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Abstract: Background and Objectives: Chest X-ray (CXR) images are commonly used to diagnose
respiratory and cardiovascular diseases. However, traditional manual interpretation is often sub-
jective, time-consuming, and prone to errors, leading to inconsistent detection accuracy and poor
generalization. In this paper, we present deep learning-based object detection methods for auto-
matically identifying and annotating abnormal regions in CXR images. Methods: We developed
and tested our models using disease-labeled CXR images and location-bounding boxes from E-Da
Hospital. Given the prevalence of normal images over diseased ones in clinical settings, we created
various training datasets and approaches to assess how different proportions of background images
impact model performance. To address the issue of limited examples for certain diseases, we also
investigated few-shot object detection techniques. We compared convolutional neural networks
(CNNs) and Transformer-based models to determine the most effective architecture for medical image
analysis. Results: The findings show that background image proportions greatly influenced model
inference. Moreover, schemes incorporating binary classification consistently improved performance,
and CNN-based models outperformed Transformer-based models across all scenarios. Conclusions:
We have developed a more efficient and reliable system for the automated detection of disease labels
and location bounding boxes in CXR images.

Keywords: chest X-rays; deep learning; few-shot object detection; object detection

1. Introduction

Medical images play a crucial role in disease prevention, detection, and diagnosis,
providing essential support for clinicians. Of the various types, chest X-ray (CXR) images
are particularly valuable for detecting abnormalities in the lungs, heart, and bones, which
aids in making appropriate treatment decisions. The accurate analysis of these images is
highly beneficial for improving patient care. In this study, we aim to enhance diagnostic
accuracy by analyzing CXR images for 12 common chest conditions, including aortic
sclerosis (calcification), arterial curvature, small pulmonary nodules, pulmonary nodule
shadows, tuberculosis, pulmonary fibrosis, increased lung markings, prominent hilar
regions, spinal lesions, intercostal pleural thickening, cardiac hypertrophy, and the presence
of heart pacemakers. Twelve conditions were selected for study due to their reliable high-
quality annotations, which are crucial for developing accurate models. Additionally, they
have clear visual manifestations, making them more detectable via automated analysis.

Traditionally, doctors manually detect abnormalities in chest images through visual
examination, which can be influenced by personal biases and external factors, leading to
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inconsistent results. During initial CXR screenings, physicians must also manually label
lesion areas, a process that is time-consuming and labor-intensive. With the rapid growth
in the volume of clinical image data, the workload for doctors has increased significantly.
In recent years, artificial intelligence, particularly machine learning (ML), has emerged
as a powerful tool for addressing such challenges. Deep learning, a subset of ML, has
shown great success in computer vision tasks like image classification, segmentation,
and object detection. Consequently, researchers have begun applying deep learning to
medical image analysis to automate tasks such as disease diagnosis, detection, and lesion
localization. These automated methods allow time savings, improving diagnostic efficiency
and reducing the impact of external factors.

Several studies have applied deep learning to classify CXR images, aiming to aid
in diagnosing a wide range of diseases. In particular, deep learning has been widely
used to support automated diagnosis of COVID-19 from CXR images. For example, Ali
et al. [1] developed a densely connected squeeze convolutional neural network (CNN)
for classifying cases of COVID-19 and pneumonia with high accuracy, showcasing the
potential of deep learning to enhance diagnostic reliability in the context of a pandemic.
Singh et al. [2] also proposed a CNN architecture where segmentation and classification
were combined to boost the classification accuracy for COVID-19-affected CXR images.
Other studies have focused on identifying various types of pneumonia. Garstka and
Strzelecki [3] developed a custom CNN, trained on a small dataset, to classify pneumonia
types from CXR images. Additionally, recent studies have explored using deep learning to
detect multiple lung diseases. For instance, Rana et al. [4] created an automated system
for classifying 10 different lung diseases, utilizing a flexible CNN architecture in which
graph neural networks were integrated with feedforward layers. A comprehensive analysis
of deep learning applications in lung cancer diagnosis and classification is provided in a
recent systematic review [5].

Object detection involves identifying and locating specific objects within an image,
merging recognition with localization tasks. Through the application of modern object
detection techniques, notable success has been achieved across various fields, including
wildlife monitoring [6], autonomous driving [7], defect inspection [8], security surveil-
lance [9], and face mask detection [10]. These advances have largely been driven by deep
learning models, which are typically based on two architectures: convolutional neural
networks (CNNs) [11–16] and self-attention-based Transformers [17]. CNN-based detec-
tors are classified as either one-stage models, like the YOLO series [18–20], SSD [21], and
RetinaNet [22], which prioritize speed, or two-stage models, such as the R-CNN family [23–25],
which focus on accuracy. Recently, Transformer-based models like DETR [26] and De-
formable DETR [27] have also gained popularity, reflecting ongoing innovations in the field
of object detection.

Despite this progress, there are several challenges hindering the application of deep
learning in medical image object detection [28–30]. For example, most deep learning object
detection models are trained on the MS COCO dataset [31], which consists primarily of
images unrelated to medical applications. This raises concerns about whether models
trained on such datasets can perform well when applied to CXR images—a key issue this
study seeks to address.

Another challenge is the costly and time-consuming process of labeling medical image
data, especially for object detection tasks that require detailed annotations, such as adding
bounding boxes around lesions. This task is even more difficult for CXR images, as it
requires the expertise of radiologists, making the process more complex and resource-
intensive [30]. As a result, the dataset used in this study contains only a limited number of
training images for each disease category, with some categories having very few examples.
This data scarcity poses a significant challenge for training deep learning models, for
which large amounts of labeled data to avoid overfitting are required. To address this, we
employ few-shot object detection methods, which are designed to recognize new (unseen)
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disease categories using only a few training examples after the model has been trained on
numerous examples of known (seen) categories [32–34].

In this study, we aim to improve CXR image analysis by focusing on disease labels and
location bounding boxes for object detection. We explore advanced deep-learning models,
incorporating few-shot techniques to enhance their performance. Additionally, we compare
various deep learning methods to evaluate their strengths and weaknesses, ultimately
seeking to develop a more efficient and reliable system for the automated detection of chest
diseases in CXR images.

2. Related Work

Substantial progress has been made in deep learning for image classification and object
detection, impacting fields like medical imaging. However, accurately detecting specific
disease markers in CXRs remains challenging, especially for rare conditions with limited
data. A review of the current classification and detection methods reveals several gaps and
limitations that serve as motivation for further research in this area.

2.1. Classification

Significant progress has been made in network architectures for image classification.
Scaling up neural networks by increasing their depth can enhance accuracy but may also
lead to the vanishing gradient problem. This was addressed through skip connections using
ResNet [15] to improve gradient flow in deeper networks. DenseNet [16] is an expansion
of ResNet with dense connections that allow each layer to receive feature maps from all
previous layers, enabling feature reuse across layers to reduce parameter count and improve
efficiency. Model scaling was further optimized in developing EfficientNet (B0–B7) [35] by
balancing depth, width, and resolution, achieving a strong trade-off between accuracy and
computational cost.

However, while these classification models are powerful for general tasks, they are lim-
ited in their ability to localize and classify the smaller more subtle abnormalities often found
in CXRs, which require precise object detection capabilities beyond merely classification.

2.2. Object Detection

Different object detection architectures, typically categorized as one- or two-stage
detectors, each have strengths and weaknesses. Two-stage detectors like those derived
from the R-CNN framework are generally more accurate as they utilize a refined candidate
selection process that filters out negative samples early, while one-stage detectors, exempli-
fied by the YOLO series, focus on real-time detection but often generate too many candidate
boxes, causing class imbalance by overfocusing on background samples. The focal loss
function introduced in RetinaNet [22] improved the one-stage detector by reducing the
influence of easy samples and enhancing learning from difficult samples. RetinaNet also
uses a feature pyramid network [36] to integrate features from feature maps of different
scales, thereby enhancing its feature extraction capability. YOLOv3 was improved us-
ing a decoupled head design, stronger data augmentation, and a shift to an anchor-free
framework in developing the real-time detector YOLOX [37], with fewer parameters and
better generalization. The problem of fixed IoU thresholds was addressed using Dynamic
R-CNN [38] by dynamically adjusting the threshold during training and refining the loss
function based on regression label statistics. DETR [26] revolutionized object detection by
employing the Transformer architecture for end-to-end detection, eliminating the need for
traditional anchor boxes or region proposals, though it suffers from slow convergence and
poor small object detection. These issues were addressed using Deformable DETR [27],
which focuses attention on key points near a reference point, improving performance for
high-resolution images and small object detection.

Although these models have been adapted for various fields, their direct application
to CXR analysis remains problematic due to issues such as high computational demand,
slow convergence, and difficulties in detecting small but clinically relevant features. This
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highlights the need for more specialized object detection approaches that can overcome
these limitations within the context of medical imaging.

2.3. Few-Shot Object Detection (FSOD)

The aim of few-shot learning is to build a model that can accurately classify images
using very few training examples for specific classes. In FSOD, the categories are divided
into base classes (with many training examples) and novel classes (with fewer examples).
There are two stages in the training process: base training and k-shot fine-tuning. During
base training, the model is only trained on base class objects, even if the images also
contain novel class objects. In the k-shot fine-tuning stage, a small number (k) of bounding
boxes from each class are used to refine the model. This approach is particularly useful in
medical image analysis, where it may be difficult to collect data, with some diseases being
extremely rare.

Meta-learning, which focuses on “learning to learn”, is crucial for FSOD, where models
are trained on tasks from dataset subsets to rapidly adapt to new tasks. This fine-tuning
approach was previously considered less effective until the two-stage fine-tuning approach
TFA [39] challenged this view. TFA, built on Faster R-CNN, was initially trained on base
classes and fine-tuned only the box predictor for all classes, improving accuracy by replac-
ing the fully connected classifier with a cosine similarity-based classifier. The classification
accuracy for novel classes was improved through FSCE [40] by using contrastive learning
to separate novel instances from base classes. The contrastive proposals encoding loss were
added to the Faster R-CNN loss, enhancing accuracy. In Meta-DETR [41], the first image-
level few-shot detector, generalization was improved by incorporating the correlational
aggregation module to capture inter-class correlations and reduce misclassification.

While these methods have shown success in domains like Pascal VOC and MS COCO,
their performance on CXR datasets remains underexplored. Current FSOD techniques
often struggle with inter-class variability and can suffer from misclassification, particularly
in complex medical datasets where diseases may have overlapping visual features. Thus,
developing a specialized FSOD approach for CXRs could significantly enhance model
adaptability and reliability in detecting rare diseases.

2.4. Deep Learning-Based Object Detection for CXR Images

In recent years, deep learning-based object detection has been applied to CXR images
for identifying foreign objects [42] and localizing abnormalities [43,44] in assisting the
diagnosis of various diseases. Advanced architectures such as YOLO, RetinaNet, Mask
R-CNN, and Faster R-CNN have been adapted for CXR analysis, achieving high accuracy
and fast localization [45]. Notably, in a direct comparison of performance, the YOLOX
model surpassed radiologists [44]. Large datasets with ground-truth bounding boxes, such
as VinDr-CXR (open dataset of 18,000 CXRs with 28 abnormalities) [46] and CXR-AL14
(dataset available upon request for 165,988 CXRs with 14 abnormalities) [44], have been
created to enhance model training.

To improve nodule detection performance, Behrendt et al. [47] evaluated strategies
such as transfer learning using pre-trained weights from the VinDr-CXR and COCO
datasets, as well as training from scratch. They addressed class imbalance by augmenting
training data with generated nodules in healthy CXRs and compared this to oversampling
the less frequent class (CXRs with nodules). After testing various state-of-the-art object
detection algorithms, they developed a systematic approach that incorporated the most ef-
fective techniques, ultimately outperforming all competitors in the NODE21 competition’s
detection track [48].

3. Materials
3.1. Dataset

We used a dataset containing 2123 CXR images, featuring both normal cases and 18
types of diseases. The images were in the DICOM format. These images were retrospec-
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tively collected from the archiving and communication system (PACS) at E-Da Hospital,
covering patient CXRs from January 2008 to December 2018. Along with the images, the
dataset included patient information such as gender, age, and diagnostic reports from
radiologists. The Institutional Review Board of E-Da Hospital approved this study, and all
patients provided written informed consent.

The 18 disease types were chosen by reviewing diagnostic reports and selecting
those with reliable high-quality annotations. We also prioritized diseases with visual
manifestations that could be effectively detected by object detection algorithms, making
them suitable for automated analysis.

An experienced radiological physician (K.-Y.L.) identified and marked lesion regions
on the image. The rectangular bounding box was carefully placed to closely surround the
lesion, capturing its full extent while minimizing any inclusion of unaffected tissue. After
this initial placement, another senior radiologist (N.-H.L.) reviewed and confirmed that
bounding boxes were accurately sized and precisely positioned.

Images were excluded if they were of poor quality or had unclear diagnostic reports.
We also excluded images of minors (patients under 18). After removing duplicates and
missing data, we retained 1802 images, each representing a unique patient. The image sizes
varied, with heights ranging from 1304 to 4280 pixels and widths from 1066 to 4280 pixels.
The dataset employs multi-label classification, as a single patient can have multiple diseases.
Considering the number of cases as well as the sizes and locations of bounding boxes, we
grouped the 18 diseases into 12 categories based on medical guidance. Table 1 presents
the number of images before and after merging the diseases, with the abbreviations of the
12 disease names provided for simplicity. Notably, the number of normal cases is much
higher than the combined total of the 12 diseases, indicating there is a significant class
imbalance in the dataset.

Table 1. Number of images in each disease category before and after merging.

Before After

Categories Count New Categories Abbr. Count

Normal 1212 Normal Normal 1212

Aortic arch atherosclerotic plaque 28

Aortic sclerosis
(calcification) AorScl(Cal) 83

Aortic arch calcification 16

Aortic atherosclerosis 25

Aortic wall calcification 20

Aortic curvature 65
Arterial curvature ArtCur 93

Thoracic vertebral artery curvature 28

Small pulmonary nodules 15 Small pulmonary nodules SmaPulNod 15

Shadows of pulmonary nodules 8 Shadows of
pulmonary nodules ShaOfPulNod 8

Tuberculosis 6 Tuberculosis tuberculosis 6

Pulmonary fibrosis 30 Pulmonary fibrosis PulFib 30

Increased lung streak 89
Increased lung patterns IncLunPat 225Lung field infiltration 138

Obvious hilar 55 Obvious hilar ObvHil 55

Degenerative joint disease of the thoracic spine 75
Spinal lesions SpiLes 170Scoliosis 100

Intercostal pleural thickening 52 Intercostal pleural
thickening IntPleThi 52

Cardiac hypertrophy 41 Cardiac hypertrophy CarHyp 41

Heart pacemaker placement 9 Heart pacemaker
placement HeaPacPla 9
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Each image in the 12 disease categories contains one or more bounding boxes. For
example, annotations for ObvHil (obvious hilar) and PulFib (pulmonary fibrosis) are
often paired, while multiple bounding boxes are typical for SmaPulNod (small pulmonary
nodules). Figure 1 is a bar chart illustrating the total number of images and bounding boxes
for each disease category, and Figure 2 shows sample X-ray images with their corresponding
bounding boxes across the 12 categories.
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3.2. Data Preprocessing

We processed the CXR images using header data embedded in the DICOM files. If
the DICOM file indicated a logarithmic relationship between pixel values and X-ray beam
intensity, we applied “intensity log transformation”. In this process, each pixel value x[i]
is adjusted based on the visible range defined by the Window Center (WC) and Window
Width (WW). The visible pixel range is between iMin = WC− WW

2 and iMax = WC+ WW
2 ,

while the number of bits for each pixel is defined by BitsStored. The steps for the intensity
log transformation are depicted in Algorithm 1.

Algorithm 1 Pseudocode of the intensity log transformation

Input: x
for i = 0, · · · , N − 1 do

if x[i] < iMin, then x[i] = iMin
if x[i] > iMax, then x[i] = iMax

z[i] = −log
(

1+x[i]
2BitsStored

)
end for

Output: z

CXR images often contain elements, such as chest markers, that are irrelevant to disease
detection. These markers often appear overexposed after logarithmic transformation, such
as in the example of letter “L” (Figure 3a). To enhance the areas of interest, we adjusted
image contrast using the “simplest color balance algorithm”, in which saturation limits of
vmin and vmax are set to improve contrast (Algorithm 2).

Algorithm 2 Pseudocode of the simplest color balance

Input: z
for i = 0, · · · , N − 1 do

c[i] = z[i]−vmin
vmax−vmin

if c[i] < 0, then c[i] = 0
if c[i] > 1, then c[i] = 1

end for
Output: c
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In this study, we set vmin = 0 and vmax = 2.5. Figure 3 shows the progression from the
original DICOM image, through intensity log transformation, to the final contrast-adjusted
image using the simplest color balance algorithm. Intensity histograms for each step are
also shown.

3.3. Experimental Data Setups

To assess the impact of having a large proportion of normal images in our dataset,
a common issue in clinical practice, we created three datasets for our object detection
models. First, the entire dataset (1802 samples), labeled Dataset A, was divided into
training, validation, and test sets with approximate proportions of 63.4%, 16.5%, and 20.1%,
respectively, while ensuring similar disease distributions across all subsets. Next, we
created Dataset B by removing two-thirds of the normal images from the training set and
Dataset C by removing all normal images from the training set. Table 2 shows the number
of images in each dataset.

Table 2. Number of images in the three datasets used for object detection.

Categories 1 Training 2 Validation Test Total 2

Normal 779/178/0 189 244 1212/611/433

AorScl(Cal) 52 15 16 83

ArtCur 57 18 18 93

SmaPulNod 9 3 3 15

ShaOfPulNod 6 1 1 8

tuberculosis 3 1 2 6

PulFib 20 6 4 30

IncLunPat 130 42 53 225

ObvHil 34 12 9 55

SpiLes 107 28 35 170

IntPleThi 35 8 9 52

CarHyp 23 9 9 41

HeaPacPla 6 1 2 9

Unique images 1143/542/364 297 362 1802/1201/1023
1 Categories in bold represent novel classes. 2 Datasets A, B, and C have the same number of images for each
disease category but differ regarding the number of images for the normal category in the training set. For
simplicity, the notation A/B/C is used to represent the number of images in Datasets A, B, and C, respectively.

For the FSOD models, we performed an extra step, dividing the disease categories
into base and novel classes for base training and k-shot fine-tuning. We used the same
three datasets created earlier, designating categories with fewer images—SmaPulNod,
ShaOfPulNod (shadows of pulmonary nodules), tuberculosis, PulFib, and HeaPacPla
(heart pacemaker placement)—as novel classes. The remaining seven categories were
treated as base classes. During k-shot fine-tuning, we set k to 1, 2, 3, 5, or 10, meaning that
we randomly selected up to 10 images for annotation per novel category. When there were
fewer than 10 images in a category, we used all of the available images. An image selected
for one category was not reused for another.

4. Methods

In this study, we applied object detection and FSOD methods to identify disease types
and lesion areas in CXR images. We designed four analytical schemes to determine the
most effective approach. These schemes involved using either object detection or the FSOD
models, with or without a preliminary binary classification step to determine the presence
of disease in the image. For binary classification, object detection, and FSOD tasks, we
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selected two, five, and three models, respectively, as shown in Table 3. To understand the
impact of model architecture on performance for both object detection and FSOD tasks, we
chose models from two primary categories: CNN-based and Transformer-based models.
Additionally, we calculated the specificity of normal images in the test set for each scheme
to assess whether the models could maintain a low misdiagnosis rate while excelling at
disease detection.

Table 3. Models used in this study.

Architecture

CNN-Based Transformer-Based

Task

Binary classification EfficientNet-B3 [35], DenseNet121 [16]

Object detection RetinaNet [22], YOLOX [37], Dynamic
R-CNN [38] DETR [26], Deformable DETR [27]

Few-shot object detection TFA [39], FSCE [40] Meta-DETR [41]

4.1. Scheme 1: Object Detection

In Scheme 1, we trained object detection models using three datasets: A, B, and C.
After training, we tested these models on the test set and calculated key evaluation metrics,
including average precision (AP) and mean average precision (mAP), for detecting diseases
in the 12 disease categories. The overall process is depicted in Figure 4.
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object detection (FSOD).

4.2. Scheme 2: Binary Classification + Object Detection

In this scheme, a binary classification step is introduced before object detection. Two
classification models, Classification Models A and B, were trained on Datasets A and B,
respectively, to determine whether a patient had any disease. Classification Model A uses
the EfficientNet-B3 architecture, while Classification Model B employs DenseNet121.

During testing, images from the test set were first classified by the binary models.
Images classified as positive (indicating the presence of disease) were passed onto the object
detection models trained in Scheme 1. Those classified as negative (indicating no disease)
were labeled as normal and were not subjected to further object detection.

Since Scheme 1 involves training object detection models on three datasets and this
schedule includes classification models on two datasets; there are six possible outcomes for
each test image: A + A, A + B, B + A, B + B, C + A, and C + B. For instance, in the A + B
case, the image was first classified by the classification model trained on Dataset B and, if
positive, analyzed by the object detection model trained on Dataset A. Figure 5 illustrates
this process.



Diagnostics 2024, 14, 2636 10 of 19

Diagnostics 2024, 14, 2636 10 of 21 
 

 

4.1. Scheme 1: Object Detection 
In Scheme 1, we trained object detection models using three datasets: A, B, and C. 

After training, we tested these models on the test set and calculated key evaluation met-
rics, including average precision (AP) and mean average precision (mAP), for detecting 
diseases in the 12 disease categories. The overall process is depicted in Figure 4. 

 
Figure 4. Flowchart for Schemes 1 and 3, outlining the steps involved in object detection or few-shot 
object detection (FSOD). 

4.2. Scheme 2: Binary Classification + Object Detection 
In this scheme, a binary classification step is introduced before object detection. Two 

classification models, Classification Models A and B, were trained on Datasets A and B, 
respectively, to determine whether a patient had any disease. Classification Model A uses 
the EfficientNet-B3 architecture, while Classification Model B employs DenseNet121. 

During testing, images from the test set were first classified by the binary models. 
Images classified as positive (indicating the presence of disease) were passed onto the ob-
ject detection models trained in Scheme 1. Those classified as negative (indicating no dis-
ease) were labeled as normal and were not subjected to further object detection. 

Since Scheme 1 involves training object detection models on three datasets and this 
schedule includes classification models on two datasets; there are six possible outcomes for 
each test image: A + A, A + B, B + A, B + B, C + A, and C + B. For instance, in the A + B case, the 
image was first classified by the classification model trained on Dataset B and, if positive, an-
alyzed by the object detection model trained on Dataset A. Figure 5 illustrates this process. 

 
Figure 5. Flowchart for Schemes 2 and 4, illustrating the process for binary classification followed 
by object detection or few-shot object detection (FSOD). 

Figure 5. Flowchart for Schemes 2 and 4, illustrating the process for binary classification followed by
object detection or few-shot object detection (FSOD).

4.3. Scheme 3: Few-Shot Object Detection

Scheme 3 mirrors Scheme 1 but is focused on the FSOD models. These models were
trained on three datasets (A, B, and C), and AP and mAP were calculated for detecting the
12 diseases using the test set.

4.4. Scheme 4: Binary Classification + Few-Shot Object Detection

This scheme is similar to Scheme 2 except that after binary classification, the FSOD
models from Scheme 3 are used for further detection. Like Scheme 2, this method generates
six possible outcomes: A + A, A + B, B + A, B + B, C + A, and C + B.

4.5. Evaluation Metrics

To assess the performance of the binary classifiers, we used standard metrics: accuracy,
precision, recall, and F1-score. For object detection and image segmentation, we used the
intersection over union (IoU) metric, which measures the overlap between a predicted
bounding box (Pred) and the ground-truth box (GT). The IoU is calculated as follows:

IoU =
|GT ∩ Pred|
|GT ∪ Pred| , 0 ≤ IoU ≤ 1

Here, |GT ∩ Pred| represents the overlapping pixels between the predicted and ground
truth boxes, and |GT ∪ Pred| is the total number of pixels in both boxes. An IoU of 0
indicates no overlap, while an IoU of 1 indicates a perfect match. We set a threshold
of 0.5 for this study, meaning that predictions with IoU values above this threshold are
considered correct.

In object detection, the mean average precision (mAP) is a key metric for evaluating
model performance. It combines precision and recall by calculating the average precision
(AP) for each class. For M object classes, the AP for the mth class is calculated as follows:

APm =
∫ 1

0
PRm(r)dr

where PRm(r) is the precision–recall curve for the mth class. To compute precision and recall,
predicted boxes are ranked based on confidence scores. If the IoU between a predicted and
ground–truth box exceeds the threshold, it is considered a true positive; otherwise, it is a
false positive. After calculating precision and recall for all predictions, the precision–recall
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curve is plotted, and the area under the curve is calculated for each class. The mAP is then
calculated as the average of APs across all classes:

mAP =
1
M

M

∑
m=1

APm

The mAP score ranges from 0 to 1, with values closer to 1 indicating better model perfor-
mance in detecting and localizing objects.

5. Results

We present the results from experiments conducted on three custom-designed datasets
using four different analysis approaches. Two binary classification models were trained
on a P100 GPU, while the object detection and FSOD models were trained using NVIDIA
GeForce RTX 3080 and GTX 1080 Ti GPUs.

5.1. Binary Classification

EfficientNet-B3 was trained on Dataset A, and DenseNet121 on Dataset B. These
models were used in Schemes 2 and 4 to predict whether an image contained at least one
instance of disease. Pretrained ImageNet weights were used, with only the fully connected
layer retrained. The hyperparameters are listed in Supplementary Table S1, and images
were normalized using the ImageNet mean and standard deviation.

Table 4 presents the performance of these models on the test set. Due to class imbalance,
we used both the accuracy and F1-score for evaluation. EfficientNet-B3, trained on Dataset
A, outperformed DenseNet121, trained on Dataset B, across all metrics except precision.

Table 4. Performance comparison of the two binary classification models.

Accuracy F1-Score Precision Recall

EfficientNet-B3
on Dataset A 88.12% 85.85% 84.41% 88.05%

DenseNet121 on
Dataset B 86.74% 85.34% 86.44% 84.56%

5.2. Comparison of Analytic Schemes

The training hyperparameters for object detection and FSOD models are provided in
Supplementary Tables S2 and S3.

5.2.1. Results on mAP

Figure 6 shows the mAP performance of various object detection models for Schemes 1
to 4 across multiple datasets. Here, AP was calculated using IoU greater than 0.5 (mAP@0.5).

Some key patterns are observed. 1. Overall Performance: Processing test images
through a binary classification model before object detection yielded better results. 2. Top
Performers: FSCE 10-shot consistently achieved top mAP values, particularly on the C + A
dataset, where it peaked at 0.343. YOLOX also performed well, peaking at 0.300 on the
B + A dataset, although it did not maintain top performance across all datasets. Dynamic
R-CNN and RetinaNet also performed competitively, with notable peaks around 0.26 and
0.261, respectively. 3. Low Performers: The three Transformer-based models consistently
achieved very low mAP values across datasets, with DETR and Meta-DETR maintaining a
flat trend near zero. 4. Few-Shot Trends: Models trained with a higher number of shots
generally performed better, with the TFA and FSCE 10-shot achieving higher mAP than
TFA and FSCE 1-shot across datasets. However, the mAP gains from increasing the shot
number were not always linear and varied across datasets. 5. Dataset Influence: Training
classification models on Dataset B appeared to be more challenging, as evidenced by the
lower performance of models when trained on the x + B rather than the x + A dataset.
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Performance generally peaked on the C + A dataset, where more models achieved their
highest mAP values. 6. Model Stability: Some models, such as Dynamic R-CNN and
RetinaNet, exhibited greater stability with relatively smaller fluctuations in mAP across
datasets. On the other hand, YOLOX and FSCE had more variability, suggesting that
their performance may be more sensitive to dataset characteristics. In summary, Figure 6
shows that processing test images with a binary classification model before object detection
generally improved results, with FSCE 10-shot achieving the highest mAP values, especially
on the C + A dataset. Models like YOLOX, Dynamic R-CNN, and RetinaNet performed
well but showed varying stability across datasets, while Transformer-based models (DETR,
Meta-DETR) consistently had low mAP values.
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Figure 6. Mean average precision (mAP) results for Schemes 1 to 4. The y-axis represents mAP values,
while the x-axis shows the datasets used for model training. “A” refers to training the object detection
model on Dataset A (Schemes 1 and 3), while “A + B” indicates first using the classification model
trained on Dataset B and then the object detection model trained on Dataset A (Schemes 2 and 4).
The same applies to other labels. For the object detection models, each line is the performance of the
indicated model on the test set. For the FSOD models, the five lines are the performance for each
few-shot fine-tuning scenario (1-shot, 2-shot, 3-shot, 5-shot, 10-shot). The mAP of the best-performing
model is shown for each dataset labeled on the x-axis.

5.2.2. Results for Base and Novel mAP

In FSOD, the categories were divided into base and novel classes. During base training,
only base class bounding boxes were used, with novel classes reserved for few-shot fine-
tuning. It was expected that the FSOD models would perform better on novel classes, on
account of their fewer samples, while the traditional object detection models would excel
on base classes.

Figures 7 and 8 show the mAP for base and novel classes of various object detection
models across a series of datasets. First, we discuss base classes. 1. Top Performers: YOLOX
achieved the highest base mAP value of 0.339 on the A + A dataset. It consistently ranked
among the top-performing models across multiple datasets. RetinaNet also performed
strongly, with a peak of 0.335 and high base mAP values across several datasets. It exhibited
more consistent performance with smaller fluctuations than YOLOX. Dynamic R-CNN also
performed relatively well, although its base mAP values were slightly lower and showed
some variability compared to RetinaNet. 2. Low Performers: The three Transformer-
based models consistently had very low base mAP values across datasets, with DETR
and Meta-DETR remaining almost flat near zero. 3. Few-Shot-Based Model Performance:
Higher-shot FSOD models (such as FSCE 10-shot) tended to have better base mAP values
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than their lower-shot counterparts but were generally outperformed by traditional object
detection models such as YOLOX and RetinaNet on most datasets. 4. Model Stability:
RetinaNet and Dynamic R-CNN showed trends of more stable performance, with fewer
abrupt changes in base mAP across datasets. YOLOX, while generally performing well,
had some larger fluctuations in base mAP, indicating that it may be more sensitive to
changes in dataset characteristics. Overall, Figure 7 highlights that YOLOX and RetinaNet
performed well and were relatively robust across datasets, while DETR and Meta-DETR
consistently underperformed. Models trained with a higher number of shots (e.g., FSCE
10-shot) generally achieved better mAP than lower-shot variants, though not at the level of
the top models like YOLOX and RetinaNet.
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Figure 7. Base mean average precision (base mAP) results for Schemes 1 to 4. The y-axis represents
base mAP values, while the x-axis shows the datasets used for model training. “A” refers to training
the object detection model on Dataset A (Schemes 1 and 3), while “A + B” indicates first using the
classification model trained on Dataset B and then the object detection model trained on Dataset A
(Schemes 2 and 4). The same applies to other labels. For the object detection models, each line is
the performance of the indicated model on the test set. For the FSOD models, the five lines are the
performance for each few-shot fine-tuning scenario (1-shot, 2-shot, 3-shot, 5-shot, 10-shot). The base
mAP of the best-performing model is shown for each dataset labeled on the x-axis.

Second, we discuss novel classes. (1). Top Performers: FSCE 10-shot was the best-
performing model, reaching a peak novel mAP of 0.515 on the C + A dataset and another
high of 0.414 on the C + B dataset. This suggests that FSCE 10-shot was particularly
effective at handling novel data. Other FSCE variants and YOLOX also performed well,
achieving top novel mAP values across multiple datasets. (2). Low Performers: DETR
and Meta-DETR continued to exhibit low performance, with novel mAP values near zero
across most datasets. The traditional object detection models, such as Dynamic R-CNN and
RetinaNet, showed relatively low novel mAP values, suggesting they may not generalize
as well to novel classes. (3). Few-Shot Trends: Models trained with a higher number of
shots (e.g., FSCE 5-shot and FSCE 10-shot) generally performed better on novel classes than
their lower-shot counterparts. The increase in mAP with higher shot numbers suggests
that these models benefited from having additional samples to learn novel object detection.
(4). Dataset Influence: Training classification models on Dataset B appeared to be more
challenging, given the lower performance of models trained on the x + B than on the x + A
dataset, and there was a general peak in performance on the C + A dataset, with more
models achieving their highest mAP values. In summary, Figure 8 highlights that FSCE
(particularly 10-shot) excelled in novel detection tasks, and YOLOX also performed well.
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Higher-shot models generally performed better in detecting novel objects, while lower-shot
and non-few-shot models struggled, particularly on challenging datasets.
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the object detection model on Dataset A (Schemes 1 and 3), while “A + B” indicates first using the
classification model trained on Dataset B and then the object detection model trained on Dataset A
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5.2.3. Disease-Wise AP Results

We evaluated model performance for each disease category, as shown in Supple-
mentary Figures S1–S4. For the FSOD models, only the 10-shot fine-tuning results are
presented. In Schemes 1 and 2, DETR performed poorly, detecting a few lesions in the
categories ArtCur (arterial curvature) and SpiLes (spinal lesions). Similarly, Meta-DETR,
a Transformer-based model, underperformed in Schemes 3 and 4, showing only limited
lesion detection in the IncLunPat (increased lung patterns) category. By contrast, the CNN-
based models performed well in most categories, with object detection models excelling
in the categories IncLunPat, SpiLes, CarHyp (cardiac hypertrophy), and HeaPacPla. The
FSOD models performed better when the test images were first processed through a classifi-
cation model. The best prediction results were observed for HeaPacPla, with many models
demonstrating strong performance. For the lower-performing category ShaOfPulNod, its
AP can be boosted to as high as 1 using FSCE with the combinations C + A or C + B.

We also investigated whether the number of shots used in fine-tuning affects novel
class performance. Supplementary Figure S5 shows the results of FSCE, the best-performing
FSOD model, for five novel classes: SmaPulNod, ShaOfPulNod, tuberculosis, PulFib,
and HeaPacPla. For SmaPulNod and ShaOfPulNod, models were trained on Dataset C
with 10-shot fine-tuning outperforming the others. For PulFib, better performance was
achieved using 1-shot and 5-shot fine-tuning, while for tuberculosis, Classification Model
A misclassified images as normal, preventing AP calculation for the combinations A + A,
B + A, and C + A. HeaPacPla achieved perfect predictions with 2- or higher-shot fine-tuning.

5.2.4. Accuracy of Normal Images

To avoid misclassifying normal images as diseased, we calculated the specificity
(accuracy of normal images) across the four schemes using confidence score thresholds of 0.3
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and 0.5. If a predicted bounding box on a normal image exceeded the threshold, the image
was considered misclassified. Figure 9 shows the specificities across all methods. Models
that passed test images through a classification model before object detection achieved
significantly higher specificity. The three Transformer-based models, despite their lower
mAP performance indicated earlier, showed near-perfect specificity. Transformer-based
models often excel in capturing the global context due to their self-attention mechanism,
which enhances their ability to differentiate between object and non-object regions and
thereby more accurately classify normal images, contributing to their higher specificity.
However, they struggle with the localization and accurate detection of fine-grained objects
and may require more extensive training data or context diversity to achieve high precision
and recall, which explains the discrepancy between their strong specificity and weaker mAP.
In contrast, models like Dynamic R-CNN, TFA, and FSCE (all based on the faster R-CNN
framework), which had higher mAP, tended to show less satisfactory specificity. This may
be due to the design and training objectives of the faster R-CNN architecture, where their
region proposal networks excel at generating candidate regions to contain objects, but are
more prone to misclassify background or non-object regions as objects when confident
regions are identified. Thus, these CNN-based models are tuned to prioritize sensitivity in
finding objects, potentially sacrificing specificity. The specificity of the two FSOD models,
TFA and FSCE, decreased as the number of shots used in fine-tuning increased. YOLOX
stood out by achieving almost perfect specificity at the 0.5 threshold, excelling in both mAP
and the accuracy of normal image detection.
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6. Discussion

In this study, we developed deep learning-based object detection strategies with two
main goals: first, to address the class imbalance in the dataset for more accurate predictions,
and second, to reduce the false positive rate while maintaining high accuracy. To achieve
these objectives, we established several datasets and experimental approaches. The results
showed that the CNN-based models consistently outperformed the Transformer-based
models, and the proportion of background images in the training sets had a significant
effect on the inference capabilities of these models. When comparing the four proposed
analytic schemes, we found that Schemes 2 and 4, which first applied a classification model,
outperformed Schemes 1 and 3, which relied solely on object detection or the FSOD models.
In particular, the best results were obtained using the approach where test images were first
processed by Classification Model A and then by FSCE trained on Dataset C with 10-shot
fine-tuning.

Despite attempts to balance the data by adjusting the proportion of background images
in the training datasets, class imbalance remained an issue. This led to the use of FSOD
models in Schemes 3 and 4, which were expected to handle class imbalance better based on
their architecture. The experimental results confirmed that the FSOD models outperformed
the object detection models for novel classes, while the reverse was true for base classes.
Class-wise AP analysis showed that different k-shot fine-tuning settings affected categories
in varying ways; more shots did not always result in better performance.

To achieve our second goal, we also calculated the specificity of the test data (i.e.,
accuracy for normal image detection) across all four schemes. The results indicated that the
accuracy of normal images could first be improved by using a binary classification model.
Overall, models that excelled in terms of mAP tended to have lower accuracy for normal
images, and vice versa. YOLOX was the only model that performed well in terms of both
mAP and normal image accuracy.

Studies have shown that CNN architectures are particularly effective in detecting and
localizing abnormalities in CXR images [45]. In our study, we also found that CNN-based
models, particularly YOLOX and FSCE with 10-shot fine-tuning, achieved the highest mAP
scores in disease detection. The limitations posed by small imbalanced annotated datasets
in developing deep learning models for localization have been highlighted in previous
research and addressed by using transfer learning and augmentation techniques [47], in
combination with large datasets containing ground-truth bounding boxes [44]. Similarly,
we observed that FSOD techniques, like FSCE, significantly enhanced the accuracy in
detecting diseases with limited samples. The use of Transformer-based object detection
models in medical image analysis is less common. In our study, we extended the literature
by showing that, unlike CNNs, Transformer-based models such as DETR and Meta-DETR,
which excel in general object detection tasks on diverse datasets such as COCO, exhibited
lower performance in CXR disease detection. While most studies have focused on a
single detection model for specific tasks, Behrendt et al. [47] distinguished themselves by
evaluating transfer learning, nodule augmentation, and various detection algorithms in
building a robust nodule detection system. Our study further contributes by systematically
comparing CNN- and Transformer-based object detection algorithms along with FSOD
techniques to identify and fine-tune the most suitable deep learning models for various
disease detection tasks in CXR images.

The proposed methods for disease detection and localization in CXRs show significant
promise, yet there are limitations that affect their robustness and scalability in clinical set-
tings. First, the models relied on a single-institution dataset, which may lead to overfitting
and reduce their generalizability to diverse clinical environments with varying imaging
protocols and patient populations. Although FSOD techniques were employed to address
class imbalance, accurate detection remained a challenge for certain categories of rare
diseases with very few examples. Transformer-based models like DETR and Meta-DETR
also exhibited limitations in detecting small abnormalities in CXR images, and their high
computational demands further limit their feasibility in real-time or resource-constrained
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settings. Additionally, the reliance on precise bounding box annotations introduces poten-
tial subjectivity, impacting localization accuracy. Future research could focus on enhancing
model generalizability by incorporating multi-institutional datasets and reducing class im-
balance through data augmentation. Exploring lightweight model architectures or hybrid
approaches that integrate CNNs with Transformers could allow for optimizing perfor-
mance while reducing computational requirements. Improved annotation techniques, such
as weak- or self-supervised learning [34] or semi-automated labeling [49,50] may also be
used to enhance model training quality and overall detection accuracy, paving the way for
more robust and clinically viable AI-based diagnostic tools.

7. Conclusions

This study explored the application of deep learning-based object detection models
for disease detection and localization in CXR images. By employing CNN and Transformer-
based architectures, as well as FSOD techniques, we developed and evaluated approaches
for accurately detecting 12 thoracic diseases across multiple analytic schemes. Our results
indicate that the CNN-based models, particularly YOLOX and FSCE (10-shot), consistently
achieved high mAP scores, underscoring their robustness and adaptability to clinical set-
tings. In comparison, Transformer-based models such as DETR and Meta-DETR exhibited
limitations in small object localization, which may stem from both the model architecture
and dataset constraints. Our approach highlights the potential of binary classification as a
preliminary step to reduce false positives in object detection, leading to improved disease
detection accuracy and specificity for normal images. Furthermore, incorporating FSOD
enhanced the capability of our model to handle rare diseases with minimal training sam-
ples, suggesting that few-shot learning can be a valuable addition to resource-constrained
medical imaging tasks.

While promising results were achieved, certain limitations, including potential over-
fitting to dataset-specific features, high computational demands, and class imbalances,
highlight avenues for future research. These limitations could be addressed through
approaches such as cross-institutional validation, lightweight model design, and data
augmentation to further enhance model precision and clinical applicability. Ultimately, this
work contributes valuable insights to the development of robust automated diagnostic tools,
paving the way toward more accurate and efficient CXR disease detection in real-world
healthcare settings.
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