87% accuracy 
relative to H&E-stained FFPE sections. However, the authors opined that low stromal li-
pid concentration always poses stiff challenges for pseudo-coloring, as the process is heav-
ily dependent on lipid/protein contrast, and is therefore not equally efficient for all types 
of tumors. In another reported work, Jiang et al. utilized SRH to image skull base tumors 
in patients using an NIO System [67]. They used a CNN architecture implementing three 
representation learning strategies; cross-entropy, self-supervised contrastive learning and 
supervised contrastive learning. The cross-entropy strategy yielded an overall diagnostic 
accuracy of 91.5%, while self-supervised contrastive learning and supervised contrastive 
learning achieved 83.9% and 96.6%, respectively. Additionally, the trained model success-
fully delineated tumor-normal margins, and identified and detected regions of micro-
scopic tumor infiltration in meningioma SRH images. Recently, Fitzgerald et al. evaluated 
the usability of SRH in combination with color-matching algorithms in order to generate 
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Figure 1. Overview of SRH workflow. (a) The tumor specimen obtained intra operatively is loaded
onto slides and SRH imaging is performed. Stokes and pump lasers illuminate the sample and
(b) induced molecular vibrations within the sample. The laser excitation causes energy transitions as
shown in (c). The molecular perturbations produce coherent Raman scattered photons that will be
collected and pseudo-colored to generate stimulated Raman histology images, as shown in (d). In
(e), the resultant images are processed using advanced AI modalities to identify regions of different
pathologic features which are heat mapped, as in (f), for easy processing by pathologists.

2.1. Bone

During sinonasal and skull surgeries, intraoperatively assessing the histology with
accuracy and speed is extremely important, which often turns up as a challenge to existing
histologic methods. Histology of skull base tumors is complicated by their multiple histo-
logic subtypes and higher rates of positive margins when compared with other anatomical
sites [64,65]. Shin et al. used a fast simultaneous two-channel STS imaging technique in
combination with a new pseudo-H&E recoloring methodology [66]. Their modularized
assessment style extends beyond accuracy in diagnosing cancer by analyzing the degree of
agreement between neuropathologists’ confidence in SRH images, H&E-stained frozen and
formalin-fixed, paraffin-embedded (FFPE) tissue sections. The results reveal that SRH is
effective for establishing a diagnosis using fresh tissue in most cases, with 87% accuracy
relative to H&E-stained FFPE sections. However, the authors opined that low stromal
lipid concentration always poses stiff challenges for pseudo-coloring, as the process is
heavily dependent on lipid/protein contrast, and is therefore not equally efficient for all
types of tumors. In another reported work, Jiang et al. utilized SRH to image skull base
tumors in patients using an NIO System [67]. They used a CNN architecture implementing
three representation learning strategies; cross-entropy, self-supervised contrastive learn-
ing and supervised contrastive learning. The cross-entropy strategy yielded an overall
diagnostic accuracy of 91.5%, while self-supervised contrastive learning and supervised
contrastive learning achieved 83.9% and 96.6%, respectively. Additionally, the trained
model successfully delineated tumor-normal margins, and identified and detected regions
of microscopic tumor infiltration in meningioma SRH images. Recently, Fitzgerald et al.
evaluated the usability of SRH in combination with color-matching algorithms in order
to generate images resembling those FFPE sections [68]. The study also used NIO system
for SRH imaging. The work reported a significantly faster median analysis time of 4.3 min
(compared to 44 min in the frozen section), as well as sensitivity, specificity, precision,



Cancers 2024, 16, 3917 7 of 29

and overall accuracy of 93.3%, 94.1%, 93.8%, and 93.3%, respectively. A concordance of
(Cohen’s kappa (κ) = 0.89) was seen between the SRH and frozen sections. The authors
reported that, while they could effectively detect loss of polarity, high nuclear/cytoplasmic
ratio and nuclear pleomorphism, differentiating mitotic figures from apoptotic cells was
still challenging.

Musculoskeletal disorders stand as the primary cause of disability on a global scale,
and low back pain is the primary factor responsible for disability in over 160 countries [69].
One of the most prominent reasons for lower back pain is lumbar disc herniation, which
is a displacement of disc material beyond the space between intervertebral discs, with a
high incidence rate of 5 to 20 cases per 1000 adults annually [70]. Percutaneous endoscopic
lumbar discectomy (PELD) is an effectual treatment for lumbar disc herniation, and the
process mandates swift histological identification of dissected tissue to steer the process.
During PELD, fibrotic adhesion is observed between the nerve root and surrounding
structures, which needs to be clearly demarcated. Zou et al. demonstrated the applicability
of SRH to profiling lipid and protein distributions in combination with SHG and TPEF,
which were utilized to image elastin and collagen fibers, using a home-built microscope
system [71]. During PELD procedure, fibrotic adhesion between the dura (nerve root)
and the surrounding peridural soft tissue structures, such as intervertebral disc (IVD)
and ligamentum flavum (LF), can be observed and it is necessary to distinguish between
them. Therefore, they measured SRS images at the CH2 (2845 cm−1) and CH3 (2930 cm−1)
channels of the nerve root to understand the distributions of lipids and proteins. The nerve
roots showcased SRS spectral characteristics more like those of lipids, whereas IVD and
LF shared similar SRS profiles to proteins. The study also showed significant differences
in the non-linear optical characteristics between the dura and surrounding soft tissues,
demonstrating the potential for intraoperative differentiation of diverse types of peridural
soft tissues to enhance surgical outcomes of PELD.

In a different work involving spinal cord injuries, Wu et al. performed in vivo spinal
cord imaging without introducing immunological artifacts in mouse models, to gain crucial
understanding of its pathology and treatment options [72]. The study created a less
invasive intervertebral access point by preserving the ligamentum flavum to safeguard the
spinal cord underneath, thereby lowering the likelihood of triggering microglia. The study
presented an optical clearing technique, enabling repeated imaging at subcellular resolution
using two-photon fluorescence and SRS, all while avoiding any inflammation induction.
The study employed a self-developed multimodal NLO microscope system combining
SRS, TPEF and SHG modalities to visualize iodixanol, cells and collagens simultaneously.
Hyperspectral SRS sweeping mode was employed to obtain SRS spectra of solutions and
tissues in fingerprint and C-H regions. The study thus crafted a less invasive intervertebral
access point for spinal cord imaging in mice and successfully attained long-term, high-
resolution imaging without inducing any inflammation.

2.2. Breast

Breast cancer is the most commonly diagnosed cancer among adults and in 95% of
countries, breast cancer is the first or second leading cause of female deaths [73]. It is a
well-established fact that microcalcifications are an incredibly valid indicator of neoplastic
processes in breast cancers. Carbonate content is yet another indicator that correlates with
local pathology. Despite the diagnostic and prognostic potential, the morphologic and
chemical features of calcifications are poorly understood.

Shin et al. visualized breast calcification chemical compositions at high spatial resolu-
tion by utilizing spatially resolved qualitative and quantitative information [74]. The study
employed SRS microscopy to examine a range of breast alterations, encompassing benign
to neoplastic processes, including atypical ductal hyperplasia, ductal carcinoma in situ and
invasive ductal carcinoma. The methodology involved ratiometric analysis used to quantify
hydroxyapatite, a main diagnostic feature of cancer. A customized two-color microscopy
setup consisting of SRS and SHG was used for the analysis. Results reiterated the already
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established fact that the average carbonate content tends to decrease with increasing ma-
lignancy potential. The work revealed that the microenvironment surrounding neoplastic
processes significantly impacts the local carbonate content distribution. Specifically, the car-
bonate content reduced near the edges of calcifications closest to neoplastic cells indicating
an acidified microenvironment as malignant cells proliferate. Additionally, the spatial het-
erogeneity of carbonate content could potentially be a diagnostic indicator of malignancy.
Using SRH, the work reported sensitivity and specificity of 85% and 88%, respectively,
when the level of carbonate content level was employed as the sole discriminator. To im-
prove the accuracy in cases of diagnosing fibro-adenoma from invasive ductal carcinoma,
SHG was used as the second modality, yielding a significant improvement; it was able to
separate the cases with a higher sensitivity and specificity of 94% and 85%, respectively.

Bouzy et al. combined Raman and optical photothermal infrared for the first time
(O-PTIR)—a modality that can simultaneously record IR and Raman spectra from a sin-
gle point—to study microcalcifications by analyzing molecular composition at identical
locations with high spatial resolution [75]. They employed a mIRage IR microscope (Pho-
tothermal Spectroscopy Corp, Santa Barbara, CA, USA) and also utilized other multiphoton
imaging techniques to validate the existence of carbonate ions within the microcalcifications.
The multiphoton setup, including the SRS and SHG methodology, was facilitated using an
experimental setup customized onto a confocal inverted microscope. The tissue unveils
the diversity within the breast microcalcifications (BMCs) using the O-PTIR system, with
the limitations being low field of vision and high acquisition times. The SRS and SHG
techniques were further employed for probing the collagen content of the calcifications.
Overall, this multimodal approach constructed SRS images to precisely mimic H&E sec-
tions. The work established a means to analyze microcalcifications by iteratively refining
the area of interest.

Ni et al. developed a two-color SRH, a modality that generated a high-content SRH
(HC-SRH) system that delivers both morphological and chemical data for diagnosing breast
cancer [76]. The methodology could successfully profile unsaturated lipids, extracellular
matrix, cellular protein, saturated lipids and water in the breast tissue, which could in
turn map the duct, fat cell, stroma, vessel and necrosis. In contrast to the well-developed
two-color SRH, HC-SRH delivers extra chemical information aiding cancer diagnosis.
The notable advantages are that selective spectral sampling enhances HC-SRH speed by
one order of magnitude, while also delivering outstanding contrast for diverse breast
tissue components. To analyze the clinical applicability of the methodology, a fiber-optical
parametric oscillator (FOPO)-based HC-SRH system was developed instead of a solid-state
system. Leveraging the rapid, widely tuning capability of the FOPO, the spectral coverage
of the HC-SRH was extended to the fingerprint window, delivering extra contrast for
nucleic acid, solid-state fat and amino acids in breast tissue. The resulting two-colored
images provided a deeper understanding of the subtle chemical changes associated with
cancer progression.

2.3. Live Cell Imaging

Live cell imaging is a very valuable tool in the context of biological and biomedical
applications including disease diagnosis. It helps cell biologists to learn valuable clues
about the structure and functions of the cells and tissues, which in turn largely helps
the diagnosis. Various advancements in technology are tremendously helping the live
cell imaging process. However, the methodology is still challenging when it comes to
maintaining the cells in a healthy state under the optical devices for extended periods of
time. SRH is a methodology that is capable of imaging cells with high spatio-temporal
resolution over extended periods of time, without causing any damage to the cells.

To tap into this potential of SRH, Yuan et al. designed and fabricated a flexible chamber
for time-lapse live-cell imaging where the detection of SRS signal is performed via an
upright microscope frame [77]. The developed enclosure and chamber can be incorporated
into a conventional SRS imaging system. The enclosure is designed to contain and maintain
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the SRS microscope and the whole imaging environment at 37 ◦C. Results show that the
temperature within the flexible chamber reached the anticipated temperature within 1.5 h,
and it remained stable for at least 24 h, indicating high suitability for cell-based studies.
The authors report that temperature instability induced focal drifts and subtle vibrations
during the recording process that should be addressed for a better SRS recording.

In yet another reported work, Liu et al. analyzed the effects at the biological and
molecular levels, leading to the anti-survival effects on mantle cell lymphoma (MCL),
as a comparison between first- and second-generation BTK inhibitors (BTKi) [78]. The
biological impact of BTKi on MCL cell chemotaxis and lipid droplet accumulation was
examined in three different MCL cell lines using transwell and SRS imaging analysis,
respectively. SRS imaging was performed using a femtosecond SRS microscope with the
laser frequency tuned to a C-H stretching vibration band at 2845 cm−1, without any cell
damage. Quantitative examination of lipogenesis at single-cell level via SRS imaging
unveiled that BTKi treatment notably decreased lipid droplets accumulations in MCL.
The overall effects of BTK inhibitors can be summarized as inducing apoptosis while
suppressing chemotaxis and lipid accumulation.

The peritoneum is a serous membrane that lines the abdominal cavity, and its lavage
cytology is the established methodology used to intraoperatively diagnose peritoneal
metastasis (PM), a prevalent type of distant metastasis. Xun Chen et al. addressed the
issue of low sensitivity (<60%) in peritoneal lavage cytology using a customized three-color
SRS microscope [79]. This study identified twelve morphological single-cell features and a
compositional difference between PM cells and non-PM cells, which includes lipid protein
ratio, cellular area, etc. The work further crafted a phenotyping algorithm for single cells
to further transform the identified raw features into feature matrix. In comparison with
histopathology (gold standard), the SRH methodology attained a sensitivity and specificity
of 81.5% and 84.9%, respectively, with an AUC of 0.85. The whole procedure was performed
within a span of 20 min for each patient.

In the case of prostate cancers, focal therapy (FT) is an approach where clinically
significant prostate cancer is removed and nearby normal areas are preserved, thereby min-
imizing treatment-related toxicity. This procedure mandates the need for quick sampling
by core needle biopsy based rapid histology to precisely demarcate the cancer-affected area
where SRH is considered a strong alternative methodology. Ao et al. applied SRH and
CNN in this context [80]. An external test dataset validated the CNN’s performance with
an accuracy of 84.4%. This work further calculated Gleason scores from 21 cases of core
needle biopsies; the deep learning SRS system showed an accuracy of 71% compared to
gradings from three pathologists, establishing the promise of deep learning-assisted SRS
platforms in assessing the grade of prostate cancer tumors. This work went ahead to em-
ploy a diagnostic CNN trained on images from 61 patients that classified Gleason patterns
of prostate cancer, reporting an accuracy of 85.7%. This methodology suggests provision
for rapid histopathology and automated Gleason scoring without complex processing.

Zhang et al. proposed an automatic cell-counting model for SRS images. Cell counting
of actual human brain tumor specimens was conducted [81]. The research established the
capability of the methodology to decrease whole-brain imaging time from 70 min to just
8 min. The major challenges to high-speed imaging are the imaging rate of multi-color
SRS and the efficiency attained in image stitching. To attain speed, the study incorporated
parallel dual-phase SRS detection with strip mosaicking. The dual-phase SRS Stokes beam
is split into two beams, each probing specific target Raman frequencies that are modulated
with a 90◦ phase difference. Hence, the SRS signals at two specific Raman frequencies
are generated as in-phase and in-quadrature components. The respective time delays are
programmed to probe high-frequency Raman modes corresponding to (2845 cm−1) and
(2930 cm−1), allowing simultaneous imaging of lipid and protein contents with minimal
crosstalk, allowing faster imaging. The study also used a strip mosaicking methodology,
where a focused laser in line-scan mode is used, with the sample moving at a constant
speed perpendicular to the laser line. This methodology delivers comparable imaging



Cancers 2024, 16, 3917 10 of 29

results to the tiling method, but with improved speed. The study yielded results with
an AUC above 98% and an R value of 0.97 for cell counting correlation between SRS and
H&E-stained histological images.

Core-needle biopsy (CNB) is an initial diagnostic approach for breast cancer. Neverthe-
less, the intricacies of tissue processing and worldwide scarcity of pathologists frequently
present hurdles to swift diagnosis of fresh biopsies. The work done by Yang et al. com-
pared the results of SRS imaging with gold standard H&E staining on adjacent frozen
tissue sections, using a home-built non-linear optical microscope [82]. Utilizing SRS, the
fresh, unprocessed biopsy tissues underwent imaging. A weakly-supervised learning
approach, namely the multi-instance learning (MIL) model, was employed to differentiate
between benign and malignant cases, and was subsequently compared with the perfor-
mance of supervised learning model. Additionally, gradient-weighted class activation
mapping (Grad-CAM) and semantic segmentation were employed to spatially delineate
benign/malignant areas. Results indicated that the MIL model could achieve superior
classification performance compared to supervised learning, attaining diagnostic accuracy
of 95% on 61 biopsy specimens. Grad-CAM facilitated the visualization of histological
heterogeneity within the CNB by the trained machine learning (ML) model.

2.4. Gastric

Gastric cancer ranks as the fifth most diagnosed cancer and the third primary contrib-
utor to cancer-related fatalities globally. Surgical resection and lymphadenectomy are the
only potentially curative treatment approaches for gastric cancer. There is a serious need for
new modalities that can rapidly image and diagnose tissues, especially in an intraoperative
evaluation and gastroscopy context. Sarri et al. developed a framework based on SRH and
SHG to render images of colon and pancreas sections, both frozen and fresh, in alignment
with conventional H&E staining-based techniques for healthy, precancerous and cancerous
colon and pancreas tissue sections [83]. Additionally, a new rapid SRH imaging method
was devised, capturing all essential information at the pixel level to generate instantaneous
SRH images. These results were attained using a customized instrument which could
perform a variety of non-linear, label-free imaging modes, employing a custom-built three-
color setup, which was obtained from elsewhere. The two modalities selected for tissue
imaging were                     ƛ -switch and frequency-modulated SRS, which were combined with SHG-
and TPEF-generated SRH images (H&E-staining quality at pixel level), eliminating the
need for sequential acquisitions and making the whole process instantaneous. The reported
time requirement for scanning 100 µm × 100 µm (200 px × 200 px with dwelling time of
40 µs/px and 3 accumulations/pixel) was 9 s, making the imaging time for a 1 mm × 1 mm
stitched image ~25 min. Although the recorded time is unable to challenge the speed of the
intraoperative quick staining method, the image quality of the SRH output can be compared
to full H&E staining, which takes anywhere from 24 h to 72 h to produce. Another notable
advantage is that the images remain unaffected by the subtle tissue movements during the
analysis, as signals are acquired simultaneously.

In yet another work, Sarri et al. compared the consistency of the alignment between
SRH and H&E images on identical cryogenic slides for both normal and cancerous tis-
sues [84]. The same instrumentation as reported in the previous study was used for image
acquisition, combining SRS and SHG modalities. The fresh colon and pancreas tissues
obtained from tissue resection surgery were assessed. The samples were imaged with
SRS and SHG, and two slides from the same sample were stained with toluidine blue
and HES for comparison with SRH. SRS, coherent anti-Stokes Raman scattering (CARS),
second harmonic generation (SHG), and two-photon excited fluorescence (TPEF) imaging
were performed using a custom-built three-color setup. Tissues were examined by trained
histopathologists at both microscopic and macroscopic scales to perform accurate medical
diagnosis. The Raman peaks corresponding to 2845 cm−1 (CH2 bonds) and 2930 cm−1

(CH3 bonds) were identified and nuclei images generated by simple subtraction. The study
established quasi-faultless complete matching between SRH and H&E-stained images. It
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also substantiated the ability of SRH imaging to rapidly determine critical instances usually
encountered intraoperatively, such as detecting peritoneal metastasis in the omentum,
which played a decisive role in the workflow of the surgery. The work also showed that
SRH could produce results comparable to H&E against thick tissue biopsies too (obtained
directly after excision surgery). General architecture variations of the tissue and structural
shifts at the subcellular level could be assessed by SRH microscopy on millimeter-sized GI
tract tissues.

Conventional SRS necessitates adjusting picosecond lasers to achieve considerable
chemical specificity, albeit at the expense of the speed of analysis, which can be a downside
in instances like that of gastroscopy, where speed of analysis is also critical. A study by
Liu et al. demonstrated that single-shot femtosecond SRS delivers maximum speed and
sensitivity and preserves the chemical resolution by using U-Net [85]. The femtosecond-
U-Net combination enabled real-time pseudocoloring, attaining rapid SRH imaging of a
~2 × 2 mm2 tissue, which highly agreed with the findings of standard H&E. The isolated
flavors of the chemical contrast deliver important histological details that can help to attain
high diagnostic accuracy. The optical simplicity, speed and stability of the developed
method makes it highly favorable for clinical translation. The AI part of the work is
discussed in detail in Section 3. Furthermore, they also developed a diagnostic neural
network (CNN) with data from 279 patients that eventually diagnosed gastric cancer with
an accuracy of >96%. The study demonstrated the possibility of SRH to be used as a
valuable tool for automated intraoperative diagnosis.

2.5. Gout

Gout is a prevalent type of inflammatory arthritis that is extremely painful. It is char-
acterized by deposition of monosodium urate (MSU) monohydrate crystals in the tissues,
which can be rapidly detected by using SRS microscopy in a label-free manner [86]. Zhang
et al. first tested SRS and SHG methods using rat models, simultaneously analyzing MSU,
checking its diagnostic capability, and distinguishing between pseudogout and calcium
pyrophosphate deposition disease (CPDD), acute gout arthritis and comorbidity [87]. A
home-built setup with combined SRS and SHG microscopies was used to characterize MSU
in crystalline and amorphous forms simultaneously. The study imaged synovial fluid and
surgical specimens to obtain the histopathology of MSU deposition. By analyzing MSU
depositions in human surgical specimens and rat models, the study enabled early diagnosis
of gout and distinguished it from pseudogout based on the unique Raman signatures of
MSU and CPPD. SRS analysis unveiled the optical traits of MSU deposition across various
pathophysiological stages, aligning closely with corresponding features observed through
immunofluorescence histochemistry, thereby confirming its reliability. The MSU peak at
630 cm−1 and the corresponding CPPD peak at 1050 cm−1 were used to distinguish gout
from pseudogout. SRS microscopy has the advantage of background-free detection and
enhanced tissue penetration depths. It was also observed that MSU correlates reasonably
with the inflammatory cytokine expression levels, consistent with previous studies. These
observations can critically establish the capability of the SRS methodology.

2.6. Liver

Liver transplantation has turned out to be a lifesaving means and is an established
intervention in patients with chronic and acute final-stage liver diseases. Liver transplan-
tation has evolved into a safety net to treat various liver diseases where all other medical
interventions have failed. However, the process of liver transplantation is very delicate,
and a few factors influencing graft quality can affect the success of the procedure.

Typically, graft quality for transplantation is evaluated by visual inspection, which
heavily depends on the surgeon’s expertise and is thus prone to high variability. Ember
et al. developed a method for objectively assessing graft tissue quality in real time, non-
invasively and quantitatively using SRH [88]. A porcine model-based trial confirmed
circulatory death followed by normothermic regional perfusion (NRP), which enables the
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evaluation of liver quality under three distinct conditions: preceding cardiac arrest, during
warm ischemia (WI) and post-NRP. To understand the changes, liver left-median lobe
biopsies were acquired prior to circulatory arrest, following 45 min of WI 2 h post-NRP.
These were all analyzed using three different methods: spontaneous Raman spectroscopy,
SRS and staining. The study utilized three forms of Raman spectroscopy: spontaneous,
stimulated and handheld. Conventional spontaneous Raman microspectroscopy was used
to analyze tissue sections up close. SRS microspectroscopy was achieved using a Leica
microsystem SP8 multiphoton confocal microscope armed with a CARS 1200S filter wheel,
which detected signals in a photomultiplier tube detector in transmission mode, acquiring
images at 1024 × 1024 resolution. The work made important observations in the context
of liver transplantation, such as diminishing blood volume preventing microvascular
impairment post-circulatory arrest. The work also established that SRS can be utilized to
visualize intact red blood cells (RBCs) at high resolutions.

2.7. Neuro

In 2017, Orringer et al. reported groundbreaking work in developing a clinically
compatible SRH device for detecting infiltration of brain tumors within human tissue [48].
This work demonstrated the first intra-surgical application of SRS microscopy by using a
portable fiber-laser-based microscope, which generated SRS images that matched H&E and
revealed vital diagnostic features. This work was soon to be followed by another imaging
study on fresh tissue samples gathered from paediatric participants enrolled in advance
for brain tumors. Diagnoses based on SRH reported near-perfect diagnostic agreement
(Cohen’s kappa, k > 0.90) and an accuracy of 92% to 96% against the gold standard [89].
Neurological tissues are among the most common subjects for SRH methodologies ever
since. The methodology found applications in meningiomas, which constitute a substantial
proportion of all central nervous system (CNS) tumors and are the most common form
of intracranial, extra-axial neoplasms. Surgical resection is the main mode of treatment.
However, in lots of instances, such as those arising from the skull base, complete removal is
often difficult owing to the proximity to critical anatomic structures. Luther et al. used SRH
as a method to delineate tissue boundaries while resecting a recurrent, extensive, atypical
spheno-orbital meningioma [90].

Identifying glioma recurrence continuously poses a challenge in contemporary neuro-
oncology. Differentiating between glioma tumor recurrence and pseudoprogression is
crucial to determining treatment options and prognosis. Hollon et al. employed the
combination of SRH and deep neural networks to establish its potential in improving the
intrasurgical detection of glioma recurrence [91]. In this study, a fiber-laser-based SRH
system (<60 s per 1 × 1 mm2) was employed to image 35 patients (cohort) with suspected
recurrent gliomas following resection or biopsy. The resultant SRH images served to
train a convolutional neural network (CNN) and develop an inference algorithm to detect
possible recurrent gliomas. The diagnostic performance was evaluated in a retrospective
cohort of 48 patients (from an external validation medical center), achieving an accuracy of
95.8%. This clinical SRH approach could successfully image critical diagnostic features of
recurrent glial tumors and treatment-induced histologic changes associated with pseudo-
progression. It also identified regions with a high probability of recurrence, enhancing
clinicians’ assessments of automated diagnostic results. In another approach, Bae et al.
applied epi-detected, spectral-focusing hyperspectral SRS microscopy for rapid, label-
free molecular analysis of intra-tumoral heterogeneity in glioblastoma (GBM), achieving
sub-micron resolution. This distinctive diagnostic platform consists of distinctive spectral-
focusing hyperspectral SRS imaging of GBM tissue specimens, SRS images, and spectrum
retrieval through a multivariate curve resolution algorithm. Additionally, a quadratic
support vector machine model enabled subtype classification for rapid molecular subtyping
of GBMs. Both stain-free SRS histological images and 2D subtype maps were obtained
within 20–30 min. While SRS histology assesses demyelination status as a new diagnostic
feature, SRS mapping provides insights into the intra-tumoral heterogeneity of GBM tissue
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specimens [92]. The prediction variance for each of the subtypes when using SRH was
within a range from 0.44 to 0.79, signifying considerable intra-tumoral heterogeneity across
the tissue samples. It also aligned well with single-cell RNA sequencing data, where the
correlation coefficients among tumor cells that matched with the GBM samples varied
from 0.2 to 0.7, indicating intra-tumoral heterogeneity that is in turn driven by the tumor
microenvironment. The authors propose that diagnostic time could be reduced to mere
seconds by using a resonant scanner rather than a Galvano scanner.

Beta-amyloid proteins clump together to form plaques that disrupt cell functions,
leading to Alzheimer’s disease. Lochocki et al. compared high-resolution fluorescence
imaging (both pre- and post-staining) and spectroscopic techniques (Raman mapping
under pre-resonance conditions and SRS of amyloid deposits in snap-frozen AD human
brain tissue) [93]. The SRS instrument is an in-house-built picosecond system. Three
different methods—spectroscopic imaging, fluorescence and ensuant thioflavin-S staining—
were performed on the same tissue slices to render direct indications of plaque location
and correlate spectroscopic biomarkers with plaque morphology, and especially to reveal
differences between cored and fibrillar plaques. The study eventually identified carotenoids
as a unique marker that could differentiate between a cored amyloid plaque area and
a non-plaque area without prior knowledge of their location. The observed presence
of carotenoids suggests a specific neuroinflammatory response to the accumulation of
misfolded proteins.

Ji et al. used multicolor SRS microscopy to visualize amyloid plaques in brain tissue
from an Alzheimer’s disease (AD) mouse model [94]. The study demonstrated the tech-
nique’s ability to differentiate misfolded proteins from normal ones by detecting a blue
shift (~10 cm−1) in the amide I SRS spectra. The customized SRS microscope performed
imaging in the amide I region at approximately 5 s per frame for 512 × 512-pixel images,
using a dwell time of 10 s per pixel. Imaging 40 images took ~4 min. In addition, imaging
in the high-frequency CH stretch region was performed at ~1 s per frame with a dwell
time of 2 s per pixel. The spatial resolution was ~400 nm laterally and ~2 µm axially,
with a spectral resolution of ~8 cm−1. Afterwards, the results were evaluated by antibody
staining on frozen thin sections and fluorescence imaging of fresh tissues. Both imaging
methods successfully visualized normal brain structures, including the cortex, white matter,
hippocampus, and dentate gyrus. In regions where amyloid plaques were identified by
immunohistochemistry, three-color SRS imaging consistently captured them, showing
a direct correlation. An intriguing observation revealed by the three-color SRS was the
presence of a lipid-rich halo structure surrounding each plaque, potentially originating
from degenerated neurites and myelin sheaths. The spectral shift of the amide I band of
Beta sheets facilitated the differentiation of misfolded Aβ from lipids and normal proteins.

Pekmezci et al. used a NIO system to measure glioma margin samples for SRH,
histology, and tumor-specific tissue characterization [95]. The work addressed the question
of whether SRH can be used to image cancer margins that are generally considered to
be less cellular and hence harder to image. Alongside semi-quantitative scoring of the
margins by three neuropathologists using morphologic features, the work performed a
cellularity count, which, as anticipated, corresponded with the semiquantitative scoring
models utilized. The successful use of SRH images to identify margins with minimal
tumor presence confirms that SRH imaging offers ample cellular and architectural details,
surpassing mere cellularity. Generalized linear mixed models were employed to evaluate
agreement. The study found that SRH identified residual tumors in 82 of 167 margin
specimens (49%), while IHC substantiated residual tumors in 72 of 128 samples (56%) and
H&E confirmed residual tumors in 82 of 169 samples (49%). Interobserver compatibility
between all three modalities was confirmed.

Neidert et al. utilized SRH to achieve intraoperative near-real-time histopathological
analysis. In the study, a total of 429 SRH images from 108 patients were generated and
analyzed using the NIO system. The work demonstrated that the utilization of SRH is
feasible and beneficial in intraoperative assessment contexts [96].
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The user-friendliness and interpretability of an analytical methodology are important
parameters that was assessed for SRH by Straehle et al., who attempted to quantify the
neuropathological interpretability of SRH acquired in a routine clinical setting without
any specialized training or prior experience [97]. SRS microscopy was performed on
117 pathological tissues obtained from 73 brain-spine tumor surgeries. A neuropathologist
who was inexperienced in dealing with SRH interpretation assessed the quality of the
images in terms of tumor infiltration and provided diagnoses based on the SRH images.
Diagnostic accuracy was subsequently measured by comparing the SRH-based diagnoses
to conventional frozen H&E-stained sections, with the definitive neuropathological diag-
nosis serving as the ground truth. Overall, SRH imaging quality turned out to be rated
highly, with only 4.2% of all images marked as inconclusive for detecting tumor cells. The
diagnostic accuracy of neuropathological conditions was 87.7% and was comparable to
the current standard of fast-frozen H&E-stained sections (87.3 vs. 88.9%, p = 0.783). This
study demonstrated a strong diagnostic agreement between SRH-based and H&E-stained
frozen sections (κ = 0.8), indicating that intraoperative SRH imaging provides necessary
diagnostic clarity on par with traditional H&E-stained frozen sections.

Autofluorescence differs in the gray and white matter of a healthy brain, just as it does
in different brain regions and tumor types. The relationship between autofluorescence
characteristics of the human brain and neoplastic changes at a microscopic level was stud-
ied by Furtjes et al. using the combination of two-photon fluorescence and SRH [98]. The
study found an increased mean autofluorescence signal in healthy brain tissue, in the gray
compared to the white matter and in the cerebrum versus the cerebellum, respectively. The
signal intensity of carcinoma metastases, meningiomas, gliomas and pituitary adenomas
was notably lower compared to the autofluorescence in the cerebrum and dura, but signifi-
cantly higher than that in the cerebellum. Conversely, melanoma metastases exhibited a
higher fluorescent signal compared to both the cerebrum and cerebellum.

2.8. Oral

Oral diseases, while being largely preventable, are turning out to be a major health
burden for many countries. They are estimated to affect nearly 3.5 billion people. Oral
cancer specifically affects the parts of the mouth, the lip and oropharynx, and it is ranked
thirteenth most common cancer globally.

When it comes to laryngeal squamous cell carcinoma, the importance of maximally
resecting the tumor while preserving the healthy tissue is high, as is that of intraoperative
histology. Zhang et al. utilized deep learning methodologies in SRS microscopy-acquired
images to analyze the diagnostic concordance and its classification efficiency when com-
pared with standard histology [99]. The study first analyzed the ability of SRS imaging
in detecting characteristic features using a custom-made SRS microscopy arrangement.
The study proved that zoom-in SRS images could reveal microscopic features of normal
larynges, including intact basal lamina, basal layer and the squamous mucosa layer, as
well as clearly differentiate its diagnostic features, including cytological atypia, abnormal
arrangement of neoplastic cells and lymphocytes, cancer nests and keratin pearl. Further-
more, the study evaluated the ability of SRS microscopy in intraoperative tissue assessment
contexts; they collected 80 SRS and 80 H&E images, and the mix of these images was
assessed by three professional laryngeal pathologists. Cells were assessed to be neoplastic
or normal based on cytology and histoarchitecture. Statistical analysis of the pathologists’
interpretations of SRS and H&E yielded high concordance, with the Cohen’s kappa value
(k) between them ranging between 0.905 and 0.942. Notably, the pathologists were highly
accurate in distinguishing between neoplastic and normal larynx tissues, with a Cohen’s
kappa, k > 90. The team utilized a deep learning methodology, ResNet34, to differentiate
between normal and neoplastic cells; this methodology classified 33 specimens with 100%
accuracy and identified tissue neoplasia even in instances where it appeared normal to the
naked eye.
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Cancer heterogeneity is expressed through multiple aspects, which include evolving
genetic changes, molecular variations and morphologic abnormalities of cells in distinct
subpopulations. It is helpful to analysz tumor heterogeneity in a precise and comprehensive
way. Chen et al. attempted to combine various modalities to fully characterize the genomic
and transcriptomic profiles of cells with high spatial resolution to characterize human
oral squamous cell carcinoma [100]. To attain this, they combined histological analysis
coupled with spatially resolved multiomics analysis in tissue sections, without fixation or
staining. This approach employed SRS microscopy to furnish chemical contrast that reveals
histological tissue architecture, facilitating high-resolution in situ laser microdissection,
which was performed using a home-built SRS system. The system generated 2-color SRS
images based on 2850 cm−1 and 2950 cm−1 Raman shifts. Furthermore, SRH-profiled
microtissue samples were processed for DNA/RNA sequencing to determine unique
genetic profiles corresponding to distinct anatomical regions. Named as the SRH-SMD
methodology, this study demonstrated its capabilities by profiling copy number and gene
expression alterations to histologically characterized regions in human oral squamous cell
carcinoma (OSCC). This approach enabled the dissection of cancer heterogeneity across
multiple measurement modalities encompassing morphology, genome alteration, gene
expression and gene fusions.

Steybe et al. used SRH to produce digital histopathologic images of 80 tissue samples
from eight OSCC patients [101]. Subsequently, the obtained images were compared with
conventional H&E normal mucosa, squamous cell carcinoma, lymphatic tissue, muscle
tissue, salivary gland tissue, connective tissue, adipose tissue and inflammatory cells.
Cohen’s kappa agreements were calculated between images and sections to analyze the
match between two. High correspondence between H&E and SRH (kappa: 0.880) and
high accuracy of SRH (sensitivity: 100%; specificity: 90.91%; PPV: 90.00%, NPV: 100%;
AUC: 0.954) were showcased in the study. The work concludes that SRH provides high
accuracy in discriminating neoplastic and non-neoplastic tissues, while the subclassification
results of non-neoplastic tissues in OSCC patients also depend on tissue type. However,
all patients involved in the study had a diagnosis of oral squamous cell carcinoma, and
the authors perceive that this might have introduced some bias that boosted the sensitivity,
specificity and predictive values of the study.

2.9. Respiratory

Pure multi-walled carbon nanotubes are anticipated to have very low toxicity in vitro,
which was assessed for lung and systemic impacts in mouse trials by Migliaccio et al. [102].
SRS was used to recognize particles in the lungs, kidneys, spleen, liver, mediastinal and
brachial lymph nodes, and olfactory bulb. The images were obtained using an in-house-
built SRS imaging setup. The imaging was first performed at 2700 cm−1 and later at
2930 cm−1, which represents the -CH3 symmetric stretch, with the assumption being
that the first signal originated from the MWCNT (multiwalled carbon nanotubes) due to
two-photon absorption and/or thermal response, while the latter signal corresponded
to biological tissue. Thus, MWCNT localization was obtained by overlaying it with the
tissue SRS image at 2930 cm−1. This work advocates the need for extensive assessments of
nanomaterial exposures that address both short- and long-term effects.

3. AI Based SRH

In a study aimed at implementing a swift, automated analysis of skull base tumors
using intraoperative SRH imaging alongside AI, Jiang et al. implemented a ResNet50
architecture, containing 25.6 million trainable parameters, as a feature extractor [67]. The
work was designed to probe into the ability of SRH to (a) capture diagnostic features
of skull base tumors, (b) use an AI-based computer vision system to effectively identify
diagnostic parameters from an SRH image and (c) detect microscopic tumor infiltration in
meningioma surgeries. The SRH imaging was conducted utilizing two imaging systems:
a prototype clinical SRH microscope, and intraoperative imaging performed using the
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NIO system). Two Raman regions at 2845 and 2930 cm−1 were chosen to feature lipid-rich
and cellular locales. The subtracted image of these regions highlighted cellularity and
nuclei. A virtual H&E color scheme was applied to transform the raw SRS images into SRH
images. Then, a learning methodology called contrastive learning was employed, where
the overall objective was to create an embedding space where similar data points are placed
close together and dissimilar data points are placed far apart. A contrastive loss function
was used to encourage the model to minimize the distance between the representations of
similar points while maximizing the distance between dissimilar pairs, based on theoretical
aspects. The team hypothesized that contrastive representation learning is more robust
to label noise, based on theoretical aspects. In this study, a ResNet50 CNN architecture
was used as a feature extractor. The feature extraction model produces a 2048-dimensional
feature vector for each input image, which is subsequently reduced to 128 dimensions
prior to calculating the cosine similarity metric. The model analyzed three separate loss
functions—supervised categorical cross-entropy, self-supervised contrastive, and super-
vised contrastive—to identify the best performer. In the self-supervised learning setting, a
pair of data was generated through transformation processes, such as blurring or flipping,
attaining image versions x1 and x2 and then normalized vector representations z1 and
z2. This process eventually attains separate clustering of positive and negative vector
representations on a unit hypersphere. The contrastive learning models were optimized
using stochastic gradient descent, and each model was trained using a batch size of 176 for
4 days on GPUs. Upon completion of training the feature extraction model, the features
were classified using a linear classifier layer trained with cross-entropy loss, the Adam
optimizer, and a batch size of 64 over 24 h on GPUs to obtain a probability distribution of
output classes.

For testing purposes, the whole-slide image was fragmented into 300 × 300-pixel
patches. These patches were fed into the trained models to work out the probability
distribution. The patch-level probability distributions were summed up to infer the overall
slide status using a “soft” aggregation approach as opposed to the “hard” aggregation of
the patches. This facilitated the detection of microscopic tumor infiltration, which was
proven in a skull base meningioma surgery. The study attained a 5.1% increase in the
accuracy of diagnostic classification using supervised contrastive learning compared to
models based on cross-entropy. In the multicenter testing set, cross-entropy achieved
an overall diagnostic accuracy of 91.5%, self-supervised contrastive learning achieved
83.9%, and supervised contrastive learning achieved 96.6%. The trained model was able
to segment tumor-normal margins and detect regions of microscopic tumor infiltration in
meningioma SRH images. For segmentation purposes, the team improvised a previously
engineered method for segmenting the SRH image by employing patch-level forecasting,
which incorporated a local neighborhood of overlapping patch predictions to render a high-
resolution probability heatmap, generating a two-channel image with the predicted tumor
class as the first channel and the most probable non-tumor class as the second channel.

Liu et al. compared picosecond laser-based imaging with single-shot femtosecond
SRS (Femto-SRS) and demonstrated that the methodology can reach maximal speed and
accuracy by integrating with U-Net [85]. As shown in Figure 2, excised tissues from gastro-
scopic surger, were placed upon a glass slide and analyzed with an SRS microscope. The
speciality of the work was that it could generate highly chemically precise Pico-SRS from
Femto-SRS. The basic difference observed between Femto- and Pico-SRS methodologies
was that the former, despite having the advantages of high speed and high SNR, is com-
promised by its weakness in chemical selectivity. While Femto-SRS casts single-shot single
channel images, Pico-SRS takes raw images at two Raman frequencies (ω1 = 2845 cm−1

for CH2, ω2 = 2930 cm−1 for CH3) to extract lipid/protein distributions with very high
compositional precision. An engineered U-Net was designed to take in the single channel
Femto-SRS and split it up into a dual channel Pico-SRS, eliminating the need for compli-
cated optical engineering or physical tuning of detection frequencies, thereby doubling the
imaging speed at half of the laser power, while preserving the spatio-chemical information
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of the image. The U-Net consisted of convolutional layers with five down-sampling layers
and five up-sampling layers and a pooling layer in each. Conversion efficiency was con-
firmed by cross-comparing with originally recorded Pico-SRS images using the same FOV
(Figure 2b). As an aid, SHG was used to image collagen fibers. Multi-chemical imaging
results of gastric tissues composed of lipid (green), protein (blue) and collagen fibers (red)
from the output SRH can be observed in Figure 2c. The originally acquired picosecond SRS
images were used as the ground truth for training the U-Net. After U-Net processing into
dual-channel SRS images, chemical decomposition was implemented to output images of
proteins and lipids by simple linear algebra, and collagen images were sourced from SHG.
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Figure 2. (a) The representation portrays the process of gastroscopy and the collection of fresh
biopsies for direct SRS imaging. (b) It features the properties of Femto-SRS and Pico-SRS, including
pulse chirping, spectral resolution and the conversion of a single Femto-SRS image into a pair of
Pico-SRS images using deep U-Net. (c) Multi-chemical imaging of gastric tissue including lipid,
protein and collagen fibers visualized through converted Femto-SRS and SHG channels, color-coded
to SRH. Scale bars: 50µm. (adopted from Liu et al. [85]).

The application of this methodology can be observed in Figure 3a, where the originally
acquired Pico-SRS at two different Raman shifts (ground truth), a conventional Femto-
SRS raw image (input), and the results obtained from the U-Net-mediated conversion of
Femto-SRS to a dual channel Pico-SRS (prediction) are presented. It can be observed that
the U-Net image closely matches with the ground truth image, especially in the 2845 cm−1.
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The intensity profiles of the dashed line for ground truth corresponding to the f cell nucleus
region can be observed in Figure 3b. It can also be observed that the peak intensity profiles
of ground truth and prediction match very closely, with slight variation in the 2845 cm−1

regions, especially in the shaded region used for image generation. Overall results indicate
that the U-Net methodology is extremely capable of realistically converting the single
channel Pico-SRS into dual channel Femto-SRS.
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Figure 3. (a) Deep U-Net based Femto-SRS imaging originally acquired Pico-SRS images of two
channels (ground truth): the single channel Femto-SRS raw image (input), and the U-Net based
prediction. Scale bars: 50µm. (b) Intensity profiles corresponding to the dashed lines in (a) of the
predicted and ground-truth data, showing chemical contrast in the cell nucleus regions (marked in
yellow arrows (a) and in grey (b). (Source Liu et al. [85]).

Furthermore, the team utilized these two CNNs to perform semantic segmentation
and derive a heatmap of the SRS image. Each sub-tile of size (50 × 50 px) was analyzed
36 times to generate probability maps, which were then projected onto the Femto-SRS
image to generate the heatmap denoting intratumor heterogeneity and possible resection
margins. In the first instance of deep learning-based cell counting on SRS images, Zhang
et al. developed a split and combine method wherein the U-Net is adapted to efficiently
perform cell segmentation and cell counting from brain tumor SRS images [103]. The
conventional U-Net architecture is altered and tailored to segment cells across brain tumor
samples, utilizing a limited set of annotations. The process flow can be observed in Figure 4,
which shows the overview of the cell counting framework. This can be regarded as a
hierarchical approach involving (1) cell semantic segmentation and (2) morphological
operation. The first stage involves cell semantic segmentation, where there are two machine
learning options: deep learning near-real-time segmentation with U-Net, and K-means
clustering. The second stage of morphological analysis involves distance transform and
watershed segmentation algorithms, which recognize distinct cell instances.
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Figure 4. (a) The process flow of the SRH analysis. The tissue extracted during excision surgery was
analyzed using SRH and H&E analysis. SRH image analysis was performed using U-Net as option 1.
Option 2 performs H&E staining and subsequent analysis using K-means clustering. The outputs
from option 1 and option 2 were subjected to morphological operation. (b) Cell segmentation and
identification results in a FOV, where the number of cells for each patch is mapped to visualize cell
distribution within a sample (Adopted from Zhang et al. [103]).

As can be seen, excised tissue samples are extracted intraoperatively and are analyzed
using SRS setup. The tissue samples are subjected to U-Net-based split and combine
method analysis. The architecture of the U-Net model can be observed in Figure 4a.
Cell segmentation involves cropping images into small patches of size 256 × 256 pixels
and later combining the segmented patch results, which results in dependable analysis.
The U-Net architecture includes an encoder and decoder, where the encoder implements
the convolutional process, and decoder applies the deconvolutional process. The U-Net
architecture also included 16, 32, 64, 128, and 256 kernels for the encoder and decoder in
the five levels, which reduces the model’s complexity and the number of parameters to be
optimized. Option 1 involves analyzing the SRH images using the deep learning, real-time
U-Net cell segmentation method. For option 2, the study utilized the K-means clustering
method, which involves a H&E staining process, making it time-consuming and hence
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impractical as a quick diagnostic methodology. The K-means clustering methodology is an
unsupervised learning algorithm that has the advantages of efficient calculation and better
understanding. The objective function of the samples X = {x1, . . ., xn} used for clustering
samples with K clusters is

J(C) = ∑k
k=1 ∑ xi∈Ck∥xi − k∥2

where xi − µk is the similarity between xi and µk, and µk is the centroid of cluster k. The
similarity measure selected is Euclidean distance. The paired H&E brain sample images
served as a reference to assess the cell counting results using the SRS images. H&E images
were also analyzed in parallel via the clustering method, which groups the pixels from the
H&E image into groups by recognizing statistically comparable clusters.

Cell counting was performed on SRS and H&E images using option 1 and option 2,
respectively, as shown in Figure 4. Furthermore, a morphological opening operation was
employed to reduce noise, and associated regions are labeled as initial cell instances using
the OpenCV toolbox. However, the presence of overlapping cells affects the precision of
the counting; to address this, a post-morphological analysis that uses distance transform
and watershed segmentation algorithms was used for each region. The distance transform
algorithm creates a distance map among the pixels of each cell image, standardizing it
to determine a threshold value that distinguishes between the cell and background. Any
pixels falling within the ridgeline are further processed by the watershed algorithm, which
works by tracing all pixels toward a local minimum in the direction of steepest descent,
which helps to group the pixels according to the paths to a cell instance. This combination
of methodologies yielded high efficiency in cell instance segmentation and cell counting.
Finally, suppression of noise is attained by excluding regions smaller than 0.37 µm and
removing strong protein or lipid signals that generate noise.

The team further compared various U-NET configurations like U-Net, 7 layer-U-Net,
5 layer-U-Net, FCN and the modified U-Net, of which the modified U-Net reported the best
efficiency. Along with the parameters of accuracy, AUC, sensitivity and specificity, DICE
coefficient and percentage error were included. DICE coefficient is used to evaluate the
spatial overlap of models and percentage error is used to evaluate the performance of cell
counting. In cell counting using SRS images of real human brain tumor specimens, results
were obtained with >98% AUC and R = 0.97 in comparison with H&E staining. The study
illustrates the immense potential of SRS to be used as a modality for pathology analysis and
cell counting in near-real time. However, the necessity of U-Net for manually generated
cell annotation often exposes the model to subjective errors and weak cell contrast. Despite
the implementation of the watershed segmentation algorithm, all overlapped cells cannot
be split, which also poses challenges to absolute accuracy in cell counting.

In 2020, Hollon et al. reported a study that utilized CNNs, trained over 2.5 million
SRH images, capable of intraoperatively diagnosing brain tumors in under 150 s, which
is far better than conventional methods, which take up to 30 min [104]. The study was a
multicenter clinical trial with 278 participants, and CNN-based diagnoses attained 94.6%
accuracy in comparison with 93.9% attained by conventional methods. To identify the
features learned by the CNN for each class, a methodology called maximal mean activation
was employed. This methodology refers to the highest average activation value of the
neurons in a particular layer of a CNN for a given class, by engaging gradient ascent
in the input space. It was revealed that the deep hidden layers detected nuclear and
chromatin morphology, axonal density and histoarchitecture as domain-specific features.
The images generated through activation maximization produced recognizable features for
each histologic class, such as lipid-rich axons in gray matter and, in the case of malignant
glioma, high nuclear density, lipid droplets, and features associated with higher-grade
gliomas. In the case of metastatic tumor cells and pyramidal neurons, cytoplasmic vesicles
and large nuclei with prominent nucleoli were observed, indicating that the CNN had
learned importance of specific histomorphologic, nuclear and cytologic features for image



Cancers 2024, 16, 3917 21 of 29

classifications. The methodology also attempted semantic segmentation of SRH images to
identify tumor-infiltrated diagnostic regions within SRH images.

In 2021, Hollon et al. reported a study that was aimed at exploiting the possibilities of
using CNNs to create an inference algorithm for identifying viable recurrent glioma [91].
The 300 × 300-pixel sliding window algorithm was employed, rolling at a 100-pixel step size
to generate patches from SRH images. As can be observed from Figure 5, the sliding method-
ology yielded high-resolution, high-magnification patches, resulting in a substantially large
dataset. Generated patches were rescaled and readjusted for contrast by trimming the
top and bottom 3% of pixels (based on intensity) from individual channels. Subsequently,
CNN employed Inception-ResNet-v2 architecture for classification, as shown in Figure 5A.
Pre-training of the CNN model was conducted on approximately 3.5 million SRH images
representing 14 histologic subtypes. For data augmentation, affine transformations such
as rotation, shift, and reflection were applied. After pre-training, convolutional layers
were retained while the final classification layers were modified for classification into
three diagnostic classes: tumor recurrence, pseudo-progression, and nondiagnostic tissue.
Subsequently, the network was trained for a fixed number of epochs for each fold using
406,800 patches from 35 patients; training was performed without hyperparameter tuning
to prevent overfitting to the validation set. This was followed by five iterations of k-fold
cross-validation, resulting in five predictions for each patient. The AI model, based on the
Inception-ResNet-v2 CNN architecture, classified image patches sized 300 × 300 pixels.
The best-performing CNN was selected based on cross-validation and subjected to external
validation on a separate testing set comprising 48 patients.

To integrate the patch-based classifications into an aggregated CNN prediction of a
single specimen, a method termed as an inference algorithm had to be developed. The
CNN softmax product for each SRH patch gives a distribution of probability across the
diagnostic classes. All such individual patch diagnoses from the sample were consolidated,
non-diagnostic patches were eliminated, and the softmax vectors were added elementwise
to generate an unnormalized probability distribution over the entire specimen. Based
on the diagnostic threshold calculated from ROC, a final diagnosis can be attained. The
semantic segmentation technique was tailored for SRH images to portion regions of tu-
mor recurrence, pseudo-progression, and nondiagnostic areas. The team also enforced a
semantic segmentation method that covers SRH-CNN probability heatmaps to determine
the spatial regions of tumor recurrence or pseudo-progression.

Hollon et al. produced another study in which they developed an AI model named
‘DeepGlioma’ which attained 93.2% accuracy in molecular classification [105]. DeepGlioma
is a deep neural network-based AI model and is designed to predict paramount genetic
changes in diagnosing diffuse glioma. It achieves molecular classification within two
minutes, avoiding the need for human interpretation. The AI workflow started when, after
acquiring SRH images, the molecular classification model was trained with a multimodal
approach on two datasets: clinical SRH images and genomic sequencing data. This work
identified that weakly supervised patch-based contrastive learning (patchcon) was ideal for
whole-slide SRH classification. The team formed a simple and general framework for multi-
label contrastive learning of visual representations and trained the SRH encoder using
this framework. A genetic embedding model (with which gene information is effectively
represented as numerical vectors), inspired by joint semantic-visual embedding space
and text-to-image generation methodologies, was pre-trained using large-scale, public
glioma genomic data. The co-accompaniment of specific mutations in the same tumor
type portrays the molecular subgroup of diffuse gliomas. These co-occurrences were
effectively learned by the model using global vector embeddings, and the training strategy
learned a linear substructure that matches known molecular subgroups of diffuse gliomas.
Afterwards, the pre-trained SRH and genetic encoders are combined within a unified
transformer model for multi-label molecular classification. Masked labeling, where a group
of genes were masked during input was also employed during training to leverage the
advantages of genetic encoder pre-training and the learned substructure of molecular
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subgroups, wherein the transformer output acts as the pre-trained embedding space. To
display the advantages of patchcon, genetic pre-training, and masked label transformer
training, the team conducted iterative hold-out cross-validation. Subsequently, to strictly
evaluate the model, a series of leave-institution-out cross-validation (LIOCV) trials were
conducted to assess DeepGlioma’s stability across multiple medical centers involved in the
study, and to investigate the impact of increased training data on model performance. To
sum up, the study developed a transformer-based multi modal training strategy that uses
a pre-trained SRH image feature encoder and a large-scale genetic embedding model to
achieve optimal molecular classification performance, accomplishing a genetic classification
accuracy of 93.2% and accurately identifying the diffuse glioma molecular subgroup with
91.5% precision. The developed methodology was further evaluated in a prospective
international study. The leave-institution-out cross-validation yielded stable performance,
with a molecular classification accuracy standard deviation range of ±2.75–6.06% and an
F1 score range of ±1.71–4.70%.

Attempting to accelerate predictions of intraoperative tumor presence, Reinecke et al.
devised a novel AI model featuring a deep residual CNN with an automated pipeline [106].
In a monocentric prospective clinical study conducted with 94 patients undergoing biopsy
or resection of brain or spinal tumors, intraoperative tissue samples were imaged using a
fiber-laser-based SRS microscope to obtain SRH images. A ResNetV50 residual network
was orchestrated and trained to classify three classes of images as tumor, nontumor and low-
quality. The network was trained on a separate previously acquired and annotated dataset
of 570 whole-slide SRH images that result in 1.2 million labeled patches (300 × 300 px)
after patch extraction. The CNN training/validation ratio was maintained at 90:10. Class
imbalance of the dataset was mitigated utilizing inverse class frequencies as weights
for the categorical cross-entropy loss function of the CNN. Training continued until the
accuracy surpassed 95% and the loss fell below 0.10. Three CNN models were separately
trained and evaluated using different random seeds on the same dataset. The CNNs
yielded tumor mean probabilities of 73.9 (±33.2), 76.9 (±35.0) and 76.5 (±33.7), respectively.
Inter-rater analysis of probability values among the three CNNs demonstrated excellent
reliability, with an ICC value of 0.962 (99% CI 0.953–0.969). Similarly, the mean probabilities
for the non-tumor class were 18.9 (±33.1), 18.0 (±32.7) and 18.2 (±31.6), with an ICC
value of 0.977 (99% CI 0.973–0.981) between the CNNs. For the low-quality output class,
the mean probabilities were 7.2 (±15.2), 5.1 (±16.4) and 5.3 (±15.7) for the three CNNs,
respectively, with an ICC of 0.914 (99% CI 0.895–0.929) indicating excellent inter-rater
reliability. The formulated residual network was evaluated by analyzing images from three
randomly selected areas within the tissue samples in comparison with neuropathologists’
observations.
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Figure 5. (A) (a–d) The SRH and CNN workflow for the automated detection of recurrent glioma.
(a) A 1 × 1-mm SRH image is captured in about 60 s, (b) which gets split into 300 × 300-pixel
patches using a dense sliding window method. (c) Each patch is analyzed by a feedforward CNN.
(d) The final softmax layer produces a categorical probability distribution across classes: recurrence,
pseudo-progression/treatment effect, and nondiagnostic. (e) An aggregation algorithm aggregates
patch-level prediction probabilities to yield a single probability of recurrence for each specimen or
patient. Scale bars = 50 µm. (B) Probability heatmaps for each of the three output classes are generated
using patch-level predictions obtained from a dense, overlapping sliding window algorithm. This
method ensures that each pixel in the image has a corresponding probability distribution, resulting
in high-resolution, smoother heatmaps. (C) Each heatmap is assigned to an RGB channel, producing
an overlay of predictions on the entire SRH slide. An SRH image from a patient with recurrent
glioblastoma is shown, where dense tumor areas (red) are highlighted alongside nondiagnostic
regions such as hemorrhagic and necrotic tissue (blue) and gliotic brain tissue (green). This semantic
segmentation technique enhances the interpretation of SRH images by combining CNN predictions
with spatial information about recurrent tumor areas. Scale bars = 50 µm (adopted from Hollon
et al. [91]).
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4. Conclusions and Perspectives

Exponentially growing rates of diseases like cancer, along with a worldwide scarcity
of pathologists, have created an acute need for devices that can swiftly characterize tissues
with high precision in a label-free manner without the need of staining, which can often
alter the integrity of the sample. SRH has evolved over years, leveraging the recent
advancements in fiber-laser, hardware and optical fields, to be a prominent alternative
based on vibrational imaging modalities. This innovative, non-linear technique exploits
the principles of Raman spectroscopy to render comprehensive molecular information
about tissue analytes. The methodology has already been able to deliver reliable-quality
imaging that is helpful for precise diagnosis within reasonable time frames and continues
to improve with advancements in technology, AI/ML, multiplex tags, probes, etc. This
laser-based modality holds potential to be incorporated into microscopes, biopsy needles
and point probes, which extends its usefulness as a diagnostic device. This can further
be combined with other useful modalities like SHG, TPEF, etc., which can aid histologic
imaging processes and reliable decision making. In the context of stimulated Raman
histology (SRH), the balance between Raman bandwidth and imaging speed is a crucial
aspect of achieving high-quality images while maintaining practicality for biological tissue
analysis. To attain practically feasible timelines, the current system confines the analysis to
lipid- and protein-representing Raman peaks. If a wider bandwidth is used, the imaging
process might become slower as more data points are collected. However, narrowing the
bandwidth may speed up the process but lose important information about the biochemical
makeup of the tissue, which may be very crucial in representing the biochemical profile
of the analyte. Simultaneously improving Raman bandwidth and imaging speed may
be attained by engaging recent advancements in multiplexed Raman, while fast spectral
acquisition techniques can facilitate higher-speed acquisition with more spectral data. Such
an improvement can help to overcome the biggest challenge of SRH, especially in the
context of broader organ application, i.e., overdependence on lipid-protein contrast. This
lipid-protein contrast is not dependable in all contexts, and new recording color schemes
must be employed to reflect more molecular compositions. These advancements should
aim to record high-quality signals while keeping both speed and bandwidth in an optimal
range for histological analysis.

It is also worth noting that there is scope for improvement in a few other aspects, such
as automated tissue handling during analysis. Currently, tissue samples for analysis should
be of uniform consistency and size, which permits uniform compression over the glass
slides, and be positioned well within the focal area of the excitation laser. Stiffer tissues and
those greater than 3 mm in size can affect the imaging quality, as they may fall outside the
field of vision of the device, necessitating multiple sessions of imaging. These aspects may
be addressed by incorporating an AI-based surface profiling methodology, which can map
the tissue for consistency, texture and geometry beforehand. Such automated handling can
retain the imaging surface sharply within the laser focal area to perform optimal imaging.
It is also worth noting that, even though SRH imaging closely resembles conventional H&E
staining, the matches between both methodologies are not exact and require some expertise
for histopathologists to analyze them.

Recent advancements in AI/ML-based image analysis have tremendously helped
the modality in shortening time frames while attaining high precision. Several studies
have established the effectiveness of the modality in histologic purposes, most of which
have been summarized in this review. The blend of AI and SRH has huge potential and
can safely be considered as a next-generation imaging tool that can aid and relieve the
workload for pathologists.
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